
Operating Systems

Assignment 2

Daniel Gruss

2023-11-21

Topics

Presented Today:

• Mandatory: Virtual Memory (Copy On Write, Swapping)

• Shared Memory

• Memory Mapped I/O

• Dynamic Memory in the userspace

Other Topics:

• You can do basically anything OS related

• Just ask your Tutor how many points it brings

1 Daniel Gruss

Topics

Presented Today:

• Mandatory: Virtual Memory (Copy On Write, Swapping)

• Shared Memory

• Memory Mapped I/O

• Dynamic Memory in the userspace

Other Topics:

• You can do basically anything OS related

• Just ask your Tutor how many points it brings

1 Daniel Gruss

Topics

Presented Today:

• Mandatory: Virtual Memory (Copy On Write, Swapping)

• Shared Memory

• Memory Mapped I/O

• Dynamic Memory in the userspace

Other Topics:

• You can do basically anything OS related

• Just ask your Tutor how many points it brings

1 Daniel Gruss

Topics

Presented Today:

• Mandatory: Virtual Memory (Copy On Write, Swapping)

• Shared Memory

• Memory Mapped I/O

• Dynamic Memory in the userspace

Other Topics:

• You can do basically anything OS related

• Just ask your Tutor how many points it brings

1 Daniel Gruss

Topics

Presented Today:

• Mandatory: Virtual Memory (Copy On Write, Swapping)

• Shared Memory

• Memory Mapped I/O

• Dynamic Memory in the userspace

Other Topics:

• You can do basically anything OS related

• Just ask your Tutor how many points it brings

1 Daniel Gruss

Topics

Presented Today:

• Mandatory: Virtual Memory (Copy On Write, Swapping)

• Shared Memory

• Memory Mapped I/O

• Dynamic Memory in the userspace

Other Topics:

• You can do basically anything OS related

• Just ask your Tutor how many points it brings

1 Daniel Gruss

Topics

Presented Today:

• Mandatory: Virtual Memory (Copy On Write, Swapping)

• Shared Memory

• Memory Mapped I/O

• Dynamic Memory in the userspace

Other Topics:

• You can do basically anything OS related

• Just ask your Tutor how many points it brings

1 Daniel Gruss

Topics

Presented Today:

• Mandatory: Virtual Memory (Copy On Write, Swapping)

• Shared Memory

• Memory Mapped I/O

• Dynamic Memory in the userspace

Other Topics:

• You can do basically anything OS related

• Just ask your Tutor how many points it brings

1 Daniel Gruss

Topics

Presented Today:

• Mandatory: Virtual Memory (Copy On Write, Swapping)

• Shared Memory

• Memory Mapped I/O

• Dynamic Memory in the userspace

Other Topics:

• You can do basically anything OS related

• Just ask your Tutor how many points it brings

1 Daniel Gruss

Topics

Presented Today:

• Mandatory: Virtual Memory (Copy On Write, Swapping)

• Shared Memory

• Memory Mapped I/O

• Dynamic Memory in the userspace

Other Topics:

• You can do basically anything OS related

• Just ask your Tutor how many points it brings

1 Daniel Gruss

Page Replacement

Page Replacement

• Swap pages to the swap device (from RAM to HDD)

• Don’t forget to lock shared resources!

2 Daniel Gruss

Page Replacement

• Swap pages to the swap device (from RAM to HDD)

• Don’t forget to lock shared resources!

2 Daniel Gruss

Page Replacement

• Swap pages to the swap device (from RAM to HDD)

• Don’t forget to lock shared resources!

2 Daniel Gruss

Page Replacement

• Swap pages to the swap device (from RAM to HDD)

• Don’t forget to lock shared resources!

2 Daniel Gruss

Page Replacement

• Swap pages to the swap device (from RAM to HDD)

• Don’t forget to lock shared resources!

2 Daniel Gruss

What does the OS need to know?

• Where is the swap device located?

• Where to find free space within the swap device?

• Has a page been swapped out, or is it within RAM?

• Where has a page been swapped to (target address)?

3 Daniel Gruss

MENTI

What does the OS need to know?

• Where is the swap device located?

• Where to find free space within the swap device?

• Has a page been swapped out, or is it within RAM?

• Where has a page been swapped to (target address)?

3 Daniel Gruss

MENTI

4 Daniel Gruss

5 Daniel Gruss

Access the HDD in SWEB

• Virtual Memory is located at the third partition of the first HDD

• (BD device number 3)

• Responsible Code: arch_bd_∗

6 Daniel Gruss

Example (Write to BD (Pseudocode))
size_t block = target block number ;

pointer page_data = pointer to source data ;

BDVirtualDevice∗ bd_device = BDManager : : getInstance ()−>getDeviceByNumber (3) ;
bd_device−>writeData (block∗bd_device−>getBlockSize () , PAGE_SIZE , page_data) ;

Do not use BDRequest directly unless you asked a Tutor!

Using BDRequest directly is unsafe!

7 Daniel Gruss

Which pages are swappable?

• User space pages (where does it make sense?)

• Mark PTs/PDs/PDPTs as non-present and swapped out

• Kernel pages (has not been done before)

8 Daniel Gruss

MENTI

Which pages are swappable?

• User space pages (where does it make sense?)

• Mark PTs/PDs/PDPTs as non-present and swapped out

• Kernel pages (has not been done before)

8 Daniel Gruss

MENTI

Which pages are swappable?

• User space pages (where does it make sense?)

• Mark PTs/PDs/PDPTs as non-present and swapped out

• Kernel pages (has not been done before)

8 Daniel Gruss

MENTI

Which pages are swappable?

• User space pages (where does it make sense?)

• Mark PTs/PDs/PDPTs as non-present and swapped out

• Kernel pages (has not been done before)

8 Daniel Gruss

MENTI

Page Table Usage (x86 64)

present == 0: entry invalid, all bits ignored

by MMU

→ pagefault on access

writeable == 0: write protected

accessed, dirty == 1: has been

accessed/modified

ignored x : unused bits

page ppn : physical page number

typedef struct

{
uint64 present : 1 ;

uint64 writeable : 1 ;

uint64 user_access : 1 ;

uint64 write_through : 1 ;

uint64 cache_disabled : 1 ;

uint64 accessed : 1 ;

uint64 dirty : 1 ;

uint64 size : 1 ;

uint64 global : 1 ;

uint64 ignored_2 : 3 ;

uint64 page_ppn : 2 8 ;

uint64 reserved_1 : 1 2 ;

uint64 ignored_1 : 1 1 ;

uint64 execution_disabled : 1 ;

} PageTableEntry ;

9 Daniel Gruss

Testing / How to use lots of RAM

• Use tests which use big arrays

(e.g. size t array[BIG NUMBER];)

• Test all swapping-situations

• ..., without running into the limits of the kernel heap.

• Free memory can exhaust soon (even with a good PRA)!

10 Daniel Gruss

Testing / How to use lots of RAM

• Use tests which use big arrays

(e.g. size t array[BIG NUMBER];)

• Test all swapping-situations

• ..., without running into the limits of the kernel heap.

• Free memory can exhaust soon (even with a good PRA)!

