Side-Channel Security

Chapter 2: Cache Template Attacks

Daniel Gruss
March 9, 2021

Graz University of Technology

TLB and Paging

e Paging: memory translated page-wise from virtual to physical
e TLB (translation lookaside buffer) caches virtual to physical mapping

e TLB has some latency

TLB and Paging

e Paging: memory translated page-wise from virtual to physical

TLB (translation lookaside buffer) caches virtual to physical mapping

TLB has some latency

Worst case for Cache: mapping not in TLB, need to load mapping from
RAM

Solution: Use virtual addresses instead of physical addresses

Cache indexing methods

VIVT: Virtually indexed, virtually tagged

PIPT: Physically indexed, physically tagged

PIVT: Physically indexed, virtually tagged

VIPT: Virtually indexed, physically tagged

Virtual Address

Cache

’ VPN ‘ n bits | b bits |

Way 1 Tag
Way 2 Tag

Way 1 Data
Way 2 Data

2" cache sets

Cache Index

Tag

Data

Virtual Address

Cache

’ VPN ‘ n bits | b bits |

Way 1 Tag
Way 2 Tag

Way 1 Data
Way 2 Data

2" cache sets

Cache Index

Tag

e Fast
e Virtual Tag is not unique (Context switches)

e Shared memory more than once in cache

Data

Virtual Address

Cache

‘ n bits | b bits |

Way 1 Tag
Way 2 Tag

Way 1 Data
Way 2 Data

TLB 2" cache sets

Tag

Data

Virtual Address

[e [o]

Tag

e Slow (TLB lookup for index)

2" cache sets

e Shared memory only once in cache!

Cache

Way 1 Tag
Way 2 Tag

Way 1 Data
Way 2 Data

Data

Virtual Address

|

n bits | b bits

TLB

2" cache sets

|

n bits | b bits

Tag

Cache

Way 1 Tag
Way 2 Tag

Way 1 Data
Way 2 Data

Data

Virtual Address Cache
. 5 Way 1 Ta, Way 1 Data
’ ‘ n bits | b bits | Wa)\i 2 Tag Wa§ 2 Data
TLB 2" cache sets
’ I n bits | b bits ‘
) —S7
¢
e Slow (TLB lookup for index) —
e Virtual Tag is not unique (Context switches) Data

e Shared memory more than once in cache

Virtual Address

’ VPN ‘ n bits l b bits l

TLB

Cache |
PPN ndex

Tag

Cache

Way 1 Tag
Way 2 Tag

Way 1 Data
Way 2 Data

2" cache sets

Data

VIPT

Virtual Address Cache
- . Way 1 Tag Way 1 Data
’ VPN ‘ n bits | b bits | Way 2 Tag Way 2 Data
TLB 2" cache sets
Cache |
PPN ndex

f O

T (—)
8 \
e [ast _ji

e 4 KiB pages: last 12 bits of VA and PA are equal Data

e Using more bits is unpractical (like VIVT)

— Cache size < # ways - page size

e L1 caches: VIVT or VIPT
e L2/L3 caches: PIPT

Flush+Reload

Attacker Cach Victim
address space ache address space

step 0: attacker maps shared library — shared memory, shared in cache

Flush+Reload

Attacker Cach Victim
address space ache address space

Cached cached

Ve

step 0: attacker maps shared library — shared memory, shared in cache

Flush+Reload

Attacker Cach Victim
address space ache address space

flushes

step 0: attacker maps shared library — shared memory, shared in cache

step 1: attacker flushes the shared line

Flush+Reload

Attacker Cach Victim
address space ache address space

loads data

step 0: attacker maps shared library — shared memory, shared in cache
step 1: attacker flushes the shared line

step 2: victim loads data while performing encryption

Flush+Reload

Attacker
address space

Cache

reloads dat,

Victim
address space

step 0:
step 1:
step 2:
step 3:

attacker maps shared library — shared memory, shared in cache
attacker flushes the shared line
victim loads data while performing encryption

attacker reloads data — fast access if the victim loaded the line

Flush+Reload

Pros: fine granularity (1 line)

