
Operating Systems

Virtual Memory Basics

Daniel Gruss

2023-10-08









Table of contents

1. Address Translation

First Idea: Base and Bound

Segmentation

Simple Paging

Multi-level Paging

2. Address Translation on x86 processors

1 Daniel Gruss



Address Translation



Address Translation

• OS in control of address translation

• enables number of advanced features

• programmers perspective:

• pointers point to objects etc.

• transparent: it is not necessary to know how memory reference is converted to data

2 Daniel Gruss



Isolation, IPC, Sharing, Efficient Dynamic Memory, Cache Management, Debugging, Efficient I/O, Memory Mapped



Address Translation - Idea / Overview

3 Daniel Gruss



Address Translation Concepts

• Memory protection

• Memory sharing

• Shared libraries, interprocess communication

• Sparse address space

• Multiple regions for dynamic allocation (heaps/stacks)

4 Daniel Gruss



Address Translation Concepts

• Efficiency

• Flexible Memory placement

• Runtime lookup

• Compact translation tables

• Portability

5 Daniel Gruss



Base-Limit or Base and bounds

6 Daniel Gruss



Virtually Addressed Base and Bounds

• Virtual Address: from 0 to an upper bound

• Physical Address: from base to base + bound

• what is saved/restored on a process context switch?

7 Daniel Gruss





Simple, Fast (2 registers, adder, comparator), Safe, Can relocate in physical memory without changing process, no isolation, no sharing, no growing



Segmentation

• Small Change: multiple pairs of base-and-bounds registers

• Segmentation

• Each entry controls a portion of the virtual address space

8 Daniel Gruss



Segmentation

9 Daniel Gruss



Segmentation

• Segment is a contiguous region of virtual memory

• Each process has a segment table (in hardware)

• Entry in table = segment

• Segment can be located anywhere in physical memory

• Each segment has: start, length, access permission

10 Daniel Gruss



Segmentation

• Segmented Memory has gaps!

• no longer contiguous region - set of regions

• code and data not adjacent - neither in virtual nor in physical address space

• What if: program tries to load data from gap?

• Segmentation Fault (trap into OS)

• correct programs will not generate references outside valid memory

• trying to read or write data that does not exist: bug-indication

11 Daniel Gruss



Shared Memory

• Processes can share segments

• Same start, length, same/different access permissions

• Usage:

• sharing code (shared libraries)

• interprocess communication

• copy on write

12 Daniel Gruss



Copy on Write

Special kind of shared memory (after fork)

• two processes, both running the same program and almost same data

• makes sense not to copy everything

• we just need to be made aware if a process writes to a segment and changes the content

• reading does not present any problems

• how do we know when a process writes to a segment?

→ set segment read only

13 Daniel Gruss



Fork and Copy on Write

Fork:

• Copy segment table into child

• Mark parent and child segments read-only

• Start child process; return to parent

Parent/Child try to write:

• trap into kernel

• make a copy of the segment and resume

14 Daniel Gruss



Copy on Write

15 Daniel Gruss



Zero-on-Reference

• How much physical memory needed for stack or heap?

• Only what is currently in use

• When program uses memory beyond end of stack

• Segmentation fault into OS kernel

• Kernel allocates some memory

• How much?

• Zeros the memory

• avoid accidentally leaking information!

• Modify segment table

• Resume process

16 Daniel Gruss





sharing, isolation/protection, transparently grow, copy-on-write, BUT: complex, fragmentation, rearrange memory, wasted space between chunks



Paged Translation

• Manage memory in fixed size units, or pages

• Finding a free page is easy

• Bitmap allocation: 0011111100000001100

• Each bit represents one physical page number / one physical page frame

• Each process has its own page table

• Stored in physical memory

• Hardware registers

• pointer to page table start

• page table length

17 Daniel Gruss



Logical View of Page Table Address Translation

18 Daniel Gruss



paging - implementation

19 Daniel Gruss



Paging Questions

• With paging, what is saved/restored on a process context switch?

• Pointer to page table, size of page table

• Page table itself is in main memory

• What if page size is very small?

• What if page size is very large?

• Internal fragmentation: if we don’t need all of the space inside a fixed size chunk

20 Daniel Gruss



Paging and Copy on Write

• Can we share pages between processes (similar as segments before)?

• Set entries in both page tables to the same physical page number

• Need core map of physical page numbers to track which processes are pointing to which

physical page numbers (e.g. reference count)

21 Daniel Gruss



Copy-on-Write on Unix/Linux

Virtual Address Space
Process A

Physical Address Space

fork

Process B

Process B tries to write

copy (update page tables, set writeable)

write

22 Daniel Gruss



Demand Paging

• Can I start running a program before its code is in physical memory?

• Set all page table entries to invalid

• When a page is referenced for first time, kernel trap

• Kernel brings page in from disk

• Resume execution

• Remaining pages can be transferred in the background while program is running

23 Daniel Gruss



Scheduling a Process (with Demand Paging)

• Only load what’s required

• Initially start with no pages in memory

• Process will be scheduled eventually. What happens?

• a page fault will occur when fetching the first instruction

• further page faults for stacks and data

• after a while, things will stabilize

• The principle of locality ensures that

24 Daniel Gruss



Prepaging

Prepaging as an optimization

• If it is known upon scheduling which pages will be required ...

• page referenced by instruction pointer, stack pointer, etc.

• ... load required pages into RAM ahead of time

→ may lower page fault frequency

25 Daniel Gruss



Sparse Address Spaces

• Every process needs an address space.