10 Daniel Gruss

Testing / How to use lots of RAM

• Use tests which use big arrays

(e.g. size t array[BIG NUMBER];)

• Test all swapping-situations

• ..., without running into the limits of the kernel heap.

• Free memory can exhaust soon (even with a good PRA)!

10 Daniel Gruss

Testing / How to use lots of RAM

• Use tests which use big arrays

(e.g. size t array[BIG NUMBER];)

• Test all swapping-situations

• ..., without running into the limits of the kernel heap.

• Free memory can exhaust soon (even with a good PRA)!

10 Daniel Gruss

Testing / How to use lots of RAM

• Use tests which use big arrays

(e.g. size t array[BIG NUMBER];)

• Test all swapping-situations

• ..., without running into the limits of the kernel heap.

• Free memory can exhaust soon (even with a good PRA)!

10 Daniel Gruss

Testing / How to use lots of RAM

• Use tests which use big arrays

(e.g. size t array[BIG NUMBER];)

• Test all swapping-situations

• ..., without running into the limits of the kernel heap.

• Free memory can exhaust soon (even with a good PRA)!

10 Daniel Gruss

Testing / How to use lots of RAM

• Use tests which use big arrays

(e.g. size t array[BIG NUMBER];)

• Test all swapping-situations

• ..., without running into the limits of the kernel heap.

• Free memory can exhaust soon (even with a good PRA)!

10 Daniel Gruss

Page Replacement Algorithms

What does a PRA do?

• Searches for pages that have not been used for a while

• Runs if memory is needed or there is nothing to be done

• But not every time...

Which PRA?

• Recommended: Aging or WSRandom

• Create your own PRA (why is it better than other PRAs?)

• Bonus Points: User can switch PRAs

11 Daniel Gruss

Page Replacement Algorithms

What does a PRA do?

• Searches for pages that have not been used for a while

• Runs if memory is needed or there is nothing to be done

• But not every time...

Which PRA?

• Recommended: Aging or WSRandom

• Create your own PRA (why is it better than other PRAs?)

• Bonus Points: User can switch PRAs

11 Daniel Gruss

Page Replacement Algorithms

What does a PRA do?

• Searches for pages that have not been used for a while

• Runs if memory is needed or there is nothing to be done

• But not every time...

Which PRA?

• Recommended: Aging or WSRandom

• Create your own PRA (why is it better than other PRAs?)

• Bonus Points: User can switch PRAs

11 Daniel Gruss

Page Replacement Algorithms

What does a PRA do?

• Searches for pages that have not been used for a while

• Runs if memory is needed or there is nothing to be done

• But not every time...

Which PRA?

• Recommended: Aging or WSRandom

• Create your own PRA (why is it better than other PRAs?)

• Bonus Points: User can switch PRAs

11 Daniel Gruss

Page Replacement Algorithms

What does a PRA do?

• Searches for pages that have not been used for a while

• Runs if memory is needed or there is nothing to be done

• But not every time...

Which PRA?

• Recommended: Aging or WSRandom

• Create your own PRA (why is it better than other PRAs?)

• Bonus Points: User can switch PRAs

11 Daniel Gruss

Page Replacement Algorithms

What does a PRA do?

• Searches for pages that have not been used for a while

• Runs if memory is needed or there is nothing to be done

• But not every time...

Which PRA?

• Recommended: Aging or WSRandom

• Create your own PRA (why is it better than other PRAs?)

• Bonus Points: User can switch PRAs

11 Daniel Gruss

Page Replacement Algorithms

What does a PRA do?

• Searches for pages that have not been used for a while

• Runs if memory is needed or there is nothing to be done

• But not every time...

Which PRA?

• Recommended: Aging or WSRandom

• Create your own PRA (why is it better than other PRAs?)

• Bonus Points: User can switch PRAs

11 Daniel Gruss

Page Replacement Algorithms

What does a PRA do?

• Searches for pages that have not been used for a while

• Runs if memory is needed or there is nothing to be done

• But not every time...

Which PRA?

• Recommended: Aging or WSRandom

• Create your own PRA (why is it better than other PRAs?)

• Bonus Points: User can switch PRAs

11 Daniel Gruss

Page Replacement Algorithms

What does a PRA do?

• Searches for pages that have not been used for a while

• Runs if memory is needed or there is nothing to be done

• But not every time...

Which PRA?

• Recommended: Aging or WSRandom

• Create your own PRA (why is it better than other PRAs?)

• Bonus Points: User can switch PRAs

11 Daniel Gruss

Page Replacement Algorithms

What does a PRA do?

• Searches for pages that have not been used for a while

• Runs if memory is needed or there is nothing to be done

• But not every time...

Which PRA?

• Recommended: Aging or WSRandom

• Create your own PRA (why is it better than other PRAs?)

• Bonus Points: User can switch PRAs

11 Daniel Gruss

Sytem Time

Some PRAs need time information Where to get them from?

• Ticks, TSC, RTC

• Recycle parts of the sleep- or clock-implementation

• Derive the time from the tick sources

• Hint: InterruptUtils.cpp

12 Daniel Gruss

Sytem Time

Some PRAs need time information Where to get them from?

• Ticks, TSC, RTC

• Recycle parts of the sleep- or clock-implementation

• Derive the time from the tick sources

• Hint: InterruptUtils.cpp

12 Daniel Gruss

Sytem Time

Some PRAs need time information Where to get them from?

• Ticks, TSC, RTC

• Recycle parts of the sleep- or clock-implementation

• Derive the time from the tick sources

• Hint: InterruptUtils.cpp

12 Daniel Gruss

Sytem Time

Some PRAs need time information Where to get them from?

• Ticks, TSC, RTC

• Recycle parts of the sleep- or clock-implementation

• Derive the time from the tick sources

• Hint: InterruptUtils.cpp

12 Daniel Gruss

Sytem Time

Some PRAs need time information Where to get them from?

• Ticks, TSC, RTC

• Recycle parts of the sleep- or clock-implementation

• Derive the time from the tick sources

• Hint: InterruptUtils.cpp

12 Daniel Gruss

Sytem Time

Some PRAs need time information Where to get them from?

• Ticks, TSC, RTC

• Recycle parts of the sleep- or clock-implementation

• Derive the time from the tick sources

• Hint: InterruptUtils.cpp

12 Daniel Gruss

Sytem Time

Some PRAs need time information Where to get them from?

• Ticks, TSC, RTC

• Recycle parts of the sleep- or clock-implementation

• Derive the time from the tick sources

• Hint: InterruptUtils.cpp

12 Daniel Gruss

Inverted Page Table (IPT)

Shared Pages

• Pages may be used by several processes

• Aka: Page table entries of different user spaces point to the same

physical page

13 Daniel Gruss

Shared Pages

• Pages may be used by several processes

• Aka: Page table entries of different user spaces point to the same

physical page

13 Daniel Gruss

Shared Pages

• Pages may be used by several processes

• Aka: Page table entries of different user spaces point to the same

physical page

13 Daniel Gruss

Shared Pages

• Pages may be used by several processes

• Aka: Page table entries of different user spaces point to the same

physical page

13 Daniel Gruss

Shared Pages

• Pages may be used by several processes

• Aka: Page table entries of different user spaces point to the same

physical page

13 Daniel Gruss

Where can pages be shared?

