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TLB and Paging

e Paging: memory translated page-wise from virtual to physical

TLB (translation lookaside buffer) caches virtual to physical mapping

TLB has some latency

Worst case for Cache: mapping not in TLB, need to load mapping from
RAM

Solution: Use virtual addresses instead of physical addresses



Cache indexing methods

VIVT: Virtually indexed, virtually tagged

PIPT: Physically indexed, physically tagged

PIVT: Physically indexed, virtually tagged

VIPT: Virtually indexed, physically tagged
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e Virtual Tag is not unique (Context switches) Data

e Shared memory more than once in cache
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VIPT
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e 4 KiB pages: last 12 bits of VA and PA are equal Data

e Using more bits is unpractical (like VIVT)

— Cache size < # ways - page size



e L1 caches: VIVT or VIPT
e L2/L3 caches: PIPT
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Attacker Cach Victim
address space ache address space

loads data

step 0: attacker maps shared library — shared memory, shared in cache
step 1: attacker flushes the shared line

step 2: victim loads data while performing encryption



Flush+Reload

Attacker
address space

Cache

reloads dat,

Victim
address space

step 0:
step 1:
step 2:
step 3:

attacker maps shared library — shared memory, shared in cache
attacker flushes the shared line
victim loads data while performing encryption

attacker reloads data — fast access if the victim loaded the line



Flush+Reload

Pros: fine granularity (1 line)

Cons: restrictive

1. needs c1flush instruction (not available e.g., in JS)

2. needs shared memory



Variants of Flush4Reload

e Flush+Flush [1]
e Evict+Reload [2] on ARM [4]
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Prime+Probe

Attacker Cach Victim
address space ache address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

step 2: attacker probes data to determine if the set was accessed



Prime+Probe

Pros: less restrictive

1. no need for c1flush instruction (not available e.g., in JS)

2. no need for shared memory

Cons: coarser granularity (1 set)



Issues with Prime+Probe

We need to evict caches lines without c1f1lush or shared memory:

1. which addresses do we access to have congruent cache lines?

2. without any privilege?

3. and in which order do we access them?



#1.1: Which physical addresses to access?

cacheset1 |

LT ‘ T
“LRU eviction":

e assume that cache uses LRU replacement

e accessing n addresses from the same cache set to evict an n-way set

e eviction from last level — from whole hierarchy (it's inclusive!)



#1.2: Which addresses map to the same set?
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#1.2: Which addresses map to the same set?

35 17 6 0
physical address tag set offset
30 . . .
y e function H that maps slices is
2 undocumented
L v e reverse-engineered by [3, 6, 8]
|

e hash function basically an XOR
of address bits

line —

slice 0 slice 1 slice 2 slice 3
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#2: Obtain information without root privileges

e last-level cache is physically indexed
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#2: Obtain information without root privileges

e last-level cache is physically indexed
e root privileges needed for physical addresses
e use 2 MB pages — lowest 21 bits are the same as virtual address

— enough to compute the cache set
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#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

peo|
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| 10 | 13 |

cache set

e LRU replacement policy: oldest entry first
e timestamps for every cache line

e access updates timestamp



#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses
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“LRU eviction” memory accesses

peo|

| 12 | 5 | 8 | 11 | 7 | 6 | 14 |

cache set

e no LRU replacement
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#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set |12|5|8|11|7|6|14|16|

e no LRU replacement
e only 75% success rate on Haswell

e more accesses — higher success rate, but too slow



#3.3: Cache eviction strategy
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Figure 1: Fast and effective on Haswell. Eviction rate >99.97%.



Cache covert channels




Side channels vs covert channels

e side channel: attacker spies a victim process
e covert channel: communication between two processes

e that are not supposed to communicate
e that are collaborating



1-bit cache covert channels

ideas for 1-bit channels:
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1-bit cache covert channels

ideas for 1-bit channels:

e Prime+Probe: use one cache set to transmit
0: sender does not access the set — low access time in receiver
1: sender does access the set — high access time in receiver
o Flush+Reload/Flush+Flush/Evict+Reload: use one address to transmit

0: sender does not access the address — high access time in receiver
1: sender does access the address — low access time in receiver



1-bit covert channels

e 1 bit data, 0 bit control?