Cons: restrictive

1. needs c1flush instruction (not available e.g., in JS)

2. needs shared memory

Variants of Flush4Reload

e Flush+Flush [1]
e Evict+Reload [2] on ARM [4]

Prime+Probe

Attacker Cach Victim
address space ache address space

step 0: attacker fills the cache (prime)

Prime+Probe

Attacker Cach Victim
address space ache address space

step 0: attacker fills the cache (prime)

Prime+Probe

Attacker Cach Victim
address space ache address space

step 0: attacker fills the cache (prime)

Prime+Probe

Attacker Cach Victim
address space ache address space

loads data

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

Prime+Probe

Attacker Cach Victim
address space ache address space

loads data

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

Prime+Probe

Attacker Cach Victim
address space ache address space

loads data

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

Prime+Probe

Attacker Cach Victim
address space ache address space

loads data

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

Prime+Probe

Attacker Cach Victim
address space ache address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

Prime+Probe

Attacker Cach Victim
address space ache address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

step 2: attacker probes data to determine if the set was accessed

Prime+Probe

Attacker Cach Victim
address space ache address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

step 2: attacker probes data to determine if the set was accessed

Prime+Probe

Attacker Cach Victim
address space ache address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

step 2: attacker probes data to determine if the set was accessed

Prime+Probe

Pros: less restrictive

1. no need for c1flush instruction (not available e.g., in JS)

2. no need for shared memory

Cons: coarser granularity (1 set)

Issues with Prime+Probe

We need to evict caches lines without c1f1lush or shared memory:

1. which addresses do we access to have congruent cache lines?

2. without any privilege?

3. and in which order do we access them?

#1.1: Which physical addresses to access?

cacheset1 |

LT ‘ T
“LRU eviction":

e assume that cache uses LRU replacement

e accessing n addresses from the same cache set to evict an n-way set

e eviction from last level — from whole hierarchy (it's inclusive!)

#1.2: Which addresses map to the same set?

35 17 6 0
physical address tag set offset
30 . . .
y e function H that maps slices is
2 undocumented
L v e reverse-engineered by [3, 6, 8]
|

line —

slice 0 slice 1 slice 2 slice 3

#1.2: Which addresses map to the same set?

35 17 6 0
physical address tag set offset
30 . . .
y e function H that maps slices is
2 undocumented
L v e reverse-engineered by [3, 6, 8]
|

e hash function basically an XOR
of address bits

line —

slice 0 slice 1 slice 2 slice 3

o
e}
Q
(1))
Q
S
(1}
()]
Q
A=
)
(]
=
o
(1}
S
(73]
Q
()]
(7))
Q
-
=)
=]
(1}
=
2
=
i
H*

3 functions, depending on the number of cores

Address bit

E)

[e] [e] |

[ele[e] [&]

[@]

EIEIEEEINE

[@]

)

[

‘2cores‘ooH

{@M)MD%(D{@{@{

[)
[ole] [ef

[@]

MD%CN

4 cores }O—OH ’ |
o1

8 cores | 07 (a5)

D

&

DD
D

2]

s

[S3)

S|P | D|D|D|D

D D D |D|D

s

b

D

D

2 ||D DD |D

#2: Obtain information without root privileges

e last-level cache is physically indexed

#2: Obtain information without root privileges

e last-level cache is physically indexed

e root privileges needed for physical addresses

#2: Obtain information without root privileges

e last-level cache is physically indexed
e root privileges needed for physical addresses

e use 2 MB pages — lowest 21 bits are the same as virtual address

#2: Obtain information without root privileges

e last-level cache is physically indexed
e root privileges needed for physical addresses
e use 2 MB pages — lowest 21 bits are the same as virtual address