• RAM

• Swap

• Binary

And what’s with copy-on-write?

14 Daniel Gruss

MENTI

Where can pages be shared?

• RAM

• Swap

• Binary

And what’s with copy-on-write?

14 Daniel Gruss

MENTI

Where can pages be shared?

• RAM

• Swap

• Binary

And what’s with copy-on-write?

14 Daniel Gruss

MENTI

Where can pages be shared?

• RAM

• Swap

• Binary

And what’s with copy-on-write?

14 Daniel Gruss

MENTI

Where can pages be shared?

• RAM

• Swap

• Binary

And what’s with copy-on-write?

14 Daniel Gruss

MENTI

Where can pages be shared?

• RAM

• Swap

• Binary

And what’s with copy-on-write?

14 Daniel Gruss

MENTI

15 Daniel Gruss

Virtual Memory and Shared Pages

Inverted Page Table connects a physical page/swapped page to all

virtual page usages

Only one process uses the page:

• Swap out page + inform process

• Which process owns the page?

Shared Pages (several processes use the same page):

• Swap out + inform all processes

• Which processes own the page?

• But what if a process terminates?

16 Daniel Gruss

Virtual Memory and Shared Pages

Inverted Page Table connects a physical page/swapped page to all

virtual page usages

Only one process uses the page:

• Swap out page + inform process

• Which process owns the page?

Shared Pages (several processes use the same page):

• Swap out + inform all processes

• Which processes own the page?

• But what if a process terminates?

16 Daniel Gruss

Virtual Memory and Shared Pages

Inverted Page Table connects a physical page/swapped page to all

virtual page usages

Only one process uses the page:

• Swap out page + inform process

• Which process owns the page?

Shared Pages (several processes use the same page):

• Swap out + inform all processes

• Which processes own the page?

• But what if a process terminates?

16 Daniel Gruss

Virtual Memory and Shared Pages

Inverted Page Table connects a physical page/swapped page to all

virtual page usages

Only one process uses the page:

• Swap out page + inform process

• Which process owns the page?

Shared Pages (several processes use the same page):

• Swap out + inform all processes

• Which processes own the page?

• But what if a process terminates?

16 Daniel Gruss

Virtual Memory and Shared Pages

Inverted Page Table connects a physical page/swapped page to all

virtual page usages

Only one process uses the page:

• Swap out page + inform process

• Which process owns the page?

Shared Pages (several processes use the same page):

• Swap out + inform all processes

• Which processes own the page?

• But what if a process terminates?

16 Daniel Gruss

Virtual Memory and Shared Pages

Inverted Page Table connects a physical page/swapped page to all

virtual page usages

Only one process uses the page:

• Swap out page + inform process

• Which process owns the page?

Shared Pages (several processes use the same page):

• Swap out + inform all processes

• Which processes own the page?

• But what if a process terminates?

16 Daniel Gruss

Virtual Memory and Shared Pages

Inverted Page Table connects a physical page/swapped page to all

virtual page usages

Only one process uses the page:

• Swap out page + inform process

• Which process owns the page?

Shared Pages (several processes use the same page):

• Swap out + inform all processes

• Which processes own the page?

• But what if a process terminates?

16 Daniel Gruss

Virtual Memory and Shared Pages

Inverted Page Table connects a physical page/swapped page to all

virtual page usages

Only one process uses the page:

• Swap out page + inform process

• Which process owns the page?

Shared Pages (several processes use the same page):

• Swap out + inform all processes

• Which processes own the page?

• But what if a process terminates?

16 Daniel Gruss

Virtual Memory and Shared Pages

Inverted Page Table connects a physical page/swapped page to all

virtual page usages

Only one process uses the page:

• Swap out page + inform process

• Which process owns the page?

Shared Pages (several processes use the same page):

• Swap out + inform all processes

• Which processes own the page?

• But what if a process terminates?

16 Daniel Gruss

Virtual Memory and Shared Pages

Inverted Page Table connects a physical page/swapped page to all

virtual page usages

Only one process uses the page:

• Swap out page + inform process

• Which process owns the page?

Shared Pages (several processes use the same page):

• Swap out + inform all processes

• Which processes own the page?

• But what if a process terminates?

16 Daniel Gruss

Virtual Memory and Shared Pages

Inverted Page Table connects a physical page/swapped page to all

virtual page usages

Only one process uses the page:

• Swap out page + inform process

• Which process owns the page?

Shared Pages (several processes use the same page):

• Swap out + inform all processes

• Which processes own the page?

• But what if a process terminates?

16 Daniel Gruss

Copy On Write

Copy on Write

• Usage of fork():

1. fork() clones a process (copy, copy, copy...)

2. The child process often uses exec(...) after fork()

3. There has been much useless deep copying and deleting

• Do we really have to copy all the stuff?

• Both processes use the same physical and swapped pages

• Two (or more) processes have the same pages in RAM/Swap Device

• Works as long as no one is writing onto them

17 Daniel Gruss

Copy on Write

• Usage of fork():

1. fork() clones a process (copy, copy, copy...)

2. The child process often uses exec(...) after fork()

3. There has been much useless deep copying and deleting

• Do we really have to copy all the stuff?

• Both processes use the same physical and swapped pages

• Two (or more) processes have the same pages in RAM/Swap Device

• Works as long as no one is writing onto them

17 Daniel Gruss

Copy on Write

• Usage of fork():

1. fork() clones a process (copy, copy, copy...)

2. The child process often uses exec(...) after fork()

3. There has been much useless deep copying and deleting

• Do we really have to copy all the stuff?

• Both processes use the same physical and swapped pages

• Two (or more) processes have the same pages in RAM/Swap Device

• Works as long as no one is writing onto them

17 Daniel Gruss

Copy on Write

• Usage of fork():

1. fork() clones a process (copy, copy, copy...)

2. The child process often uses exec(...) after fork()

3. There has been much useless deep copying and deleting

• Do we really have to copy all the stuff?

• Both processes use the same physical and swapped pages

• Two (or more) processes have the same pages in RAM/Swap Device

• Works as long as no one is writing onto them

17 Daniel Gruss

Copy on Write

• Usage of fork():

1. fork() clones a process (copy, copy, copy...)

2. The child process often uses exec(...) after fork()

3. There has been much useless deep copying and deleting

• Do we really have to copy all the stuff?

• Both processes use the same physical and swapped pages

• Two (or more) processes have the same pages in RAM/Swap Device

• Works as long as no one is writing onto them

17 Daniel Gruss

Copy on Write

• Usage of fork():

1. fork() clones a process (copy, copy, copy...)

2. The child process often uses exec(...) after fork()

3. There has been much useless deep copying and deleting

• Do we really have to copy all the stuff?

• Both processes use the same physical and swapped pages

• Two (or more) processes have the same pages in RAM/Swap Device

• Works as long as no one is writing onto them

17 Daniel Gruss

Copy on Write

• Usage of fork():

1. fork() clones a process (copy, copy, copy...)

2. The child process often uses exec(...) after fork()

3. There has been much useless deep copying and deleting

• Do we really have to copy all the stuff?

• Both processes use the same physical and swapped pages

• Two (or more) processes have the same pages in RAM/Swap Device

• Works as long as no one is writing onto them

17 Daniel Gruss

Copy on Write

• Usage of fork():

1. fork() clones a process (copy, copy, copy...)

