
System Level Programming

A5

Alexander Ertl, Hannes Weissteiner

November 22, 2019

IAIK – Graz University of Technology



Dynamic Memory



Introduction www.tugraz.at

int inputsize = 200;

int *buffer = malloc(inputsize * sizeof(int));

memcpy(buffer , input , inputsize)

// do something very important

free(buffer);

• Where in the memory is this buffer located?

• How can it be increased/decreased at runtime?

1 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Memory of a process www.tugraz.at

Code

BSS

Stack

program break

Virtual memory space

• Linear address space for each process

Code

• Segment for the binary code

BSS

• Global/static variables with known size at compile time

2 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Memory of a process www.tugraz.at

Code

BSS

Stack

program break

Virtual memory space

• Linear address space for each process

Code

• Segment for the binary code

BSS

• Global/static variables with known size at compile time

2 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Memory of a process www.tugraz.at

Code

BSS

Stack

program break

Virtual memory space

• Linear address space for each process

Code

• Segment for the binary code

BSS

• Global/static variables with known size at compile time

2 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Memory of a process www.tugraz.at

Code

BSS

Stack

program break

2 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Memory of a process www.tugraz.at

Code

BSS

Stack

program break

Program break

• end of data segment

Program break can be increased and decerased

2 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Heap www.tugraz.at

Data

BSS

Stack

program break

initial program break

Heap

After increasing the program break (brk)

• Usable memory between end of BSS and brk

• Called the Heap

Program can use addresses below break

• Why don’t we use this for our buffer?

3 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Heap www.tugraz.at

Data

BSS

Stack

program break

initial program break

After increasing the program break (brk)

• Usable memory between end of BSS and brk

• Called the Heap

Program can use addresses below break

• Why don’t we use this for our buffer?

3 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Heap www.tugraz.at

Data

BSS

Stack

program break

initial program break

After increasing the program break (brk)

• Usable memory between end of BSS and brk

• Called the Heap

Program can use addresses below break

• Why don’t we use this for our buffer?

3 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Heap www.tugraz.at

Data

BSS

Stack

program break

initial program break

buffer

After increasing the program break (brk)

• Usable memory between end of BSS and brk

• Called the Heap

Program can use addresses below break

• Why don’t we use this for our buffer?

3 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Heap - contd’ www.tugraz.at

OS offers syscalls brk and sbrk

• To change the program break of the own process

• int brk(void *addr);

• brk(ptr) sets the break to the value specified by ptr

• void* sbrk(intptr_t increment);

• sbrk(inc) increments the break by inc bytes

• Returns the address of the previous program break

• That is, a pointer to the newly allocated memory

• sbrk(0) returns current location of the break

4 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Heap - contd’ www.tugraz.at

OS offers syscalls brk and sbrk

• To change the program break of the own process

• int brk(void *addr);

• brk(ptr) sets the break to the value specified by ptr

• void* sbrk(intptr_t increment);

• sbrk(inc) increments the break by inc bytes

• Returns the address of the previous program break

• That is, a pointer to the newly allocated memory

• sbrk(0) returns current location of the break

4 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Heap - contd’ www.tugraz.at

OS offers syscalls brk and sbrk

• To change the program break of the own process

• int brk(void *addr);

• brk(ptr) sets the break to the value specified by ptr

• void* sbrk(intptr_t increment);

• sbrk(inc) increments the break by inc bytes

• Returns the address of the previous program break

• That is, a pointer to the newly allocated memory

• sbrk(0) returns current location of the break

4 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Heap - contd’ www.tugraz.at

OS offers syscalls brk and sbrk

• To change the program break of the own process

• int brk(void *addr);

• brk(ptr) sets the break to the value specified by ptr

• void* sbrk(intptr_t increment);

• sbrk(inc) increments the break by inc bytes

• Returns the address of the previous program break

• That is, a pointer to the newly allocated memory

• sbrk(0) returns current location of the break

4 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Heap - contd’ www.tugraz.at

OS offers syscalls brk and sbrk

• To change the program break of the own process

• int brk(void *addr);

• brk(ptr) sets the break to the value specified by ptr

• void* sbrk(intptr_t increment);

• sbrk(inc) increments the break by inc bytes

• Returns the address of the previous program break

• That is, a pointer to the newly allocated memory

• sbrk(0) returns current location of the break

4 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



A straight forward solution? www.tugraz.at

void *malloc(size_t size){

return sbrk(size)

}

5 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology





A straight forward solution? www.tugraz.at

Because ...
void* t = malloc (100);

void* u = malloc (100);

free(t);

It’s not that easy, but not much harder!