— enough to compute the cache set

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

achesee [| Pl | [[[|

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

achesee [| Pl | [[[|

e LRU replacement policy: oldest entry first

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cacheset | 2 | o [e] v [1 [] s]

e LRU replacement policy: oldest entry first

e timestamps for every cache line

older CPUs

#3.1: Replacement policy on

“LRU eviction” memory accesses

cache set

e LRU replacement policy: oldest entry first
e timestamps for every cache line

e access updates timestamp

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

peo|

ERN 0 R A B B

cache set

e LRU replacement policy: oldest entry first
e timestamps for every cache line

e access updates timestamp

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

peo|

Lo o o] o]] |

cache set

e LRU replacement policy: oldest entry first
e timestamps for every cache line

e access updates timestamp

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

peo|

| 10 | 5 | 8 | 9 | 7 | 6 | 11 |

cache set

e LRU replacement policy: oldest entry first
e timestamps for every cache line

e access updates timestamp

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set | 10 |
e LRU replacement policy: oldest entry first

e timestamps for every cache line

e access updates timestamp

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

| 10 | 13 | 8 | 9 | 7 |

cache set

e LRU replacement policy: oldest entry first
e timestamps for every cache line

e access updates timestamp

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

| 10 | 13 | 8 | 9 |

cache set

e LRU replacement policy: oldest entry first
e timestamps for every cache line

e access updates timestamp

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

peo|

| 9 | 15 | 14 | 11 | 12 |

| 10 | 13 |

cache set

e LRU replacement policy: oldest entry first
e timestamps for every cache line

e access updates timestamp

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cacheset | 2 | o [e] v [1 [] s]

e no LRU replacement

recent

#3.2: Replacement policy on

“LRU eviction” memory accesses

cache set

e no LRU replacement

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

peo|

cache set

e no LRU replacement

recent

#3.2: Replacement policy on

“LRU eviction” memory accesses

[o] o [o]

cache set

e no LRU replacement

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set

e no LRU replacement

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

peo|

| 12 | 5 | 8 | 11 | 7 | 6 |

cache set

e no LRU replacement

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

peo|

| 12 | 5 | 8 | 11 | 7 | 6 |

cache set

e no LRU replacement

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

peo|

| 12 | 5 | 8 | 11 | 7 | 6 | 14 |

cache set

e no LRU replacement

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

peo|

| 12 | 5 | 8 | 11 | 7 | 6 | 14 |

cache set

e no LRU replacement

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set |12|5|8|11|7|6|14|16|

e no LRU replacement

e only 75% success rate on Haswell

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set |12|5|8|11|7|6|14|16|

e no LRU replacement
e only 75% success rate on Haswell

e more accesses — higher success rate, but too slow

#3.3: Cache eviction strategy

o N 1

a2 H EER N

a3 H EE B

as [| II.I.. -

as

as H EER B

ar HE EHEE B

as H EE B

a9 H B
Time

Address

Figure 1: Fast and effective on Haswell. Eviction rate >99.97%.

Cache covert channels

Side channels vs covert channels

e side channel: attacker spies a victim process
e covert channel: communication between two processes

e that are not supposed to communicate
e that are collaborating

1-bit cache covert channels

ideas for 1-bit channels:

1-bit cache covert channels

ideas for 1-bit channels:

e Prime+Probe: use one cache set to transmit

0: sender does not access the set — low access time in receiver
1: sender does access the set — high access time in receiver

1-bit cache covert channels

ideas for 1-bit channels:

e Prime+Probe: use one cache set to transmit
0: sender does not access the set — low access time in receiver
1: sender does access the set — high access time in receiver
o Flush+Reload/Flush+Flush/Evict+Reload: use one address to transmit

0: sender does not access the address — high access time in receiver
1: sender does access the address — low access time in receiver

1-bit covert channels

e 1 bit data, 0 bit control?

1-bit covert channels

e 1 bit data, 0 bit control?
e idea: divide time into slices (e.g., 50us frames)

e synchronize sender and receiver with a shared clock

Problems of 1-bit covert channels

e errors?

