
Side-Channel Security

Chapter 3: Trusted Execution Environments

Daniel Gruss

March 14, 2024

Graz University of Technology



Trusted Execution Environments

(TEEs)



Motivation

• Systems run software from various sources

• Providers: tamper-resistant way

• Protect computation against compromised OS

• Key enabler of trusted cloud computing



Motivation

• Systems run software from various sources

• Providers: tamper-resistant way

• Protect computation against compromised OS

• Key enabler of trusted cloud computing



Motivation

• Systems run software from various sources

• Providers: tamper-resistant way

• Protect computation against compromised OS

• Key enabler of trusted cloud computing



Motivation

• Systems run software from various sources

• Providers: tamper-resistant way

• Protect computation against compromised OS

• Key enabler of trusted cloud computing



Intel Software Guard Extension

(SGX)



SGX Introduction

• x86 instruction-set extension

• Isolate trusted code from untrusted applications

• Neither app nor OS can access enclave memory

• Enclave memory is encrypted and integrity protected

• Enclave full access to virtual memory of host application



SGX Introduction

• x86 instruction-set extension

• Isolate trusted code from untrusted applications

• Neither app nor OS can access enclave memory

• Enclave memory is encrypted and integrity protected

• Enclave full access to virtual memory of host application



SGX Introduction

• x86 instruction-set extension

• Isolate trusted code from untrusted applications

• Neither app nor OS can access enclave memory

• Enclave memory is encrypted and integrity protected

• Enclave full access to virtual memory of host application



SGX Introduction

• x86 instruction-set extension

• Isolate trusted code from untrusted applications

• Neither app nor OS can access enclave memory

• Enclave memory is encrypted and integrity protected

• Enclave full access to virtual memory of host application



SGX Introduction

• x86 instruction-set extension

• Isolate trusted code from untrusted applications

• Neither app nor OS can access enclave memory

• Enclave memory is encrypted and integrity protected

• Enclave full access to virtual memory of host application



SGX Model

Application

Untrusted part

Operating System



SGX Model

Application

Untrusted part

Create Enclave

Operating System



SGX Model

Application

Trusted part

C
al
l
G
at
e

Untrusted part

Create Enclave

Trusted Fnc.

Operating System



SGX Model

Application

Trusted part

C
al
l
G
at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

Trusted Fnc.

Operating System



SGX Model

Application

Trusted part

C
al
l
G
at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

Trusted Fnc.

Operating System



SGX Model

Application

Trusted part

C
al
l
G
at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

Trusted Fnc.

Operating System



SGX Model

Application

Trusted part

C
al
l
G
at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

Trusted Fnc.

Return

Operating System



SGX Model

Application

Trusted part

C
al
l
G
at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

Trusted Fnc.

Return

Operating System



SGX Model

Application

Trusted part

C
al
l
G
at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

. . .

Trusted Fnc.

Return

Operating System



SGX Model

Application

Trusted part

C
al
l
G
at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

. . .

Trusted Fnc.

Return

Operating System



Address Translation



Restrictions

• Cannot use I/O, including syscalls

• Certain instructions are forbidden (e.g., rdtsc)



Restrictions

• Cannot use I/O, including syscalls

• Certain instructions are forbidden (e.g., rdtsc)