6 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



A straight forward solution? www.tugraz.at

Because ...
void* t = malloc (100);

void* u = malloc (100);

free(t);

It’s not that easy, but not much harder!

6 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Goals www.tugraz.at

• Efficient usage of memory

• Reuse of freed memory areas

• Avoid fragmentation of heap segment

7 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Decrease program break if possible www.tugraz.at

• If there is free memory area just below the break

• Decrease the program break

1

2

3

4

5

6

program break

8 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Decrease program break if possible www.tugraz.at

• If there is free memory area just below the break

• Decrease the program break

1

2

3

4

5

program break

program break

8 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Merge free memory areas www.tugraz.at

• Only possible to merge with next or previous area

1

2

3

4

5

program break

program break

9 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Merge free memory areas www.tugraz.at

• Only possible to merge with next or previous area

1

2

3

5

program break

program break

9 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Reuse free memory areas www.tugraz.at

• When new memory is malloced

• Search for a free memory area ≥ requested size and split it

1

2

3

5

program break

program break

10 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Reuse free memory areas www.tugraz.at

• When new memory is malloced

• Search for a free memory area ≥ requested size and split it

1

2

3

4

5

program break

program break

10 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Bringing it together www.tugraz.at

We need to know

• the size,

• the state,

• and the location

of the memory areas for an efficient memory management

Any ideas how to organize this information?

11 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Bringing it together www.tugraz.at

We need to know

• the size,

• the state,

• and the location

of the memory areas for an efficient memory management

Any ideas how to organize this information?

11 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



What errors we want to detect? www.tugraz.at

• Double free → straight forward

• Out of memory→ straight forward

• Have a look at the sbrk manpage

• Buffer overflow / memory corruption

• Special value at begin of every memory area

• Check if first word == special value

1
2
3
4
5

12 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



What errors we want to detect? www.tugraz.at

• Double free → straight forward

• Out of memory→ straight forward

• Have a look at the sbrk manpage

• Buffer overflow / memory corruption

• Special value at begin of every memory area

• Check if first word == special value

1
2
3
4
5

12 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



What errors we want to detect? www.tugraz.at

• Double free → straight forward

• Out of memory→ straight forward

• Have a look at the sbrk manpage

• Buffer overflow / memory corruption

• Special value at begin of every memory area

• Check if first word == special value

1
2
3
4
5

12 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



What errors we want to detect? www.tugraz.at

• Double free → straight forward

• Out of memory→ straight forward

• Have a look at the sbrk manpage

• Buffer overflow / memory corruption

• Special value at begin of every memory area

• Check if first word == special value

1
2
3
4
5

12 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



What errors we want to detect? www.tugraz.at

• Double free → straight forward

• Out of memory→ straight forward

• Have a look at the sbrk manpage

• Buffer overflow / memory corruption

• Special value at begin of every memory area

• Check if first word == special value

1
2
3
4
5

12 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



What errors we want to detect? www.tugraz.at

• Double free → straight forward

• Out of memory→ straight forward

• Have a look at the sbrk manpage

• Buffer overflow / memory corruption

• Special value at begin of every memory area

• Check if first word == special value

1
2
3
4
5

12 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology





Task Summary www.tugraz.at

• Choose a structure to organise the memory areas

• Decrease program break if possible

• Avoid heap fragmentation

• Split large free memory areas to the needed size

• Bonus: Merge free neighboring memory areas

• Detect overflows, double frees and out of memory

• Your implementation has to conform to POSIX (manpage)
cf. assignment page for further details

13 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology



Dynamic Memory Hints www.tugraz.at

Make use of pointer arithmetic

• int* p; p+5; → address in p is increased by 5*sizeof(int)

How many bytes does a pointer need?

• Correct use of sizeof

Double-Linked-List of memory areas

Be careful to test the right malloc implementation ;)

Debugging with printf?

14 Alexander Ertl, Hannes Weissteiner — IAIK – Graz University of Technology


	Dynamic Memory