2. The child process often uses exec(...) after fork()

3. There has been much useless deep copying and deleting

• Do we really have to copy all the stuff?

• Both processes use the same physical and swapped pages

• Two (or more) processes have the same pages in RAM/Swap Device

• Works as long as no one is writing onto them

17 Daniel Gruss

Copy on Write

• Usage of fork():

1. fork() clones a process (copy, copy, copy...)

2. The child process often uses exec(...) after fork()

3. There has been much useless deep copying and deleting

• Do we really have to copy all the stuff?

• Both processes use the same physical and swapped pages

• Two (or more) processes have the same pages in RAM/Swap Device

• Works as long as no one is writing onto them

17 Daniel Gruss

Copy on Write

• Usage of fork():

1. fork() clones a process (copy, copy, copy...)

2. The child process often uses exec(...) after fork()

3. There has been much useless deep copying and deleting

• Do we really have to copy all the stuff?

• Both processes use the same physical and swapped pages

• Two (or more) processes have the same pages in RAM/Swap Device

• Works as long as no one is writing onto them

17 Daniel Gruss

Copy on Write

• Usage of fork():

1. fork() clones a process (copy, copy, copy...)

2. The child process often uses exec(...) after fork()

3. There has been much useless deep copying and deleting

• Do we really have to copy all the stuff?

• Both processes use the same physical and swapped pages

• Two (or more) processes have the same pages in RAM/Swap Device

• Works as long as no one is writing onto them

17 Daniel Gruss

Read-Only Pages and Pagefaults

• How do we realize that someone wants to write onto a page

• Usually we can’t

• The writeable-flag has to be zero

• Process tries to write onto a read-only page

→ PageFault

• What now?

• → Is it a shared page?

• → Copy page and link to the new one

• → If only one process is left → no shared pages!

18 Daniel Gruss

Read-Only Pages and Pagefaults

• How do we realize that someone wants to write onto a page

• Usually we can’t

• The writeable-flag has to be zero

• Process tries to write onto a read-only page

→ PageFault

• What now?

• → Is it a shared page?

• → Copy page and link to the new one

• → If only one process is left → no shared pages!

18 Daniel Gruss

Read-Only Pages and Pagefaults

• How do we realize that someone wants to write onto a page

• Usually we can’t

• The writeable-flag has to be zero

• Process tries to write onto a read-only page

→ PageFault

• What now?

• → Is it a shared page?

• → Copy page and link to the new one

• → If only one process is left → no shared pages!

18 Daniel Gruss

Read-Only Pages and Pagefaults

• How do we realize that someone wants to write onto a page

• Usually we can’t

• The writeable-flag has to be zero

• Process tries to write onto a read-only page

→ PageFault

• What now?

• → Is it a shared page?

• → Copy page and link to the new one

• → If only one process is left → no shared pages!

18 Daniel Gruss

Read-Only Pages and Pagefaults

• How do we realize that someone wants to write onto a page

• Usually we can’t

• The writeable-flag has to be zero

• Process tries to write onto a read-only page

→ PageFault

• What now?

• → Is it a shared page?

• → Copy page and link to the new one

• → If only one process is left → no shared pages!

18 Daniel Gruss

Read-Only Pages and Pagefaults

• How do we realize that someone wants to write onto a page

• Usually we can’t

• The writeable-flag has to be zero

• Process tries to write onto a read-only page

→ PageFault

• What now?

• → Is it a shared page?

• → Copy page and link to the new one

• → If only one process is left → no shared pages!

18 Daniel Gruss

Read-Only Pages and Pagefaults

• How do we realize that someone wants to write onto a page

• Usually we can’t

• The writeable-flag has to be zero

• Process tries to write onto a read-only page

→ PageFault

• What now?

• → Is it a shared page?

• → Copy page and link to the new one

• → If only one process is left → no shared pages!

18 Daniel Gruss

Read-Only Pages and Pagefaults

• How do we realize that someone wants to write onto a page

• Usually we can’t

• The writeable-flag has to be zero

• Process tries to write onto a read-only page

→ PageFault

• What now?

• → Is it a shared page?

• → Copy page and link to the new one

• → If only one process is left → no shared pages!

18 Daniel Gruss

Read-Only Pages and Pagefaults

• How do we realize that someone wants to write onto a page

• Usually we can’t

• The writeable-flag has to be zero

• Process tries to write onto a read-only page

→ PageFault

• What now?

• → Is it a shared page?

• → Copy page and link to the new one

• → If only one process is left → no shared pages!

18 Daniel Gruss

Read-Only Pages and Pagefaults

• How do we realize that someone wants to write onto a page

• Usually we can’t

• The writeable-flag has to be zero

• Process tries to write onto a read-only page

→ PageFault

• What now?

• → Is it a shared page?

• → Copy page and link to the new one

• → If only one process is left → no shared pages!

18 Daniel Gruss

Read-Only Pages and Pagefaults

• How do we realize that someone wants to write onto a page

• Usually we can’t

• The writeable-flag has to be zero

• Process tries to write onto a read-only page

→ PageFault

• What now?

• → Is it a shared page?

• → Copy page and link to the new one

• → If only one process is left → no shared pages!

18 Daniel Gruss

19 Daniel Gruss

20 Daniel Gruss

What about the global flag?

• Don’t use it!

• “global” means “keep over next context switch”

• This is not what you want

• Will cause almost untraceable bugs!

• Use and rename an unused bit as “shared” flag instead

21 Daniel Gruss

What about the global flag?

• Don’t use it!

• “global” means “keep over next context switch”

• This is not what you want

• Will cause almost untraceable bugs!

• Use and rename an unused bit as “shared” flag instead

21 Daniel Gruss

What about the global flag?

• Don’t use it!

• “global” means “keep over next context switch”

• This is not what you want

• Will cause almost untraceable bugs!

• Use and rename an unused bit as “shared” flag instead

21 Daniel Gruss

What about the global flag?

• Don’t use it!

• “global” means “keep over next context switch”

• This is not what you want

• Will cause almost untraceable bugs!

• Use and rename an unused bit as “shared” flag instead

21 Daniel Gruss

What about the global flag?

• Don’t use it!

• “global” means “keep over next context switch”

• This is not what you want

• Will cause almost untraceable bugs!

• Use and rename an unused bit as “shared” flag instead

21 Daniel Gruss

What about the global flag?

• Don’t use it!

• “global” means “keep over next context switch”

• This is not what you want

• Will cause almost untraceable bugs!

• Use and rename an unused bit as “shared” flag instead

21 Daniel Gruss

What about the global flag?

• Don’t use it!

• “global” means “keep over next context switch”

• This is not what you want

• Will cause almost untraceable bugs!

• Use and rename an unused bit as “shared” flag instead

21 Daniel Gruss

What about the global flag?

• Don’t use it!

• “global” means “keep over next context switch”

• This is not what you want

• Will cause almost untraceable bugs!