Interrupt and Resume Enclave

1. Interrupt arrives

2. Perform Asynchronous Enclave Exit (AEX)

3. OS interrupt handler

4. Return to Asynchronous Exit Pointer (AEP) trampoline

5. ERESUME



Interrupt and Resume Enclave

1. Interrupt arrives

2. Perform Asynchronous Enclave Exit (AEX)

3. OS interrupt handler

4. Return to Asynchronous Exit Pointer (AEP) trampoline

5. ERESUME



Interrupt and Resume Enclave

1. Interrupt arrives

2. Perform Asynchronous Enclave Exit (AEX)

3. OS interrupt handler

4. Return to Asynchronous Exit Pointer (AEP) trampoline

5. ERESUME



Interrupt and Resume Enclave

1. Interrupt arrives

2. Perform Asynchronous Enclave Exit (AEX)

3. OS interrupt handler

4. Return to Asynchronous Exit Pointer (AEP) trampoline

5. ERESUME



Interrupt and Resume Enclave

1. Interrupt arrives

2. Perform Asynchronous Enclave Exit (AEX)

3. OS interrupt handler

4. Return to Asynchronous Exit Pointer (AEP) trampoline

5. ERESUME



Threat Model

• Enclaves isolated from all software

• Allows for malicious OS/hypervisor

• Allows physical attacker

• Allows root attacker

• Side-Channel Attacks are out of scope

• Only CPU is trusted



Threat Model

• Enclaves isolated from all software

• Allows for malicious OS/hypervisor

• Allows physical attacker

• Allows root attacker

• Side-Channel Attacks are out of scope

• Only CPU is trusted



Threat Model

• Enclaves isolated from all software

• Allows for malicious OS/hypervisor

• Allows physical attacker

• Allows root attacker

• Side-Channel Attacks are out of scope

• Only CPU is trusted



Threat Model

• Enclaves isolated from all software

• Allows for malicious OS/hypervisor

• Allows physical attacker

• Allows root attacker

• Side-Channel Attacks are out of scope

• Only CPU is trusted



Threat Model

• Enclaves isolated from all software

• Allows for malicious OS/hypervisor

• Allows physical attacker

• Allows root attacker

• Side-Channel Attacks are out of scope

• Only CPU is trusted



Threat Model

• Enclaves isolated from all software

• Allows for malicious OS/hypervisor

• Allows physical attacker

• Allows root attacker

• Side-Channel Attacks are out of scope

• Only CPU is trusted



Attack Targets

Side-Channel Attacks:

Page Table DRAM Cache Predictors Interrupt

Transient-Execution Attacks (Lecture 3):

Meltdown Spectre ZombieLoad

Fault Attacks (Lecture 5):

Rowhammer Plundervolt



Attack Targets

Side-Channel Attacks:

Page Table

DRAM Cache Predictors Interrupt

Transient-Execution Attacks (Lecture 3):

Meltdown Spectre ZombieLoad

Fault Attacks (Lecture 5):

Rowhammer Plundervolt



Attack Targets

Side-Channel Attacks:

Page Table DRAM

Cache Predictors Interrupt

Transient-Execution Attacks (Lecture 3):

Meltdown Spectre ZombieLoad

Fault Attacks (Lecture 5):

Rowhammer Plundervolt



Attack Targets

Side-Channel Attacks:

Page Table DRAM Cache

Predictors Interrupt

Transient-Execution Attacks (Lecture 3):

Meltdown Spectre ZombieLoad

Fault Attacks (Lecture 5):

Rowhammer Plundervolt



Attack Targets

Side-Channel Attacks:

Page Table DRAM Cache Predictors

Interrupt

Transient-Execution Attacks (Lecture 3):

Meltdown Spectre ZombieLoad

Fault Attacks (Lecture 5):

Rowhammer Plundervolt



Attack Targets

Side-Channel Attacks:

Page Table DRAM Cache Predictors Interrupt

Transient-Execution Attacks (Lecture 3):

Meltdown Spectre ZombieLoad

Fault Attacks (Lecture 5):

Rowhammer Plundervolt



Attack Targets

Side-Channel Attacks:

Page Table DRAM Cache Predictors Interrupt

Transient-Execution Attacks (Lecture 3):

Meltdown Spectre ZombieLoad

Fault Attacks (Lecture 5):

Rowhammer Plundervolt



Attack Targets

Side-Channel Attacks:

Page Table DRAM Cache Predictors Interrupt

Transient-Execution Attacks (Lecture 3):