1-bit covert channels

e 1 bit data, 0 bit control?
e idea: divide time into slices (e.g., 50us frames)

e synchronize sender and receiver with a shared clock



Problems of 1-bit covert channels

e errors?



Problems of 1-bit covert channels

e errors? — error-correcting codes

retransmission may be more efficient (less overhead)

desynchronization

optimal transmission duration may vary



Multi-bit covert channels

e combine multiple 1-bit channels
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Multi-bit covert channels

e combine multiple 1-bit channels
e avoid interferences
— higher performance

e use 1-bit for sending = true/false



Packets / frames

Organize data in packets / frames:

e some data bits
e check sum
e sequence number
— keep sender and receiver synchronous

— check whether retransmission is necessary
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e idea: acknowledge packets (requires a backward channel)
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Efficient retransmission

How can the sender know when to retransmit?

e idea: acknowledge packets (requires a backward channel)

e use some bits as a backward channel

e use the same bits as a backward channel (sender sending bit/receiver
sending bit)

e why wait for retransmission?

— sender should retransmit until receiver acknowledged



Raw capacity ('

e number of bits per second

e measure over > 1 minute

s bits transmitted in 1 minute:



Bit error rate p

e count bits that are wrong w
e count total bits sent b,

e count total bits received b,

Error rate:

or if b, = b,:



True capacity 7"

T=C-(1+((1—p)- log,(1—p)+p-log,(p)))

C'is the raw capacity and p is the bit error rate.



100 T

80 | 1
0\ g
40 |

20 |- 8

0 | | | |
0 01 02 03 04 05 06 07 08 09 1

Error rate

True capacity




State of the art

method raw capacity err. rate true capacity env.

F+F [ 3968Kbps  0.840% 3690Kbps native
F+R 1 2384Kbps  0.005% 2382Kbps  native
E+R [4 1141Kbps  1.100% 1041Kbps native
P+P 7] 601Kbps  0.000% 601Kbps native
P+P [5] 600Kbps 1.000% 552Kbps virt

P+P (7] 362Kbps  0.000% 362Kbps native
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Cache Template Attacks

State of the art: cache attacks are powerful

Problem: manual identification of attack targets

Solution: Cache Template Attacks

Automatically find any secret-dependent cache access

Can be used for attacks and to improve software

Examples:

e Cache-based keylogger
e Automatic attacks on crypto algorithms
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Challenges

e How to locate key-dependent memory accesses?
e |t's complicated:

e Large binaries and libraries (third-party code)
Many libraries (gedit: 60MB)
Closed-source / unknown binaries

Self-compiled binaries

e Difficult to find all exploitable addresses
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e Preprocessing step to find exploitable addresses automatically

e w.r.t. “events’ (keystrokes, encryptions, ...)
e called “Cache Template”



Cache Template Attacks

Profiling Phase

e Preprocessing step to find exploitable addresses automatically

e w.r.t. “events’ (keystrokes, encryptions, ...)
e called “Cache Template”

Exploitation Phase

e Monitor exploitable addresses
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Attacker address space Victim address space
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Profiling Phase

Attacker address space

Shared 0x0

Cache

Shared 0x0

Victim address space

Shared 0x0

Attacker checks one address for cache hits (“Reload”)



Profiling Phase

Attacker address space

Shared 0x0

Cache

Shared 0x0

Victim address space

Shared 0x0

Update cache hit ratio (per event and address)



Profiling Phase

Attacker address space Victim address space

Cache

Shared 0x0

'705/7 Shared 0x0

Shared 0x0

Attacker flushes shared memory
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Repeat for higher accuracy



Profiling Phase

Attacker address space Victim address space

Cache

Shared 0x0

Shared 0x0

Repeat for all events



Profiling Phase

Attacker address space Victim address space

Cache

Shared 0x0

Shared 0x0

Repeat for all events



Profiling Phase

Attacker address space Victim address space

Cache

Shared 0x40 .
< :
Shared 0x40

Continue with next address




Profiling Phase

Attacker address space Victim address space

Cache

Shared 0x80

Shared 0x80

Continue with next address
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File Edit View Search Terminal Help

% sleep 2; ./spy 300 7f85140a4000-71051417b060 r-xp 0x20000 08:02 26
8050 /usr/lib/x86_64-1inux-gnu/gedit/libgedit.so

B [nrafatchl
= Terminal
File Edit View Search Terminal Help

sharks ./spy []

NOmErudney |3

Terminal

<DNIR>14 03 2017 21-44-2A
- o x

Untitled Document 1

Plain Text =

Save = -

TabWidth:2 w Ln 1, Col1 - INS

Cache Template Attack Demo



Profiling Phase: 1 Event, 1 Address
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Profiling Phase: 1 Event, 1 Address

KEY

0x7c800 .