Problems of 1-bit covert channels

e errors? — error-correcting codes

retransmission may be more efficient (less overhead)

desynchronization

optimal transmission duration may vary

Multi-bit covert channels

e combine multiple 1-bit channels

Multi-bit covert channels

e combine multiple 1-bit channels
e avoid interferences

— higher performance

Multi-bit covert channels

e combine multiple 1-bit channels
e avoid interferences
— higher performance

e use 1-bit for sending = true/false

Packets / frames

Organize data in packets / frames:

e some data bits
e check sum
e sequence number
— keep sender and receiver synchronous

— check whether retransmission is necessary

Efficient retransmission

How can the sender know when to retransmit?

e idea: acknowledge packets (requires a backward channel)

Efficient retransmission

How can the sender know when to retransmit?

e idea: acknowledge packets (requires a backward channel)
e use some bits as a backward channel

e use the same bits as a backward channel (sender sending bit/receiver
sending bit)

Efficient retransmission

How can the sender know when to retransmit?

e idea: acknowledge packets (requires a backward channel)

e use some bits as a backward channel

e use the same bits as a backward channel (sender sending bit/receiver
sending bit)

e why wait for retransmission?

Efficient retransmission

How can the sender know when to retransmit?

e idea: acknowledge packets (requires a backward channel)

e use some bits as a backward channel

e use the same bits as a backward channel (sender sending bit/receiver
sending bit)

e why wait for retransmission?

— sender should retransmit until receiver acknowledged

Raw capacity ('

e number of bits per second

e measure over > 1 minute

s bits transmitted in 1 minute:

Bit error rate p

e count bits that are wrong w
e count total bits sent b,

e count total bits received b,

Error rate:

or if b, = b,:

True capacity 7"

T=C-(1+((1—p)- log,(1—p)+p-log,(p)))

C'is the raw capacity and p is the bit error rate.

100 T

80 | 1
0\ g
40 |

20 |- 8

0 | | | |
0 01 02 03 04 05 06 07 08 09 1

Error rate

True capacity

State of the art

method raw capacity err. rate true capacity env.

F+F [3968Kbps 0.840% 3690Kbps native
F+R 1 2384Kbps 0.005% 2382Kbps native
E+R [4 1141Kbps 1.100% 1041Kbps native
P+P 7] 601Kbps 0.000% 601Kbps native
P+P [5] 600Kbps 1.000% 552Kbps virt

P+P (7] 362Kbps 0.000% 362Kbps native

Cache template attacks

Cache Template Attacks

Cache Template Attacks

e State of the art: cache attacks are powerful

e Problem: manual identification of attack targets

Cache Template Attacks

State of the art: cache attacks are powerful

Problem: manual identification of attack targets

Solution: Cache Template Attacks

Automatically find any secret-dependent cache access

Can be used for attacks and to improve software

Cache Template Attacks

State of the art: cache attacks are powerful

Problem: manual identification of attack targets

Solution: Cache Template Attacks

Automatically find any secret-dependent cache access

Can be used for attacks and to improve software

Examples:

e Cache-based keylogger
e Automatic attacks on crypto algorithms

Can We Build a Cache-Based Keylogger?

Can We Build a Cache-Based Keylogger?

Can We Build a Cache-Based Keylogger?

Can We Build a Cache-Based Keylogger?

Can We Build a Cache-Based Keylogger?

Challenges

e How to locate key-dependent memory accesses?

Challenges

e How to locate key-dependent memory accesses?
e |t's complicated:

e Large binaries and libraries (third-party code)
Many libraries (gedit: 60MB)
Closed-source / unknown binaries

Self-compiled binaries

Challenges

e How to locate key-dependent memory accesses?
e |t's complicated:

e Large binaries and libraries (third-party code)
Many libraries (gedit: 60MB)
Closed-source / unknown binaries

Self-compiled binaries

e Difficult to find all exploitable addresses

Cache Template Attacks

Profiling Phase

e Preprocessing step to find exploitable addresses automatically

e w.r.t. “events’ (keystrokes, encryptions, ...)
e called “Cache Template”

Cache Template Attacks

Profiling Phase

e Preprocessing step to find exploitable addresses automatically

e w.r.t. “events’ (keystrokes, encryptions, ...)
e called “Cache Template”

Exploitation Phase

e Monitor exploitable addresses

Profiling Phase

Attacker address space Victim address space

Cache

Shared 0x0

Shared 0x0

Cache is empty

Profiling Phase

Attacker address space Victim address space

Cache

Shared 0x0

Shared 0x0

Shared 0x0

Attacker triggers an event

Profiling Phase

Attacker address space

Shared 0x0

Cache

Shared 0x0

Victim address space

Shared 0x0

Attacker checks one address for cache hits (“Reload”)