Meltdown

Spectre ZombieLoad

Fault Attacks (Lecture 5):

Rowhammer Plundervolt



Attack Targets

Side-Channel Attacks:

Page Table DRAM Cache Predictors Interrupt

Transient-Execution Attacks (Lecture 3):

Meltdown Spectre

ZombieLoad

Fault Attacks (Lecture 5):

Rowhammer Plundervolt



Attack Targets

Side-Channel Attacks:

Page Table DRAM Cache Predictors Interrupt

Transient-Execution Attacks (Lecture 3):

Meltdown Spectre ZombieLoad

Fault Attacks (Lecture 5):

Rowhammer Plundervolt



Attack Targets

Side-Channel Attacks:

Page Table DRAM Cache Predictors Interrupt

Transient-Execution Attacks (Lecture 3):

Meltdown Spectre ZombieLoad

Fault Attacks (Lecture 5):

Rowhammer Plundervolt



Attack Targets

Side-Channel Attacks:

Page Table DRAM Cache Predictors Interrupt

Transient-Execution Attacks (Lecture 3):

Meltdown Spectre ZombieLoad

Fault Attacks (Lecture 5):

Rowhammer

Plundervolt



Attack Targets

Side-Channel Attacks:

Page Table DRAM Cache Predictors Interrupt

Transient-Execution Attacks (Lecture 3):

Meltdown Spectre ZombieLoad

Fault Attacks (Lecture 5):

Rowhammer Plundervolt



Controlled-Channel Attacks [8]

• Target mechanism which translates virtual to physical

addresses

• Enclave memory is set up by OS

• Hardware only ensures one page is mapped by 1 enclave

• Consequence: OS can unmap page, observe page fault

• Granularity: 1 page (4kB)



Controlled-Channel Attacks [8]

• Target mechanism which translates virtual to physical

addresses

• Enclave memory is set up by OS

• Hardware only ensures one page is mapped by 1 enclave

• Consequence: OS can unmap page, observe page fault

• Granularity: 1 page (4kB)



Controlled-Channel Attacks [8]

• Target mechanism which translates virtual to physical

addresses

• Enclave memory is set up by OS

• Hardware only ensures one page is mapped by 1 enclave

• Consequence: OS can unmap page, observe page fault

• Granularity: 1 page (4kB)



Controlled-Channel Attacks [8]

• Target mechanism which translates virtual to physical

addresses

• Enclave memory is set up by OS

• Hardware only ensures one page is mapped by 1 enclave

• Consequence: OS can unmap page, observe page fault

• Granularity: 1 page (4kB)



Controlled-Channel Attacks [8]

• Target mechanism which translates virtual to physical

addresses

• Enclave memory is set up by OS

• Hardware only ensures one page is mapped by 1 enclave

• Consequence: OS can unmap page, observe page fault

• Granularity: 1 page (4kB)



Stealthier Controlled-Channel Attacks [6, 7]

P RW US WT UC A D S G Ignored

Physical Page Number
Ignored X



Stealthier Controlled-Channel Attacks [6, 7]

P RW US WT UC AA D S G Ignored

Physical Page Number
Ignored X



Stealthier Controlled-Channel Attacks [6, 7]

P RW US WT UC AA D S G Ignored

Physical Page Number
Ignored X



DRAM Attacks [7]

• Enclaves share same physical range of memory

• DRAM contains row buffers

• Use row conflicts to spy on victim

• Granularity: 512B to 8KB



DRAM Attacks [7]

• Enclaves share same physical range of memory

• DRAM contains row buffers

• Use row conflicts to spy on victim

• Granularity: 512B to 8KB



DRAM Attacks [7]

• Enclaves share same physical range of memory

• DRAM contains row buffers

• Use row conflicts to spy on victim

• Granularity: 512B to 8KB



DRAM Attacks [7]