>

ADDRESS

Example: Cache Hit Ratio for (0x7¢800,n): 200 / 200



Profiling Phase: All Events, 1 Address
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Profiling Phase: All Events, 1 Address

KEY

gh i j kI mnopgrstuvwxyz
0x7c800 [ ]

ADDRESS

Example: Cache Hit Ratio for (0x7¢c800,u): 13 / 200



Profiling Phase: All Events, 1 Address

KEY

gh i j kI mnopgrstuvwxyz
0x7c800 [ ]

ADDRESS

Distinguish n from other keys by monitoring 0x7c800



Profiling Phase: All Events, All Addresses

q
0x7c680

0x7c6c0 =
072700 EEEEEE ]
0x7c740 .
0x7c780 [ ]
0x7c7c0 ]
0x7c800

0x7c840

0x7c880

0x7c8c0

5
0x7¢900 ]
|
|

0x7c940
0x7c980
0x7c9c0
0x7cal0
0x7cb80
0x7cc40
0x7cc80
0x7cccO
0x7cd00

ADDRESS
[}



Attack 3: Locate AES T-Tables

AES uses T-Tables (precomputed from S-Boxes)

4 T-Tables

To [k{0,4,8,12} @P{o,zx,s,u}}
Ty (k{159,131 D Pi1,5.9,13})

If we know which entry of T" is accessed, we know the result of k; @ p;.

Known-plaintext attack (p; is known) — k; can be determined
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Attack 3: Locate AES T-Tables

AES T-Table implementation from OpenSSL 1.0.2

e Most addresses in two groups:
e Cache hit ratio 100% (always cache hits)
e Cache hit ratio 0% (no cache hits)

e One 4096 byte memory block:
e Cache hit ratio of 92%

e Cache hits depend on key value and plaintext value
e The T-Tables
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Attack 4: AES T-Table Template Attack

AES T-Table implementation from OpenSSL 1.0.2

e Known-plaintext attack
e Events: encryption with only one fixed key byte
e Profile each event

e Exploitation phase:

e Eliminate key candidates
e Reduction of key space in first-round attack:

e 64 bits after 16—160 encryptions
e State of the art: full key recovery after 30000 encryptions



Attack 4: AES T-Table Template

ADDRESS ADDRESS
(=) 0 0 =
Q E - =
5 ——

- ———

/M —_ <=
) — —a
— =——
; 255 255

]C(): 0x00 ]{?0: 0x55

(transposed)
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Conclusion

Novel technique to find any cache side-channel leakage

e Attacks
e Detect vulnerabilities

Works on virtually all Intel CPUs

Works even with unknown binaries

Marks a change of perspective:

e Large scale analysis of binaries
e Large scale automated attacks



Evict+Reload

Variant of Flush-+Reload with cache eviction instead of c1flush
Works on ARMv7

Applicable to millions of devices

Cache Template Attacks using Evict+Reload
ARMageddon: Last-Level Cache Attacks on Mobile Devices [4]
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Flush+4Flush: Motivation

e cache attacks — many cache misses
e detect via performance counters
— good idea, but is it good enough?

e causing a cache flush # causing a cache miss



clflush execution time

NUMBER OF CASES

75%

50%

25%

0%

—— Sandy Hit --- Sandy Miss
—— Ivy Hit --- Ivy Miss
Haswell Hit Haswell Miss

| | | | |
100 120 140 160 180
EXECUTION TIME (IN CYCLES)
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Flush+Flush
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Flush+Flush

Attacker Cach Victim
address space ache address space

flushes (slow)
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Flush+4Flush: Conclusion

e attacker causes no direct cache misses

— fast
— stealthy

e same side channel targets as Flush+Reload
e 496 KB/s covert channel
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Cache Attacks on mobile devices?

e powerful cache attacks on Intel x86 in the last 10 years
e nothing like Flush+Reload or Prime+Probe on mobile devices

— why?
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ARMageddon in a nutshell

no flush instruction — Evict+Reload
pseudo-random replacement — eviction strategies from Rowhammer.js
cycle counters require root — new timing methods

last-level caches not inclusive — let L1 spill to LLC

ok L=

multiple CPUs — remote fetches + flushes



xa'fxms:srq
shell@zeroflte:/data/local/tmp $ ./keyboard_spy -c 0
5O/ o

ARMageddon Demo



Prefetch Side-Channel Attacks
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e prefetch instructions leak timing information

exploit this to:

e locate a driver in kernel = defeat KASLR

e translate virtual to physical addresses



Intel being overspecific

NOTE



Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache.



Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context.



Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in

cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context. Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance

penalty.



Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context. Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance
penalty. For example specifying a NULL pointer (OL) as address for a prefetch

can cause long delays.



CPU Caches

Memory (DRAM) is slow compared to the CPU

e buffer frequently used memory
e every memory reference goes through the cache

e based on physical addresses



Memory Access Latency

[l cache hits [] cache misses

M



Unprivileged cache maintainance

Optimize cache usage:

e prefetch: suggest CPU to load data into cache

e clflush: throw out data from all caches

... based on virtual addresses



Software prefetching

prefetch instructions are somewhat unusual

e hints — can be ignored by the CPU

e do not check privileges or cause exceptions

but they do need to translate virtual to physical



Kernel must be mapped in every address space

Today’s operating systems:
Shared address space

User memory S ﬂ Kernel memory

context switch



Address translation on x86-64

PML4
CR3 PMLA4E 0
PMLA4E 1
: PDPT
5 PMLA4I
! #: PDPTE 0
PMLA4E 511 PDP:TE !
ZPDPTI Page Directory
: PDE 0
PDPTE 511 PD:E !
FDE ZPDI Page Table
: PTE O
PDE 511 PT:E !
. 4 KiB Page
\
3 PTE :#PTI Byt 0
: Byte 1
PTE 511 :

Offset

[PML4I (9 b) [PDPTI (9 b) [PDI (9b) [PTI(9b) [ Offset (12b) ] Byte 4095

48-bit virtual address




Address Translation Caches

Core 0 Core 1
I I 5 I I
ITLB DTLB S ITLB DTLB
I I = I I
PDE cache % PDE cache
(9]
I o I
o
PDPTE cache > PDPTE cache
I I
PMLA4E cache PMLA4E cache
[ [
Page table structures in
system memory (DRAM)




Address Space Layout Randomization (ASLR)

Process A

| [ ) ) |

Process B

| | IR |

Process C

| [ ) ) |




Address Space Layout Randomization (ASLR)

Process A

- — )
Process B

| I )
Process C

—— |

Same library — different offset!



Kernel Address Space Layout Randomization (KASLR)

Process A

| )5 M |

Process B

| ) ) [ |

Process C

| NI |




Kernel Address Space Layout Randomization (KASLR)

Process A

l @ t
Process B

l fi——
Process C

| fih m—

Same driver — different offset!



Kernel direct-physical map

Physical memory

max. phys.

Z P
- R

-
~ < 7 @(}
s N

0AT 94T -1
Kernel

Virtual address space

User



Kernel direct-physical map

0AT 94T -1
Kernel

Virtual address space

User

OS X, Linux, BSD, Xen PVM (Amazon EC2)



Translation-Level Oracle

5 400 383 .
)
£
(0]
£ 300| |
c
k) 246
45 230 222
q') ]
K 200 |- 181
1 1 1 1 1
PDPT PD PT cached P.  uncached P.

Mapping level



Address-Translation Oracle

User space Cache

Kernel space




Address-Translation Oracle

User space Cache

cached

Kernel space




Address-Translation Oracle

User space Cache

flush

clflush /—\
—_—

}

Kernel space




Address-Translation Oracle

User space Cache

Kernel space

\\»4

i

prefetch




Address-Translation Oracle

User space Cache

reload (cache hit)

load h

\
[

Kernel space




Timing the prefetch instruction

The CPU may reorder instructions

instruction 1
cpuid
instruction 2
cpuid

instruction 3

but not over cpuid!



Breaking KASLR with Prefetch

500

W
(@)
o
T
!

300 - .
200 :

Prefetch time

100 C | | | | | | L]
-16 -8 0 8 16 24 32 40

Kernel offset [MB]
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