Profiling Phase

Attacker address space

Shared 0x0

Cache

Shared 0x0

Victim address space

Shared 0x0

Update cache hit ratio (per event and address)

Profiling Phase

Attacker address space Victim address space

Cache

Shared 0x0

'705/7 Shared 0x0

Shared 0x0

Attacker flushes shared memory

Profiling Phase

Attacker address space Victim address space

Cache

Shared 0x0

Shared 0x0

Repeat for higher accuracy

Profiling Phase

Attacker address space Victim address space

Cache

Shared 0x0

Shared 0x0

Repeat for all events

Profiling Phase

Attacker address space Victim address space

Cache

Shared 0x0

Shared 0x0

Repeat for all events

Profiling Phase

Attacker address space Victim address space

Cache

Shared 0x40 .
< :
Shared 0x40

Continue with next address

Profiling Phase

Attacker address space Victim address space

Cache

Shared 0x80

Shared 0x80

Continue with next address

=

File Edit View Search Terminal Help

% sleep 2; ./spy 300 7f85140a4000-71051417b060 r-xp 0x20000 08:02 26
8050 /usr/lib/x86_64-1inux-gnu/gedit/libgedit.so

B [nrafatchl
= Terminal
File Edit View Search Terminal Help

sharks ./spy []

NOmErudney |3

Terminal

<DNIR>14 03 2017 21-44-2A
- o x

Untitled Document 1

Plain Text =

Save = -

TabWidth:2 w Ln 1, Col1 - INS

Cache Template Attack Demo

Profiling Phase: 1 Event, 1 Address

KEY

0x7c800 []

ADDRESS

Profiling Phase: 1 Event, 1 Address

KEY

0x7c800 .

>

ADDRESS

Example: Cache Hit Ratio for (0x7¢800,n): 200 / 200

Profiling Phase: All Events, 1 Address

KEY

gh i j kI mnopgrstuvwxyz
0x7c800]

ADDRESS

Profiling Phase: All Events, 1 Address

KEY

gh i j kI mnopgrstuvwxyz
0x7c800 []

ADDRESS

Example: Cache Hit Ratio for (0x7¢c800,u): 13 / 200

Profiling Phase: All Events, 1 Address

KEY

gh i j kI mnopgrstuvwxyz
0x7c800 []

ADDRESS

Distinguish n from other keys by monitoring 0x7c800

Profiling Phase: All Events, All Addresses

q
0x7c680

0x7c6c0 =
072700 EEEEEE]
0x7c740 .
0x7c780 []
0x7c7c0]
0x7c800

0x7c840

0x7c880

0x7c8c0

5
0x7¢900]
|
|

0x7c940
0x7c980
0x7c9c0
0x7cal0
0x7cb80
0x7cc40
0x7cc80
0x7cccO
0x7cd00

ADDRESS
[}

Attack 3: Locate AES T-Tables

AES uses T-Tables (precomputed from S-Boxes)

4 T-Tables

To [k{0,4,8,12} @P{o,zx,s,u}}
Ty (k{159,131 D Pi1,5.9,13})

If we know which entry of T" is accessed, we know the result of k; @ p;.

Known-plaintext attack (p; is known) — k; can be determined

Attack 3: Locate AES T-Tables

AES T-Table implementation from OpenSSL 1.0.2

Attack 3: Locate AES T-Tables

AES T-Table implementation from OpenSSL 1.0.2

e Most addresses in two groups:

e Cache hit ratio 100% (always cache hits)
e Cache hit ratio 0% (no cache hits)

