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Address Translation



Address Translation

• OS in control of address translation

• enables number of advanced features

• programmers perspective:

• pointers point to objects etc.

• transparent: it is not necessary to know how memory reference is converted to data
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Isolation, IPC, Sharing, Efficient Dynamic Memory, Cache Management, Debugging, Efficient I/O, Memory Mapped



Address Translation - Idea / Overview

3 Daniel Gruss



Address Translation Concepts

• Memory protection

• Memory sharing

• Shared libraries, interprocess communication

• Sparse address space

• Multiple regions for dynamic allocation (heaps/stacks)
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Address Translation Concepts

• Efficiency

• Flexible Memory placement

• Runtime lookup

• Compact translation tables

• Portability
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Base-Limit or Base and bounds
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Virtually Addressed Base and Bounds

• Virtual Address: from 0 to an upper bound

• Physical Address: from base to base + bound

• what is saved/restored on a process context switch?
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Simple, Fast (2 registers, adder, comparator), Safe, Can relocate in physical memory without changing process, no isolation, no sharing, no growing



Segmentation

• Small Change: multiple pairs of base-and-bounds registers

• Segmentation

• Each entry controls a portion of the virtual address space

8 Daniel Gruss



Segmentation
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Segmentation

• Segment is a contiguous region of virtual memory

• Each process has a segment table (in hardware)

• Entry in table = segment

• Segment can be located anywhere in physical memory

• Each segment has: start, length, access permission
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Segmentation

• Segmented Memory has gaps!

• no longer contiguous region - set of regions

• code and data not adjacent - neither in virtual nor in physical address space

• What if: program tries to load data from gap?

• Segmentation Fault (trap into OS)

• correct programs will not generate references outside valid memory

• trying to read or write data that does not exist: bug-indication
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Shared Memory

• Processes can share segments

• Same start, length, same/different access permissions

• Usage:

• sharing code (shared libraries)

• interprocess communication

• copy on write
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Copy on Write

Special kind of shared memory (after fork)

• two processes, both running the same program and almost same data

• makes sense not to copy everything

• we just need to be made aware if a process writes to a segment and changes the content

• reading does not present any problems

• how do we know when a process writes to a segment?

→ set segment read only
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Fork and Copy on Write

Fork:

• Copy segment table into child

• Mark parent and child segments read-only

• Start child process; return to parent

Parent/Child try to write:

• trap into kernel

• make a copy of the segment and resume
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Copy on Write

15 Daniel Gruss



Zero-on-Reference

• How much physical memory needed for stack or heap?

• Only what is currently in use

• When program uses memory beyond end of stack

• Segmentation fault into OS kernel

• Kernel allocates some memory

• How much?

• Zeros the memory

• avoid accidentally leaking information!

• Modify segment table

• Resume process
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sharing, isolation/protection, transparently grow, copy-on-write, BUT: complex, fragmentation, rearrange memory, wasted space between chunks



Paged Translation

• Manage memory in fixed size units, or pages

• Finding a free page is easy

• Bitmap allocation: 0011111100000001100

• Each bit represents one physical page number / one physical page frame

• Each process has its own page table

• Stored in physical memory

• Hardware registers

• pointer to page table start

• page table length
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Logical View of Page Table Address Translation
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paging - implementation
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Paging Questions

• With paging, what is saved/restored on a process context switch?

• Pointer to page table, size of page table

• Page table itself is in main memory

• What if page size is very small?

• What if page size is very large?

• Internal fragmentation: if we don’t need all of the space inside a fixed size chunk

20 Daniel Gruss



Paging and Copy on Write

• Can we share pages between processes (similar as segments before)?

• Set entries in both page tables to the same physical page number

• Need core map of physical page numbers to track which processes are pointing to which

physical page numbers (e.g. reference count)
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Copy-on-Write on Unix/Linux

Virtual Address Space
Process A

Physical Address Space

fork

Process B

Process B tries to write

copy (update page tables, set writeable)

write

22 Daniel Gruss



Demand Paging

• Can I start running a program before its code is in physical memory?