• Enclaves share same physical range of memory

• DRAM contains row buffers

• Use row conflicts to spy on victim

• Granularity: 512B to 8KB



Cache Attacks

• Flush+Reload not possible, Prime+Probe is

• Physical address determines cache set

• Easy to prime cache set as OS

• Examples: [5], [7], [1], [3]



Cache Attacks

• Flush+Reload not possible, Prime+Probe is

• Physical address determines cache set

• Easy to prime cache set as OS

• Examples: [5], [7], [1], [3]



Cache Attacks

• Flush+Reload not possible, Prime+Probe is

• Physical address determines cache set

• Easy to prime cache set as OS

• Examples: [5], [7], [1], [3]



Cache Attacks

• Flush+Reload not possible, Prime+Probe is

• Physical address determines cache set

• Easy to prime cache set as OS

• Examples: [5], [7], [1], [3]



Malware Guard Extension [5]

Victim



Malware Guard Extension [5]

SGX

Victim



Malware Guard Extension [5]

SGX

RSA
Signature
+ private key

Public API

Victim



Malware Guard Extension [5]

Attacker

SGX

RSA
Signature
+ private key

Public API

Victim



Malware Guard Extension [5]

SGX

Attacker

SGX

RSA
Signature
+ private key

Public API

Victim



Malware Guard Extension [5]

SGX

Malware

Loader

Attacker

SGX

RSA
Signature
+ private key

Public API

Victim



Malware Guard Extension [5]

SGX

Malware

Loader

Attacker

SGX

RSA
Signature
+ private key

Public API

Victim



Malware Guard Extension [5]

SGX

Malware

Loader

Attacker

L1/L2 Cache

SGX

RSA
Signature
+ private key

Public API

Victim

L1/L2 Cache



Malware Guard Extension [5]

SGX

Malware
(Prime+Probe)

Loader

Attacker

L1/L2 Cache

SGX

RSA
Signature
+ private key

Public API

Victim

L1/L2 Cache

Shared LLC



SGX Limitations

• No access to high-precision timer (rdtsc)

• No syscalls

• No shared memory

• No physical addresses

• No 2MB large pages



SGX Limitations

• No access to high-precision timer (rdtsc)

• No syscalls

• No shared memory

• No physical addresses

• No 2MB large pages



SGX Limitations

• No access to high-precision timer (rdtsc)

• No syscalls

• No shared memory

• No physical addresses

• No 2MB large pages



SGX Limitations

• No access to high-precision timer (rdtsc)

• No syscalls

• No shared memory

• No physical addresses

• No 2MB large pages



SGX Limitations

• No access to high-precision timer (rdtsc)

• No syscalls

• No shared memory

• No physical addresses

• No 2MB large pages



Timer

• We can build our own timer [2, 5]

• Start a thread that continuously increments a global

variable

• The global variable is our timestamp



Timer

• We can build our own timer [2, 5]

• Start a thread that continuously increments a global

variable

• The global variable is our timestamp



Timer

• We can build our own timer [2, 5]

• Start a thread that continuously increments a global

variable

• The global variable is our timestamp







Self-built Timer

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

t imestamp = r d t s c ( ) ;



Self-built Timer

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

while (1 ) {
t imestamp++;

}



Self-built Timer

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7
while (1 ) {

t imestamp++;

}



Self-built Timer

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7
while (1 ) {

t imestamp++;

}



Self-built Timer

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7
mov &timestamp , %rcx

1 : i n c l (%rcx )

jmp 1b



Self-built Timer

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7

4.67

mov &timestamp , %rcx

1 : i n c l (%rcx )

jmp 1b



Self-built Timer

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7

4.67

mov &timestamp , %rcx

1 : i n c l (%rcx )

jmp 1b



Self-built Timer

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7

4.67

mov &timestamp , %rcx

1 : inc %rax

mov %rax , (%rcx )

jmp 1b



Self-built Timer

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7

4.67

0.87

mov &timestamp , %rcx

1 : inc %rax

mov %rax , (%rcx )