Attack 3: Locate AES T-Tables

AES T-Table implementation from OpenSSL 1.0.2

e Most addresses in two groups:
e Cache hit ratio 100% (always cache hits)
e Cache hit ratio 0% (no cache hits)

e One 4096 byte memory block:
e Cache hit ratio of 92%

e Cache hits depend on key value and plaintext value
e The T-Tables

Attack 4: AES T-Table Template Attack

AES T-Table implementation from OpenSSL 1.0.2

e Known-plaintext attack

e Events: encryption with only one fixed key byte

Attack 4: AES T-Table Template Attack

AES T-Table implementation from OpenSSL 1.0.2

e Known-plaintext attack
e Events: encryption with only one fixed key byte

e Profile each event

Attack 4: AES T-Table Template Attack

AES T-Table implementation from OpenSSL 1.0.2

Known-plaintext attack

Events: encryption with only one fixed key byte

Profile each event

Exploitation phase:

e Eliminate key candidates

Attack 4: AES T-Table Template Attack

AES T-Table implementation from OpenSSL 1.0.2

e Known-plaintext attack
e Events: encryption with only one fixed key byte
e Profile each event

e Exploitation phase:

e Eliminate key candidates
e Reduction of key space in first-round attack:

e 64 bits after 16—160 encryptions

Attack 4: AES T-Table Template Attack

AES T-Table implementation from OpenSSL 1.0.2

e Known-plaintext attack
e Events: encryption with only one fixed key byte
e Profile each event

e Exploitation phase:

e Eliminate key candidates
e Reduction of key space in first-round attack:

e 64 bits after 16—160 encryptions
e State of the art: full key recovery after 30000 encryptions

Attack 4: AES T-Table Template

ADDRESS ADDRESS
(=) 0 0 =
Q E - =
5 ——

- ———

/M —_ <=
) — —a
— =——
; 255 255

]C(): 0x00]{?0: 0x55

(transposed)

Conclusion

e Novel technique to find any cache side-channel leakage

e Attacks
e Detect vulnerabilities

Conclusion

e Novel technique to find any cache side-channel leakage

e Attacks
e Detect vulnerabilities

e Works on virtually all Intel CPUs

e Works even with unknown binaries

Conclusion

Novel technique to find any cache side-channel leakage

e Attacks
e Detect vulnerabilities

Works on virtually all Intel CPUs

Works even with unknown binaries

Marks a change of perspective:

Conclusion

Novel technique to find any cache side-channel leakage

e Attacks
e Detect vulnerabilities

Works on virtually all Intel CPUs

Works even with unknown binaries

Marks a change of perspective:

e Large scale analysis of binaries
e Large scale automated attacks

Evict+Reload

Variant of Flush-+Reload with cache eviction instead of c1flush
Works on ARMv7

Applicable to millions of devices

Cache Template Attacks using Evict+Reload
ARMageddon: Last-Level Cache Attacks on Mobile Devices [4]

Flush+4Flush: Motivation

e cache attacks — many cache misses

e detect via performance counters

Flush+4Flush: Motivation

e cache attacks — many cache misses
e detect via performance counters

— good idea, but is it good enough?

Flush+4Flush: Motivation

e cache attacks — many cache misses
e detect via performance counters
— good idea, but is it good enough?

e causing a cache flush # causing a cache miss

clflush execution time

NUMBER OF CASES

75%

50%

25%

0%

—— Sandy Hit --- Sandy Miss
—— Ivy Hit --- Ivy Miss
Haswell Hit Haswell Miss

| | | | |
100 120 140 160 180
EXECUTION TIME (IN CYCLES)

Flush+Flush

Attacker Cach Victim
address space ache address space

Flush+Flush

Attacker Cach Victim
address space ache address space

Cached cached

Ve

Flush+Flush

Attacker Cach Victim
address space ache address space

flushes

Flush+Flush

Attacker Cach Victim
address space ache address space

loads data

Flush+Flush

Attacker Cach Victim
address space ache address space

flushes (slow)

Flush+4Flush: Conclusion

e attacker causes no direct cache misses

— fast
— stealthy

Flush+4Flush: Conclusion

e attacker causes no direct cache misses

— fast
— stealthy

e same side channel targets as Flush+Reload

Flush+4Flush: Conclusion

e attacker causes no direct cache misses

— fast
— stealthy

e same side channel targets as Flush+Reload
e 496 KB/s covert channel

Cache Attacks on mobile devices?

e powerful cache attacks on Intel x86 in the last 10 years

e nothing like Flush+Reload or Prime+Probe on mobile devices

Cache Attacks on mobile devices?

e powerful cache attacks on Intel x86 in the last 10 years
e nothing like Flush+Reload or Prime+Probe on mobile devices

— why?