• Use and rename an unused bit as “shared” flag instead

21 Daniel Gruss

Copy-on-Write

Virtual Address Space

Physical Address Space

22 Daniel Gruss

Copy-on-Write

Virtual Address Space

Physical Address Space

22 Daniel Gruss

Copy-on-Write

Virtual Address Space
Process A

Physical Address Space

22 Daniel Gruss

Copy-on-Write

Virtual Address Space
Process A

Physical Address Space

22 Daniel Gruss

Copy-on-Write

Virtual Address Space
Process A

Physical Address Space

22 Daniel Gruss

Copy-on-Write

Virtual Address Space
Process A

Physical Address Space

22 Daniel Gruss

Copy-on-Write

Virtual Address Space
Process A

Physical Address Space

fork

Process B

22 Daniel Gruss

Copy-on-Write

Virtual Address Space
Process A

Physical Address Space

Process B

22 Daniel Gruss

Copy-on-Write

Virtual Address Space
Process A

Physical Address Space

Process B

22 Daniel Gruss

Copy-on-Write

Virtual Address Space
Process A

Physical Address Space

Process B

22 Daniel Gruss

Copy-on-Write

Virtual Address Space
Process A

Physical Address Space

Process B

22 Daniel Gruss

Copy-on-Write

Virtual Address Space
Process A

Physical Address Space

Process B

Process B tries to write

22 Daniel Gruss

Copy-on-Write

Virtual Address Space
Process A

Physical Address Space

Process B

Process B tries to write

copy

22 Daniel Gruss

Copy-on-Write

Virtual Address Space
Process A

Physical Address Space

Process B

write

22 Daniel Gruss

Copy On Write Without Fork

• Starting /usr/shell.sweb twice, without fork

• Loading the same image in different programs

• Generating the same data in different programs

• → Page Deduplication

23 Daniel Gruss

Copy On Write Without Fork

• Starting /usr/shell.sweb twice, without fork

• Loading the same image in different programs

• Generating the same data in different programs

• → Page Deduplication

23 Daniel Gruss

Copy On Write Without Fork

• Starting /usr/shell.sweb twice, without fork

• Loading the same image in different programs

• Generating the same data in different programs

• → Page Deduplication

23 Daniel Gruss

Copy On Write Without Fork

• Starting /usr/shell.sweb twice, without fork

• Loading the same image in different programs

• Generating the same data in different programs

• → Page Deduplication

23 Daniel Gruss

Copy On Write Without Fork

• Starting /usr/shell.sweb twice, without fork

• Loading the same image in different programs

• Generating the same data in different programs

• → Page Deduplication

23 Daniel Gruss

Copy On Write Without Fork

• Starting /usr/shell.sweb twice, without fork

• Loading the same image in different programs

• Generating the same data in different programs

• → Page Deduplication

23 Daniel Gruss

Copy On Write Without Fork

• Starting /usr/shell.sweb twice, without fork

• Loading the same image in different programs

• Generating the same data in different programs

• → Page Deduplication

23 Daniel Gruss

Page Deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

24 Daniel Gruss

Page Deduplication

Virtual Address Space
Process A

Physical Address Space

Processes started
independently

Process B

24 Daniel Gruss

Page Deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

24 Daniel Gruss

Page Deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

24 Daniel Gruss

Page Deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

24 Daniel Gruss

Page Deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

24 Daniel Gruss

Page Deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

24 Daniel Gruss

Page Deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

24 Daniel Gruss

Page Deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

24 Daniel Gruss

Page Deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

̸=

24 Daniel Gruss

Page Deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

̸=

24 Daniel Gruss

Page Deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

̸=

24 Daniel Gruss

Page Deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

̸=

24 Daniel Gruss

Page Deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

=

24 Daniel Gruss

Page Deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

=

24 Daniel Gruss

Page Deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

=

24 Daniel Gruss

Page Deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

Done!

24 Daniel Gruss

Page Deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

24 Daniel Gruss

Additional Tasks

Shared Memory

1. Process A wants to share 3 pages with process B

2. Process A syscall: get 3 pages of shared memory ID 4

3. Kernel: maps 3 virtual pages (10-12) of A to physical pages 464,

9078, and 123

4. Process B syscall: get 3 pages of shared memory ID 4

5. Kernel: maps 3 virtual pages (22-24) of A to physical pages 464,

9078, and 123

6. → A and B now share 3 pages

25 Daniel Gruss

Shared Memory

1. Process A wants to share 3 pages with process B

2. Process A syscall: get 3 pages of shared memory ID 4

3. Kernel: maps 3 virtual pages (10-12) of A to physical pages 464,

9078, and 123

4. Process B syscall: get 3 pages of shared memory ID 4

5. Kernel: maps 3 virtual pages (22-24) of A to physical pages 464,

9078, and 123

6. → A and B now share 3 pages

25 Daniel Gruss

Shared Memory

1. Process A wants to share 3 pages with process B

2. Process A syscall: get 3 pages of shared memory ID 4

3. Kernel: maps 3 virtual pages (10-12) of A to physical pages 464,

9078, and 123

4. Process B syscall: get 3 pages of shared memory ID 4

5. Kernel: maps 3 virtual pages (22-24) of A to physical pages 464,

9078, and 123

6. → A and B now share 3 pages

25 Daniel Gruss

Shared Memory

1. Process A wants to share 3 pages with process B

2. Process A syscall: get 3 pages of shared memory ID 4

3. Kernel: maps 3 virtual pages (10-12) of A to physical pages 464,

9078, and 123

4. Process B syscall: get 3 pages of shared memory ID 4

5. Kernel: maps 3 virtual pages (22-24) of A to physical pages 464,

9078, and 123

6. → A and B now share 3 pages

25 Daniel Gruss

Shared Memory

1. Process A wants to share 3 pages with process B

2. Process A syscall: get 3 pages of shared memory ID 4

3. Kernel: maps 3 virtual pages (10-12) of A to physical pages 464,

9078, and 123

4. Process B syscall: get 3 pages of shared memory ID 4

5. Kernel: maps 3 virtual pages (22-24) of A to physical pages 464,

9078, and 123

6. → A and B now share 3 pages

25 Daniel Gruss

Shared Memory

1. Process A wants to share 3 pages with process B

2. Process A syscall: get 3 pages of shared memory ID 4

3. Kernel: maps 3 virtual pages (10-12) of A to physical pages 464,

9078, and 123

4. Process B syscall: get 3 pages of shared memory ID 4

5. Kernel: maps 3 virtual pages (22-24) of A to physical pages 464,

9078, and 123

6. → A and B now share 3 pages

25 Daniel Gruss

Shared Memory

1. Process A wants to share 3 pages with process B

2. Process A syscall: get 3 pages of shared memory ID 4

3. Kernel: maps 3 virtual pages (10-12) of A to physical pages 464,

9078, and 123

4. Process B syscall: get 3 pages of shared memory ID 4

5. Kernel: maps 3 virtual pages (22-24) of A to physical pages 464,

9078, and 123

6. → A and B now share 3 pages

25 Daniel Gruss

Shared Memory

1. Process A wants to share 3 pages with process B

2. Process A syscall: get 3 pages of shared memory ID 4

3. Kernel: maps 3 virtual pages (10-12) of A to physical pages 464,

9078, and 123

4. Process B syscall: get 3 pages of shared memory ID 4

5. Kernel: maps 3 virtual pages (22-24) of A to physical pages 464,

9078, and 123

6. → A and B now share 3 pages

25 Daniel Gruss

Shared Memory

1. Process A wants to share 3 pages with process B

2. Process A syscall: get 3 pages of shared memory ID 4

3. Kernel: maps 3 virtual pages (10-12) of A to physical pages 464,

9078, and 123

4. Process B syscall: get 3 pages of shared memory ID 4

5. Kernel: maps 3 virtual pages (22-24) of A to physical pages 464,

9078, and 123

6. → A and B now share 3 pages

25 Daniel Gruss

Shared Memory: How To Implement

• Syscalls:

int shm_open(const char ∗name, int oflag, mode_t mode);

int shm_unlink(const char ∗name);

void ∗mmap(void ∗addr, size_t len, int prot, int flags, int fildes,

off_t off);

int munmap(void ∗addr, size_t len);