• Set all page table entries to invalid

• When a page is referenced for first time, kernel trap

• Kernel brings page in from disk

• Resume execution

• Remaining pages can be transferred in the background while program is running

23 Daniel Gruss



Scheduling a Process (with Demand Paging)

• Only load what’s required

• Initially start with no pages in memory

• Process will be scheduled eventually. What happens?

• a page fault will occur when fetching the first instruction

• further page faults for stacks and data

• after a while, things will stabilize

• The principle of locality ensures that
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Prepaging

Prepaging as an optimization

• If it is known upon scheduling which pages will be required ...

• page referenced by instruction pointer, stack pointer, etc.

• ... load required pages into RAM ahead of time

→ may lower page fault frequency
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Sparse Address Spaces

• Every process needs an address space.

• What if virtual address space is large?

• 32-bits, 4KB pages → 1 million page table entries

• 64-bits → 4 quadrillion page table entries
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Multi-level Translation

• Tree of translation tables

• Paged segmentation

• Multi-level page tables

• Multi-level paged segmentation
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Multi-level Translation

• Fixed-size page as lowest level unit of allocation

• Efficient memory allocation (compared to segments)

• Efficient for sparse translation tree (compared to simple paging)

• Efficient disk transfers (fixed size units, page size multiple of disk sector)

• Easier to build translation lookaside buffers

• Efficient reverse lookup (from physical → virtual)

• Fine granularity for protection/sharing
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Paged Segmentation

• Process memory is segmented

• Segment table entry:

• Pointer to page table

• Page table length (# of pages in segment)

• Access permissions

• Page table entry:

• Physical page number

• Access permissions

• Share/protection at either page or segment-level
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Paged Segmentation
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Question

• With paged segmentation, what must be saved/restored across a process context switch?
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Explain on whiteboard



Paging: x86-32 with page size 4 KiB
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Paging: x86-32-PAE with page size 4 KiB
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Paging: x86-64 with page size 4 KiB
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Paging: x86-64 with PML5 and page size 4 KiB
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only PTEs that are in use, simple alloc, share segment or page, overhead: one pointer per virtual page, more lookups per memory access



x86-64 Memory Layout (with PML4)

non-canonical

(= not usable)

0 264
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x86-64 Memory Layout (with PML4, scaled)
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(scaled 2000:1)
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x86-64 Memory Layout (with PML4, scaled)

non-canonical

(scaled 65534:1)

0 264247 264 − 247

user space kernel space
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Address Translation on x86

processors



Intel Pentium

• Segmentation and paging

• 16K segments, each 4GB

• Few segments

• Large segments
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LDT - GDT

• Local Descriptor Table LDT

• for each process

• local segments (Code, Data, Stack)

• Global Descriptor Table GDT

• for system segments

• also for kernel
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Segment Registers

• 6 segment registers

• CS: Selector for Code Segment

• DS: Selector for Data Segment

• ES: Selector for Data Segment

• FS: Selector for Data Segment

• GS: Selector for Data Segment

• SS: Selector for Stack Segment
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Segment Selector

• Null Segment at index 0 → cannot be used

• Modifying a segment register loads corresponding descriptor into an internal CPU register
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Hidden Part of Segment Registers
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Segment Descriptor
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Address translation

• we start with (selector, offset)

• CPU looks for correct descriptor in internal registers

• selector 0 or segment swapped out: interrupt

• offset exceeds segment size: interrupt

• add base field to offset

• check limits of course

• result: linear address

• paging turned off: linear address is physical address
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Address translation
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Combining Segments and Paging

OSes today have only a very small

number of segments:

• 1 for user code

• 1 for user data

• 1 for user thread local storage

• 1 for kernel code

• 1 for kernel data

• 1 for kernel core local storage
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Segments Today

• x86-64 requires segment base to be 0 and limit to be unlimited

• not even used anymore to separate code and data

• most OSes today only use segments to determine the privilege level
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Take Aways

Virtual memory

• is based on Segmentation and Paging

• enables effective protection mechanisms

• enables sparse address spaces
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