jmp 1b



Combining Everything

1. Use the counting primitive to measure DRAM accesses

2. Use DRAM side-channel to build eviction set

3. Mount Prime+Probe on the buffer containing the multiplier



Combining Everything

1. Use the counting primitive to measure DRAM accesses

2. Use DRAM side-channel to build eviction set

3. Mount Prime+Probe on the buffer containing the multiplier



Combining Everything

1. Use the counting primitive to measure DRAM accesses

2. Use DRAM side-channel to build eviction set

3. Mount Prime+Probe on the buffer containing the multiplier



Measured Trace

Raw Prime+Probe trace...



Measured Trace

...processed with a simple moving average...



Measured Trace

...allows to clearly see the bits of the exponent

1 1 1 00 1 1 1 01 1 1 00000001 000 1 0 1 00 1 1 00 1 1 01 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1



Single-Stepping

• local Advanced Programmable Interrupt Controller (APIC)

• Timer: 3 modes

• One-shot

• Periodic

• TSC-deadline



Single-Stepping

• local Advanced Programmable Interrupt Controller (APIC)

• Timer: 3 modes

• One-shot

• Periodic

• TSC-deadline



Single-Stepping

• local Advanced Programmable Interrupt Controller (APIC)

• Timer: 3 modes

• One-shot

• Periodic

• TSC-deadline



Single-Stepping

• local Advanced Programmable Interrupt Controller (APIC)

• Timer: 3 modes

• One-shot

• Periodic

• TSC-deadline



Single-Stepping

• local Advanced Programmable Interrupt Controller (APIC)

• Timer: 3 modes

• One-shot

• Periodic

• TSC-deadline



ARM TrustZone

Secure World

Trustlet

Secure OS

Secure Monitor

Non-Secure World

App

OS

S
M
C



ARM TrustZone

Secure World

Trustlet

Secure OS

Secure Monitor

Non-Secure World

App

OS

S
M
C



ARM TrustZone

Secure World

Trustlet

Secure OS

Secure Monitor

Non-Secure World

App

OS

S
M
C



ARM TrustZone

Secure World

Trustlet

Secure OS

Secure Monitor

Non-Secure World

App

OS

S
M
C



ARM TrustZone

Secure World

Trustlet

Secure OS

Secure Monitor

Non-Secure World

App

OS

S
M
C



ARM TrustZone

Secure World

Trustlet

Secure OS

Secure Monitor

Non-Secure World

App

OS

S
M
C



ARM TrustZone

Secure World

Trustlet

Secure OS

Secure Monitor

Non-Secure World

App

OS

S
M
C



Exception Levels

Secure firmwareApplication

Normal world Secure world

User

SVC, ABT, IRQ, 
FIQ, UND, SYS

Hyp

Mon

Application Application Application

No Hypervisor in 
Secure world

Guest OS Guest OS Trusted OS

Hypervisor

Secure monitor

EL1

EL2

EL0

EL3



Switching Worlds

• 2 Virtual Processors: time-sliced fashion operation

• Normal→Secure: exceptions to monitor mode

→ SMC or hardware exception mechanism



Switching Worlds

• 2 Virtual Processors: time-sliced fashion operation

• Normal→Secure: exceptions to monitor mode

→ SMC or hardware exception mechanism



Switching Worlds

• 2 Virtual Processors: time-sliced fashion operation

• Normal→Secure: exceptions to monitor mode

→ SMC or hardware exception mechanism



Switching Worlds

• 2 Virtual Processors: time-sliced fashion operation

• Normal→Secure: exceptions to monitor mode

→ SMC or hardware exception mechanism



What can be protected?

• Main system bus: read and write channels (AXI)

• Peripherals: interrupt controllers, timers, user I/O devices

(APB)



What can be protected?