• Manages IDs (pseudo file-descriptor) and users of the shared regions

• munmap and close when the process ends or manually

• No reference to the shared memory object → destroy it

26 Daniel Gruss

Shared Memory: How To Implement

• Syscalls:

int shm_open(const char ∗name, int oflag, mode_t mode);

int shm_unlink(const char ∗name);

void ∗mmap(void ∗addr, size_t len, int prot, int flags, int fildes,

off_t off);

int munmap(void ∗addr, size_t len);

• Manages IDs (pseudo file-descriptor) and users of the shared regions

• munmap and close when the process ends or manually

• No reference to the shared memory object → destroy it

26 Daniel Gruss

Shared Memory: How To Implement

• Syscalls:

int shm_open(const char ∗name, int oflag, mode_t mode);

int shm_unlink(const char ∗name);

void ∗mmap(void ∗addr, size_t len, int prot, int flags, int fildes,

off_t off);

int munmap(void ∗addr, size_t len);

• Manages IDs (pseudo file-descriptor) and users of the shared regions

• munmap and close when the process ends or manually

• No reference to the shared memory object → destroy it

26 Daniel Gruss

Shared Memory: How To Implement

• Syscalls:

int shm_open(const char ∗name, int oflag, mode_t mode);

int shm_unlink(const char ∗name);

void ∗mmap(void ∗addr, size_t len, int prot, int flags, int fildes,

off_t off);

int munmap(void ∗addr, size_t len);

• Manages IDs (pseudo file-descriptor) and users of the shared regions

• munmap and close when the process ends or manually

• No reference to the shared memory object → destroy it

26 Daniel Gruss

Shared Memory: How To Implement

• Syscalls:

int shm_open(const char ∗name, int oflag, mode_t mode);

int shm_unlink(const char ∗name);

void ∗mmap(void ∗addr, size_t len, int prot, int flags, int fildes,

off_t off);

int munmap(void ∗addr, size_t len);

• Manages IDs (pseudo file-descriptor) and users of the shared regions

• munmap and close when the process ends or manually

• No reference to the shared memory object → destroy it

26 Daniel Gruss

Shared Memory: How To Implement

• Syscalls:

int shm_open(const char ∗name, int oflag, mode_t mode);

int shm_unlink(const char ∗name);

void ∗mmap(void ∗addr, size_t len, int prot, int flags, int fildes,

off_t off);

int munmap(void ∗addr, size_t len);

• Manages IDs (pseudo file-descriptor) and users of the shared regions

• munmap and close when the process ends or manually

• No reference to the shared memory object → destroy it

26 Daniel Gruss

Shared Memory: How To Implement

• Syscalls:

int shm_open(const char ∗name, int oflag, mode_t mode);

int shm_unlink(const char ∗name);

void ∗mmap(void ∗addr, size_t len, int prot, int flags, int fildes,

off_t off);

int munmap(void ∗addr, size_t len);

• Manages IDs (pseudo file-descriptor) and users of the shared regions

• munmap and close when the process ends or manually

• No reference to the shared memory object → destroy it

26 Daniel Gruss

Memory Mapped File I/O

• Files are not accessed by using (open/creat/close/read/write)

any longer, they are directy mapped into the address space

• Parts of the mapped file are copied into RAM on demand!

• They are written back when being unmapped (if they have been

modified)

• Depends on the flags set when being mapped

• If several processes have the same file mapped → Shared Memory

27 Daniel Gruss

Memory Mapped File I/O

• Files are not accessed by using (open/creat/close/read/write)

any longer, they are directy mapped into the address space

• Parts of the mapped file are copied into RAM on demand!

• They are written back when being unmapped (if they have been

modified)

• Depends on the flags set when being mapped

• If several processes have the same file mapped → Shared Memory

27 Daniel Gruss

Memory Mapped File I/O

• Files are not accessed by using (open/creat/close/read/write)

any longer, they are directy mapped into the address space

• Parts of the mapped file are copied into RAM on demand!

• They are written back when being unmapped (if they have been

modified)

• Depends on the flags set when being mapped

• If several processes have the same file mapped → Shared Memory

27 Daniel Gruss

Memory Mapped File I/O

• Files are not accessed by using (open/creat/close/read/write)

any longer, they are directy mapped into the address space

• Parts of the mapped file are copied into RAM on demand!

• They are written back when being unmapped (if they have been

modified)

• Depends on the flags set when being mapped

• If several processes have the same file mapped → Shared Memory

27 Daniel Gruss

Memory Mapped File I/O

• Files are not accessed by using (open/creat/close/read/write)

any longer, they are directy mapped into the address space

• Parts of the mapped file are copied into RAM on demand!

• They are written back when being unmapped (if they have been

modified)

• Depends on the flags set when being mapped

• If several processes have the same file mapped → Shared Memory

27 Daniel Gruss

Memory Mapped File I/O

• Files are not accessed by using (open/creat/close/read/write)

any longer, they are directy mapped into the address space

• Parts of the mapped file are copied into RAM on demand!

• They are written back when being unmapped (if they have been

modified)

• Depends on the flags set when being mapped

• If several processes have the same file mapped → Shared Memory

27 Daniel Gruss

Memory Mapped File I/O

• Files are not accessed by using (open/creat/close/read/write)

any longer, they are directy mapped into the address space

• Parts of the mapped file are copied into RAM on demand!

• They are written back when being unmapped (if they have been

modified)

• Depends on the flags set when being mapped

• If several processes have the same file mapped → Shared Memory

27 Daniel Gruss

Memory Mapped File I/O

• Files are not accessed by using (open/creat/close/read/write)

any longer, they are directy mapped into the address space

• Parts of the mapped file are copied into RAM on demand!

• They are written back when being unmapped (if they have been

modified)

• Depends on the flags set when being mapped

• If several processes have the same file mapped → Shared Memory

27 Daniel Gruss

mmap / munmap

• void ∗mmap(void ∗addr, size_t len, int prot, int flags, int fildes,

off_t off);

• int munmap(void ∗addr, size_t len);

fildes • shm open or open

• Which processes opened the same file?

len • Only multiples of PAGE_SIZE

• File size usually not PAGE_SIZE-aligned

28 Daniel Gruss

mmap / munmap

• void ∗mmap(void ∗addr, size_t len, int prot, int flags, int fildes,

off_t off);

• int munmap(void ∗addr, size_t len);

protection : Access rights for the mapped areas

• PROT READ: How to prevent write accesses?