ARMageddon in a nutshell

1. no flush instruction

ARMageddon in a nutshell

1. no flush instruction — Evict+Reload

ARMageddon in a nutshell

1. no flush instruction — Evict+Reload

2. pseudo-random replacement

ARMageddon in a nutshell

1. no flush instruction — Evict+Reload

2. pseudo-random replacement — eviction strategies from Rowhammer js

ARMageddon in a nutshell

1. no flush instruction — Evict+Reload
2. pseudo-random replacement — eviction strategies from Rowhammer js

3. cycle counters require root

ARMageddon in a nutshell

1. no flush instruction — Evict+Reload
2. pseudo-random replacement — eviction strategies from Rowhammer js

3. cycle counters require root — new timing methods

ARMageddon in a nutshell

no flush instruction — Evict+Reload
pseudo-random replacement — eviction strategies from Rowhammer.js

cycle counters require root — new timing methods

sl Y .

last-level caches not inclusive

ARMageddon in a nutshell

no flush instruction — Evict+Reload
pseudo-random replacement — eviction strategies from Rowhammer.js

cycle counters require root — new timing methods

sl Y .

last-level caches not inclusive — let L1 spill to LLC

ARMageddon in a nutshell

no flush instruction — Evict+Reload

pseudo-random replacement — eviction strategies from Rowhammer.js
cycle counters require root — new timing methods

last-level caches not inclusive — let L1 spill to LLC

multiple CPUs

ok L=

ARMageddon in a nutshell

no flush instruction — Evict+Reload
pseudo-random replacement — eviction strategies from Rowhammer.js
cycle counters require root — new timing methods

last-level caches not inclusive — let L1 spill to LLC

ok L=

multiple CPUs — remote fetches + flushes

ARMageddon in a nutshell

no flush instruction — Evict+Reload
pseudo-random replacement — eviction strategies from Rowhammer.js
cycle counters require root — new timing methods

last-level caches not inclusive — let L1 spill to LLC

ok L=

multiple CPUs — remote fetches + flushes

xa'fxms:srq
shell@zeroflte:/data/local/tmp $./keyboard_spy -c 0
5O/ o

ARMageddon Demo

Prefetch Side-Channel Attacks

e prefetch instructions don't check privileges

e prefetch instructions leak timing information

e prefetch instructions don't check privileges

e prefetch instructions leak timing information

exploit this to:

e locate a driver in kernel = defeat KASLR

e translate virtual to physical addresses

Intel being overspecific

NOTE

Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache.

Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context.

Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in

cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context. Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance

penalty.

Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context. Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance
penalty. For example specifying a NULL pointer (OL) as address for a prefetch

can cause long delays.

CPU Caches

Memory (DRAM) is slow compared to the CPU

e buffer frequently used memory
e every memory reference goes through the cache

e based on physical addresses

Memory Access Latency

[l cache hits [] cache misses

M

Unprivileged cache maintainance

Optimize cache usage:

e prefetch: suggest CPU to load data into cache

e clflush: throw out data from all caches

... based on virtual addresses

Software prefetching

prefetch instructions are somewhat unusual

e hints — can be ignored by the CPU

e do not check privileges or cause exceptions

but they do need to translate virtual to physical

Kernel must be mapped in every address space

Today’s operating systems:
Shared address space

User memory S ﬂ Kernel memory

context switch

Address translation on x86-64

PML4
CR3 PMLA4E 0
PMLA4E 1
: PDPT
5 PMLA4I
! #: PDPTE 0
PMLA4E 511 PDP:TE !
ZPDPTI Page Directory
: PDE 0
PDPTE 511 PD:E !
FDE ZPDI Page Table
: PTE O
PDE 511 PT:E !
. 4 KiB Page
\
3 PTE :#PTI Byt 0
: Byte 1
PTE 511 :