• Main system bus: read and write channels (AXI)

• Peripherals: interrupt controllers, timers, user I/O devices

(APB)



Attack 1: Double Fetches [4]

• A time-of-check-to-time-of-use (TOCTTOU) bug

• Shared memory might change after sanity check

• Adversary can abuse this to provide invalid data to

application

• Caused by accessing the shared memory twice

• Also called double-fetch bugs



Attack 1: Double Fetches [4]

• A time-of-check-to-time-of-use (TOCTTOU) bug

• Shared memory might change after sanity check

• Adversary can abuse this to provide invalid data to

application

• Caused by accessing the shared memory twice

• Also called double-fetch bugs



Attack 1: Double Fetches [4]

• A time-of-check-to-time-of-use (TOCTTOU) bug

• Shared memory might change after sanity check

• Adversary can abuse this to provide invalid data to

application

• Caused by accessing the shared memory twice

• Also called double-fetch bugs



Attack 1: Double Fetches [4]

• A time-of-check-to-time-of-use (TOCTTOU) bug

• Shared memory might change after sanity check

• Adversary can abuse this to provide invalid data to

application

• Caused by accessing the shared memory twice

• Also called double-fetch bugs



Attack 1: Double Fetches [4]

• A time-of-check-to-time-of-use (TOCTTOU) bug

• Shared memory might change after sanity check

• Adversary can abuse this to provide invalid data to

application

• Caused by accessing the shared memory twice

• Also called double-fetch bugs



A Double Fetch

string



A Double Fetch

string

/ p a t h / f i l e \0 p a y l o a d \0

length

Thread 1

strcpy(string, "/path/file\0

payload");

open(string, O_CREAT);

Thread 2



A Double Fetch

string

/ p a t h / f i l e \0 p a y l o a d \0

length

Thread 1

strcpy(string, "/path/file\0

payload");

open(string, O_CREAT);

// <switch to kernel>

Thread 2



A Double Fetch

string

/ p a t h / f i l e \0 p a y l o a d \0

length

Thread 1

strcpy(string, "/path/file\0

payload");

open(string, O_CREAT);

// <switch to kernel>

int len = strlen(string);

char* local = malloc(len + 1);

Thread 2



A Double Fetch

string

/ p a t h / f i l e X p a y l o a d \0

length

Thread 1

strcpy(string, "/path/file\0

payload");

open(string, O_CREAT);

// <switch to kernel>

int len = strlen(string);

char* local = malloc(len + 1);

Thread 2

schedule

string[10] = ’X’;



A Double Fetch

string

/ p a t h / f i l e X p a y l o a d \0

length

Thread 1

strcpy(string, "/path/file\0

payload");

open(string, O_CREAT);

// <switch to kernel>

int len = strlen(string);

char* local = malloc(len + 1);

strcpy(local, string);

// <memory corruption>

Thread 2

schedule string[10] = ’X’;



Double Fetches

• Not all double fetches are exploitable

• Changing data after sanity check allows exploitation

• Critical if privilege boundaries are crossed

• User space ↔ Kernel space

• Untrusted code ↔ Trusted code

• Common to share data across these domains



Double Fetches

• Not all double fetches are exploitable

• Changing data after sanity check allows exploitation

• Critical if privilege boundaries are crossed

• User space ↔ Kernel space

• Untrusted code ↔ Trusted code

• Common to share data across these domains



Double Fetches

• Not all double fetches are exploitable

• Changing data after sanity check allows exploitation

• Critical if privilege boundaries are crossed

• User space ↔ Kernel space

• Untrusted code ↔ Trusted code

• Common to share data across these domains



Double Fetches

• Not all double fetches are exploitable

• Changing data after sanity check allows exploitation

• Critical if privilege boundaries are crossed

• User space ↔ Kernel space

• Untrusted code ↔ Trusted code

• Common to share data across these domains



Double Fetches

• Not all double fetches are exploitable

• Changing data after sanity check allows exploitation

• Critical if privilege boundaries are crossed

• User space ↔ Kernel space

• Untrusted code ↔ Trusted code

• Common to share data across these domains



Double-fetch Detection

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·106

200

220

240

260

Runtime [cycles]