• PROT WRITE: flags relevant!

28 Daniel Gruss

mmap / munmap

• void ∗mmap(void ∗addr, size_t len, int prot, int flags, int fildes,

off_t off);

• int munmap(void ∗addr, size_t len);

flags :

• MAP PRIVATE:

• Copy-on-write

• No write-back

• MAP SHARED:

• Write-back to file on munmap

• Changes visible to other processes immediately!

28 Daniel Gruss

mmap / munmap

• void ∗mmap(void ∗addr, size_t len, int prot, int flags, int fildes,

off_t off);

• int munmap(void ∗addr, size_t len);

... easy to combine with shared memory syscalls

28 Daniel Gruss

Userspace Dynamic Memory

• Memory allocation at runtime

• Implement malloc/free

Address space of a process:

29 Daniel Gruss

Userspace Dynamic Memory

• Memory allocation at runtime

• Implement malloc/free

Address space of a process:

29 Daniel Gruss

Userspace Dynamic Memory

• Memory allocation at runtime

• Implement malloc/free

Address space of a process:

29 Daniel Gruss

Userspace Dynamic Memory

• Memory allocation at runtime

• Implement malloc/free

Address space of a process:

29 Daniel Gruss

Userspace Dynamic Memory

• Memory allocation at runtime

• Implement malloc/free

Address space of a process:

29 Daniel Gruss

Userspace Dynamic Memory

• Memory allocation at runtime

• Implement malloc/free

Address space of a process:

29 Daniel Gruss

Userspace Dynamic Memory

• Memory allocation at runtime

• Implement malloc/free

Address space of a process:

29 Daniel Gruss

How to use brk/sbrk

• int brk(void ∗end_data_segment);

• void ∗sbrk(int increment);

• Linker symbol _end

Example (sbrk/break in userspace)
extern _end ;

// . . .

size_t heap_start = &_end ;

size_t heap_end = heap_start + 4096 ;

if (brk (heap_end) == 0)

{
//do s t u f f i n dynamic memory

}

30 Daniel Gruss

How to use brk/sbrk

• int brk(void ∗end_data_segment);

• void ∗sbrk(int increment);

• Linker symbol _end

Example (sbrk/break in userspace)
extern _end ;

// . . .

size_t heap_start = &_end ;

size_t heap_end = heap_start + 4096 ;

if (brk (heap_end) == 0)

{
//do s t u f f i n dynamic memory

}

30 Daniel Gruss

Userspace Memory Management

brk and sbrk are complicated to use - let’s implement:

• malloc(size_t size)/free(void ∗p) in libc

• Manages the allocated memory regions

• Requests pages from the kernel

• Frees unused pages again

• therefore uses brk()/sbrk()

31 Daniel Gruss

Userspace Memory Management

brk and sbrk are complicated to use - let’s implement:

• malloc(size_t size)/free(void ∗p) in libc

• Manages the allocated memory regions

• Requests pages from the kernel

• Frees unused pages again

• therefore uses brk()/sbrk()

31 Daniel Gruss

Userspace Memory Management

brk and sbrk are complicated to use - let’s implement:

• malloc(size_t size)/free(void ∗p) in libc

• Manages the allocated memory regions

• Requests pages from the kernel

• Frees unused pages again

• therefore uses brk()/sbrk()

31 Daniel Gruss

Userspace Memory Management

brk and sbrk are complicated to use - let’s implement:

• malloc(size_t size)/free(void ∗p) in libc

• Manages the allocated memory regions

• Requests pages from the kernel

• Frees unused pages again

• therefore uses brk()/sbrk()

31 Daniel Gruss

Userspace Memory Management

brk and sbrk are complicated to use - let’s implement:

• malloc(size_t size)/free(void ∗p) in libc

• Manages the allocated memory regions

• Requests pages from the kernel

• Frees unused pages again

• therefore uses brk()/sbrk()

31 Daniel Gruss

Userspace Memory Management

brk and sbrk are complicated to use - let’s implement:

• malloc(size_t size)/free(void ∗p) in libc

• Manages the allocated memory regions

• Requests pages from the kernel

• Frees unused pages again

• therefore uses brk()/sbrk()

31 Daniel Gruss

Userspace Memory Management

brk and sbrk are complicated to use - let’s implement:

• malloc(size_t size)/free(void ∗p) in libc

• Manages the allocated memory regions

• Requests pages from the kernel

• Frees unused pages again

• therefore uses brk()/sbrk()

31 Daniel Gruss

Userspace Memory Management

brk and sbrk are complicated to use - let’s implement:

• malloc(size_t size)/free(void ∗p) in libc

• Manages the allocated memory regions

• Requests pages from the kernel

• Frees unused pages again

• therefore uses brk()/sbrk()

31 Daniel Gruss

Userspace Memory Management

• simple implementation:

doubly-linked list containing the memory regions

• Don’t forget about locking!

32 Daniel Gruss

Userspace Memory Management

• simple implementation:

doubly-linked list containing the memory regions

• Don’t forget about locking!

32 Daniel Gruss

Userspace Memory Management

• simple implementation:

doubly-linked list containing the memory regions

• Don’t forget about locking!

32 Daniel Gruss

Userspace Memory Management

• simple implementation:

doubly-linked list containing the memory regions

• Don’t forget about locking!

32 Daniel Gruss

Userspace Memory Management

• simple implementation:

doubly-linked list containing the memory regions

• Don’t forget about locking!

32 Daniel Gruss

Design / Submissions

Design

Proof-of-Concept-Implementation as in Assignment 1

Recommendation: Start with swapping

33 Daniel Gruss

Design

Proof-of-Concept-Implementation as in Assignment 1

Recommendation: Start with swapping

33 Daniel Gruss

Alternative tasks

• Normal way: mandatory task virtual memory

• You want to go the normal way? Just ignore this slide...

• Alternative: Discuss with me about substituting the mandatory task

with either security or driver development as your new mandatory task

• This is not possible without discussing it with me!

34 Daniel Gruss

Alternative tasks

• Normal way: mandatory task virtual memory

• You want to go the normal way? Just ignore this slide...

• Alternative: Discuss with me about substituting the mandatory task

with either security or driver development as your new mandatory task

• This is not possible without discussing it with me!

34 Daniel Gruss

Alternative tasks

• Normal way: mandatory task virtual memory

• You want to go the normal way? Just ignore this slide...

• Alternative: Discuss with me about substituting the mandatory task

with either security or driver development as your new mandatory task

• This is not possible without discussing it with me!

34 Daniel Gruss

Alternative tasks

• Normal way: mandatory task virtual memory

• You want to go the normal way? Just ignore this slide...

• Alternative: Discuss with me about substituting the mandatory task

with either security or driver development as your new mandatory task

• This is not possible without discussing it with me!

34 Daniel Gruss

Alternative tasks

• Normal way: mandatory task virtual memory

• You want to go the normal way? Just ignore this slide...

• Alternative: Discuss with me about substituting the mandatory task

with either security or driver development as your new mandatory task

• This is not possible without discussing it with me!

34 Daniel Gruss

Alternative tasks

• Normal way: mandatory task virtual memory

• You want to go the normal way? Just ignore this slide...