• What if virtual address space is large?

• 32-bits, 4KB pages → 1 million page table entries

• 64-bits → 4 quadrillion page table entries

26 Daniel Gruss



Multi-level Translation

• Tree of translation tables

• Paged segmentation

• Multi-level page tables

• Multi-level paged segmentation

27 Daniel Gruss



Multi-level Translation

• Fixed-size page as lowest level unit of allocation

• Efficient memory allocation (compared to segments)

• Efficient for sparse translation tree (compared to simple paging)

• Efficient disk transfers (fixed size units, page size multiple of disk sector)

• Easier to build translation lookaside buffers

• Efficient reverse lookup (from physical → virtual)

• Fine granularity for protection/sharing

28 Daniel Gruss



Paged Segmentation

• Process memory is segmented

• Segment table entry:

• Pointer to page table

• Page table length (# of pages in segment)

• Access permissions

• Page table entry:

• Physical page number

• Access permissions

• Share/protection at either page or segment-level

29 Daniel Gruss



Paged Segmentation

30 Daniel Gruss



Question

• With paged segmentation, what must be saved/restored across a process context switch?

31 Daniel Gruss





Explain on whiteboard



Paging: x86-32 with page size 4 KiB
PML5

PDPTI (9 bit)PDI (10 bit) PTI (10 bit) Offset (12 bit)

32-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
.
.
.

#PML4I
.
.
.

PML4E 511

PDPT

PDPTE 0

PDPTE 1
.
.
.

#PDPTI
.
.
.

PDPTE 511

CR3
Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 1023

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 1023

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095

32 Daniel Gruss



Paging: x86-32-PAE with page size 4 KiB
PML5

PDPTI (2 bit) PDI (9 bit) PTI (9 bit) Offset (12 bit)

32-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
.
.
.

#PML4I
.
.
.

PML4E 511

CR3
PDPT

PDPTE 0

PDPTE 1

PDPTE 2

PDPTE 3
Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095

33 Daniel Gruss



Paging: x86-64 with page size 4 KiB
PML5

PML4I (9 bit) PDPTI (9 bit) PDI (9 bit) PTI (9 bit) Offset (12 bit)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
···

#PML4I
···

PML4E 511

PDPT

PDPTE 0

PDPTE 1
···

#PDPTI
···

PDPTE 511

Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095

34 Daniel Gruss



Paging: x86-64 with PML5 and page size 4 KiB

PML5I (9 bit) PML4I (9 bit) PDPTI (9 bit) PDI (9 bit) PTI (9 bit) Offset (12 bit)

57-bit virtual address

CR3
PML5

PML5E 0

PML5E 1
···

#PML5I
···

PML5E 511

PML4

PML4E 0

PML4E 1
···

#PML4I
···

PML4E 511

PDPT

PDPTE 0

PDPTE 1
···

#PDPTI
···

PDPTE 511

Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095

35 Daniel Gruss





only PTEs that are in use, simple alloc, share segment or page, overhead: one pointer per virtual page, more lookups per memory access



x86-64 Memory Layout (with PML4)

non-canonical

(= not usable)

0 264

36 Daniel Gruss



x86-64 Memory Layout (with PML4, scaled)

non-canonical

(scaled 2000:1)

0 264

u
se
r
sp
a
ce

ke
rn
el

sp
a
ce

37 Daniel Gruss



x86-64 Memory Layout (with PML4, scaled)

non-canonical

(scaled 65534:1)

0 264247 264 − 247

user space kernel space

38 Daniel Gruss



Address Translation on x86

processors



Intel Pentium

• Segmentation and paging

• 16K segments, each 4GB

• Few segments

• Large segments

39 Daniel Gruss



LDT - GDT

• Local Descriptor Table LDT

• for each process

• local segments (Code, Data, Stack)

• Global Descriptor Table GDT

• for system segments

• also for kernel

40 Daniel Gruss



Segment Registers

• 6 segment registers

• CS: Selector for Code Segment

• DS: Selector for Data Segment

• ES: Selector for Data Segment

• FS: Selector for Data Segment

• GS: Selector for Data Segment

• SS: Selector for Stack Segment

41 Daniel Gruss



Segment Selector

• Null Segment at index 0 → cannot be used

• Modifying a segment register loads corresponding descriptor into an internal CPU register

42 Daniel Gruss



Hidden Part of Segment Registers

43 Daniel Gruss



Segment Descriptor

44 Daniel Gruss



Address translation

• we start with (selector, offset)

• CPU looks for correct descriptor in internal registers

• selector 0 or segment swapped out: interrupt

• offset exceeds segment size: interrupt

• add base field to offset

• check limits of course

• result: linear address

• paging turned off: linear address is physical address

45 Daniel Gruss



Address translation

46 Daniel Gruss



Combining Segments and Paging

OSes today have only a very small

number of segments:

• 1 for user code

• 1 for user data

• 1 for user thread local storage

• 1 for kernel code

• 1 for kernel data

• 1 for kernel core local storage

47 Daniel Gruss



Segments Today

• x86-64 requires segment base to be 0 and limit to be unlimited

• not even used anymore to separate code and data

• most OSes today only use segments to determine the privilege level

48 Daniel Gruss



Take Aways

Virtual memory

• is based on Segmentation and Paging

• enables effective protection mechanisms

• enables sparse address spaces

49 Daniel Gruss








	Address Translation
	First Idea: Base and Bound
	Segmentation
	Simple Paging
	Multi-level Paging

	Address Translation on x86 processors

