
Fault Simulator Tutorial



The Basics

• Fault injection requires hardware
• target and something to manipulate it

• We emulate injection with a simulator
• emulate the effects of an injection
• some typical faults: skip instructions, corrupt some memory, …
• during the execution of any binary

• Configured via a file
• each line: 1 fault specified



Triggering: When to inject the fault?

• Instruction Pointer
• inject fault when instruction pointer (RIP) has certain value

• not realistic, but great for testing

• syntax: @<RIP>  @0x401bd1

• Instruction Counter
• counts number of assembly instructions since start of program

• similar to a cycle counter, much more realistic

• (but a bit unreliable here)

• syntax: #<count>  #300



Fault Spec: What fault to inject?

• skip <bytes>

• moves instruction pointer by <bytes>
• limited to +-15

• zero <address>

• sets 4 bytes (int) starting at <address> to zero

• havoc <address>

• sets 4 bytes (int) starting at <address> to a random value

• bitflip <bit_index> <address>

• flips a bit (indexed with <bit_index>) at byte <address>
• memory[address] ^= (1 << bit_index)



Demos

• Examine source and determine exploitation path
• check what faults are allowed!

• Examine binary (disassembly) to find error positions

• If needed: use debugger to find addresses

• Insert your faults into the script

• …and do some trial and error



Some Notes

• Target the precompiled binaries!
• for hacklets and for faults

• recompilation on your system:
different library and compiler versions different addresses and cycle counts

• compile yourself only for debugging, revert back afterwards

• Use the Newsgroup!
• we are more than happy to help you