Offset

[PML4I (9 b) [PDPTI (9 b) [PDI (9b) [PTI(9b) [Offset (12b)] Byte 4095

48-bit virtual address

Address Translation Caches

Core 0 Core 1
I I 5 I I
ITLB DTLB S ITLB DTLB
I I = I I
PDE cache % PDE cache
(9]
I o I
o
PDPTE cache > PDPTE cache
I I
PMLA4E cache PMLA4E cache
[[
Page table structures in
system memory (DRAM)

Address Space Layout Randomization (ASLR)

Process A

| [)) |

Process B

| | IR |

Process C

| [)) |

Address Space Layout Randomization (ASLR)

Process A

- —)
Process B

| I)
Process C

—— |

Same library — different offset!

Kernel Address Space Layout Randomization (KASLR)

Process A

|)5 M |

Process B

|)) [|

Process C

| NI |

Kernel Address Space Layout Randomization (KASLR)

Process A

l @ t
Process B

l fi——
Process C

| fih m—

Same driver — different offset!

Kernel direct-physical map

Physical memory

max. phys.

Z P
- R

-
~ < 7 @(}
s N

0AT 94T -1
Kernel

Virtual address space

User

Kernel direct-physical map

0AT 94T -1
Kernel

Virtual address space

User

OS X, Linux, BSD, Xen PVM (Amazon EC2)

Translation-Level Oracle

5 400 383 .
)
£
(0]
£ 300| |
c
k) 246
45 230 222
q')]
K 200 |- 181
1 1 1 1 1
PDPT PD PT cached P. uncached P.

Mapping level

Address-Translation Oracle

User space Cache

Kernel space

Address-Translation Oracle

User space Cache

cached

Kernel space

Address-Translation Oracle

User space Cache

flush

clflush /—\
—_—

}

Kernel space

Address-Translation Oracle

User space Cache

Kernel space

\\»4

i

prefetch

Address-Translation Oracle

User space Cache

reload (cache hit)

load h

\
[

Kernel space

Timing the prefetch instruction

The CPU may reorder instructions

instruction 1
cpuid
instruction 2
cpuid

instruction 3

but not over cpuid!

Breaking KASLR with Prefetch

500

W
(@)
o
T
!

300 - .
200 :

Prefetch time

100 C | | | | | | L]
-16 -8 0 8 16 24 32 40

Kernel offset [MB]

Side-Channel Security

Chapter 2: Cache Template Attacks

Daniel Gruss
March 9, 2021

Graz University of Technology

References

[1] Gruss, D., Maurice, C., Wagner, K., and Mangard, S. (2016). Flush+Flush:
A Fast and Stealthy Cache Attack. In DIMVA.

[2] Gruss, D., Spreitzer, R., and Mangard, S. (2015). Cache Template Attacks:
Automating Attacks on Inclusive Last-Level Caches. In USENIX Security
Symposium.

[3] Inci, M. S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., and Sunar, B.
(2015). Seriously, get off my cloud! cross-vm rsa key recovery in a public
cloud. Cryptology ePrint Archive, Report 2015/898.

[4] Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., and Mangard, S. (2016).
ARMageddon: Cache Attacks on Mobile Devices. In USENIX Security
Symposium.

[5] Liu, F., Yarom, Y., Ge, Q., Heiser, G., and Lee, R. B. (2015). Last-Level
Cache Side-Channel Attacks are Practical. In S&P.

[6] Maurice, C., Le Scouarnec, N., Neumann, C., Heen, O., and Francillon, A.
(2015). Reverse Engineering Intel Complex Addressing Using Performance
Counters. In RAID.

[7] Maurice, C., Weber, M., Schwarz, M., Giner, L., Gruss, D., Alberto Boano,
C., Mangard, S., and Romer, K. (2017). Hello from the Other Side: SSH over
Robust Cache Covert Channels in the Cloud. In NDSS.

[8] Yarom, Y., Ge, Q., Liu, F., Lee, R. B., and Heiser, G. (2015). Mapping the
Intel Last-Level Cache. Cryptology ePrint Archive, Report 2015/905.