A
cc
es
s
ti
m
e

[c
yc
le
s]



Double-fetch Detection

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·106

200

220

240

260

Runtime [cycles]

A
cc
es
s
ti
m
e

[c
yc
le
s]

First access



Double-fetch Detection

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·106

200

220

240

260

Runtime [cycles]

A
cc
es
s
ti
m
e

[c
yc
le
s]

First access Second access



Attack 2: Armageddon [2]

• Different trustlets running in secure world

• Credential-store

• Secure element for payments

• DRM

• TrustZone leaks through the cache



Attack 2: Armageddon [2]

• Different trustlets running in secure world

• Credential-store

• Secure element for payments

• DRM

• TrustZone leaks through the cache



Attack 2: Armageddon [2]

• Different trustlets running in secure world

• Credential-store

• Secure element for payments

• DRM

• TrustZone leaks through the cache



Attack 2: Armageddon [2]

• Different trustlets running in secure world

• Credential-store

• Secure element for payments

• DRM

• TrustZone leaks through the cache



Attack 2: Armageddon [2]

• Different trustlets running in secure world

• Credential-store

• Secure element for payments

• DRM

• TrustZone leaks through the cache



Leakage from ARM TrustZone (RSA signatures)

250 260 270 280 290 300 310 320 330 340 350

0

0.5

1

1.5
·106

Set number

P
ro
b
in
g
ti
m
e
in

C
P
U

cy
cl
es

Valid key 1

Valid key 2

Valid key 3

Invalid key



Conclusion

• TEEs developed to protect sensitiv information/critical

code execution

• Allow for a powerful threat model

• SCAs often not “out of scope”



Conclusion

• TEEs developed to protect sensitiv information/critical

code execution

• Allow for a powerful threat model

• SCAs often not “out of scope”



Conclusion

• TEEs developed to protect sensitiv information/critical

code execution

• Allow for a powerful threat model

• SCAs often not “out of scope”



Side-Channel Security

Chapter 3: Trusted Execution Environments

Daniel Gruss

March 14, 2024

Graz University of Technology



References

[1] Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., and

Sadeghi, A.-R. (2017). Software Grand Exposure: SGX Cache Attacks Are

Practical. In WOOT.

[2] Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., and Mangard, S. (2016).

ARMageddon: Cache Attacks on Mobile Devices. In USENIX Security

Symposium.

[3] Moghimi, A., Irazoqui, G., and Eisenbarth, T. (2017). CacheZoom: How

SGX amplifies the power of cache attacks. In CHES.

[4] Schwarz, M., Gruss, D., Lipp, M., Maurice, C., Schuster, T., Fogh, A., and

Mangard, S. (2018). Automated Detection, Exploitation, and Elimination of

Double-Fetch Bugs using Modern CPU Features. In AsiaCCS.



[5] Schwarz, M., Gruss, D., Weiser, S., Maurice, C., and Mangard, S. (2017).

Malware Guard Extension: Using SGX to Conceal Cache Attacks. In DIMVA.

[6] Van Bulck, J., Weichbrodt, N., Kapitza, R., Piessens, F., and Strackx, R.

(2017). Telling Your Secrets Without Page Faults: Stealthy Page Table-Based

Attacks on Enclaved Execution. In USENIX Security.

[7] Wang, W., Chen, G., Pan, X., Zhang, Y., Wang, X., Bindschaedler, V., Tang,

H., and Gunter, C. A. (2017). Leaky Cauldron on the Dark Land:

Understanding Memory Side-Channel Hazards in SGX. In CCS.

[8] Xu, Y., Cui, W., and Peinado, M. (2015). Controlled-Channel Attacks:

Deterministic Side Channels for Untrusted Operating Systems. In S&P.