• Alternative: Discuss with me about substituting the mandatory task

with either security or driver development as your new mandatory task

• This is not possible without discussing it with me!

34 Daniel Gruss

Alternative tasks

• Normal way: mandatory task virtual memory

• You want to go the normal way? Just ignore this slide...

• Alternative: Discuss with me about substituting the mandatory task

with either security or driver development as your new mandatory task

• This is not possible without discussing it with me!

34 Daniel Gruss

Submission

• As in Assignment 1

• Tags:

• Design/Proof-of-Concept: SubmissionD2

• Implementation: SubmissionI2

35 Daniel Gruss

Submission

• As in Assignment 1

• Tags:

• Design/Proof-of-Concept: SubmissionD2

• Implementation: SubmissionI2

35 Daniel Gruss

Submission

• As in Assignment 1

• Tags:

• Design/Proof-of-Concept: SubmissionD2

• Implementation: SubmissionI2

35 Daniel Gruss

Submission

• As in Assignment 1

• Tags:

• Design/Proof-of-Concept: SubmissionD2

• Implementation: SubmissionI2

35 Daniel Gruss

Submission

• As in Assignment 1

• Tags:

• Design/Proof-of-Concept: SubmissionD2

• Implementation: SubmissionI2

35 Daniel Gruss

Submission

• As in Assignment 1

• Tags:

• Design/Proof-of-Concept: SubmissionD2

• Implementation: SubmissionI2

35 Daniel Gruss

Submission

• As in Assignment 1

• Tags:

• Design/Proof-of-Concept: SubmissionD2

• Implementation: SubmissionI2

35 Daniel Gruss

Deadlines

• Design-PoC: 15.12.2023, 18:00

• Individual feedback meetings ideally between 18.-20.12.

• Implementation: 19.01.2024, 18:00

• Since 2011 we went to a pub after the implementation deadline

36 Daniel Gruss

Deadlines

• Design-PoC: 15.12.2023, 18:00

• Individual feedback meetings ideally between 18.-20.12.

• Implementation: 19.01.2024, 18:00

• Since 2011 we went to a pub after the implementation deadline

36 Daniel Gruss

Deadlines

• Design-PoC: 15.12.2023, 18:00

• Individual feedback meetings ideally between 18.-20.12.

• Implementation: 19.01.2024, 18:00

• Since 2011 we went to a pub after the implementation deadline

36 Daniel Gruss

Deadlines

• Design-PoC: 15.12.2023, 18:00

• Individual feedback meetings ideally between 18.-20.12.

• Implementation: 19.01.2024, 18:00

• Since 2011 we went to a pub after the implementation deadline

36 Daniel Gruss

Deadlines

• Design-PoC: 15.12.2023, 18:00

• Individual feedback meetings ideally between 18.-20.12.

• Implementation: 19.01.2024, 18:00

• Since 2011 we went to a pub after the implementation deadline

36 Daniel Gruss

Deadlines

• Design-PoC: 15.12.2023, 18:00

• Individual feedback meetings ideally between 18.-20.12.

• Implementation: 19.01.2024, 18:00

• Since 2011 we went to a pub after the implementation deadline

36 Daniel Gruss

Deadlines

• Design-PoC: 15.12.2023, 18:00

• Individual feedback meetings ideally between 18.-20.12.

• Implementation: 19.01.2024, 18:00

• Since 2011 we went to a pub after the implementation deadline

36 Daniel Gruss

Student Debates on A2 Designs

• In two weeks (04.-07.12.)

• Like the one from Assignment 1

• Compulsory attendance

• Bring 2 pieces of paper with your name

• Repeating the assignment specification is not enough!

• Your design should be complete by that time

• Instant feedback

37 Daniel Gruss

Student Debates on A2 Designs

• In two weeks (04.-07.12.)

• Like the one from Assignment 1

• Compulsory attendance

• Bring 2 pieces of paper with your name

• Repeating the assignment specification is not enough!

• Your design should be complete by that time

• Instant feedback

37 Daniel Gruss

Student Debates on A2 Designs

• In two weeks (04.-07.12.)

• Like the one from Assignment 1

• Compulsory attendance

• Bring 2 pieces of paper with your name

• Repeating the assignment specification is not enough!

• Your design should be complete by that time

• Instant feedback

37 Daniel Gruss

Student Debates on A2 Designs

• In two weeks (04.-07.12.)

• Like the one from Assignment 1

• Compulsory attendance

• Bring 2 pieces of paper with your name

• Repeating the assignment specification is not enough!

• Your design should be complete by that time

• Instant feedback

37 Daniel Gruss

Student Debates on A2 Designs

• In two weeks (04.-07.12.)

• Like the one from Assignment 1

• Compulsory attendance

• Bring 2 pieces of paper with your name

• Repeating the assignment specification is not enough!

• Your design should be complete by that time

• Instant feedback

37 Daniel Gruss

Student Debates on A2 Designs

• In two weeks (04.-07.12.)

• Like the one from Assignment 1

• Compulsory attendance

• Bring 2 pieces of paper with your name

• Repeating the assignment specification is not enough!

• Your design should be complete by that time

• Instant feedback

37 Daniel Gruss

Student Debates on A2 Designs

• In two weeks (04.-07.12.)

• Like the one from Assignment 1

• Compulsory attendance

• Bring 2 pieces of paper with your name

• Repeating the assignment specification is not enough!

• Your design should be complete by that time

• Instant feedback

37 Daniel Gruss

Student Debates on A2 Designs

• In two weeks (04.-07.12.)

• Like the one from Assignment 1

• Compulsory attendance

• Bring 2 pieces of paper with your name

• Repeating the assignment specification is not enough!

• Your design should be complete by that time

• Instant feedback

37 Daniel Gruss

Student Debates on A2 Designs

• In two weeks (04.-07.12.)

• Like the one from Assignment 1

• Compulsory attendance

• Bring 2 pieces of paper with your name

• Repeating the assignment specification is not enough!

• Your design should be complete by that time

• Instant feedback

37 Daniel Gruss

Student Debates on A2 Designs

• In two weeks (04.-07.12.)

• Like the one from Assignment 1

• Compulsory attendance

• Bring 2 pieces of paper with your name

• Repeating the assignment specification is not enough!

• Your design should be complete by that time

• Instant feedback

37 Daniel Gruss

Evaluations

• Tell us what was good and should remain the same

• Tell us what was bad and should be changed

38 Daniel Gruss

Evaluations

• Tell us what was good and should remain the same

• Tell us what was bad and should be changed

38 Daniel Gruss

Evaluations

• Tell us what was good and should remain the same

• Tell us what was bad and should be changed

38 Daniel Gruss

Evaluations

• Tell us what was good and should remain the same

• Tell us what was bad and should be changed

38 Daniel Gruss

Evaluations

• Tell us what was good and should remain the same

• Tell us what was bad and should be changed

38 Daniel Gruss

Evaluations

• Tell us what was good and should remain the same

• Tell us what was bad and should be changed

38 Daniel Gruss

Evaluations

• Tell us what was good and should remain the same

• Tell us what was bad and should be changed

38 Daniel Gruss

	Page Replacement
	Inverted Page Table (IPT)
	Copy On Write
	Additional Tasks
	Design / Submissions

