
Operating Systems

Daniel Gruss

2023-10-02

1 Daniel Gruss

Why OS?

large projects, understanding what is below, efficiency becomes more relevant, hardware more diverse, team work

around 25 percent by 2030. exponential growth we cannot afford

It’s 2030. You get to make an OS design decision:

one page table per process

vs

half a page table per process + 1 for the kernel

0.1%

You just increased GHG by 0.1 percent! That's the same amount as entire Austria!

but surely moore's law will prevent that?

moore's law is dead

SWEB is C and C++

Which programming language would you prefer?

You and SWEB

Organizational Details

SWEB

Assignment 1

Booting SWEB

2 Daniel Gruss

You and SWEB

Organizational Details

SWEB

Assignment 1

Booting SWEB

3 Daniel Gruss

What we expect from you

• Knowledge from earlier lectures

• ESP, OOP1(!), SLP(!!), CON, ...

• Everything taught in SLP, OOP1, and ESP will be practically applied by you in OS

• Reasonable C/C++ experience

• Team work + Time management

4 Daniel Gruss

What we expect from you

• Knowledge from earlier lectures

• ESP, OOP1(!), SLP(!!), CON, ...

• Everything taught in SLP, OOP1, and ESP will be practically applied by you in OS

• Reasonable C/C++ experience

• Team work + Time management

4 Daniel Gruss

What we expect from you

• Self assess whether you are prepared:

• “If I would do SLP/OOP1/ESP/CON again with the knowledge you have now

I would be able to get a 1 easily.”

• Hint: ask a colleague whether they agree with your self-assessment ;)

5 Daniel Gruss

What we expect from you

• Self assess whether you are prepared:

• “If I would do SLP/OOP1/ESP/CON again with the knowledge you have now

I would be able to get a 1 easily.”

• Hint: ask a colleague whether they agree with your self-assessment ;)

5 Daniel Gruss

What we expect from you

• Self assess whether you are prepared:

• “If I would do SLP/OOP1/ESP/CON again with the knowledge you have now

I would be able to get a 1 easily.”

• Hint: ask a colleague whether they agree with your self-assessment ;)

5 Daniel Gruss

What we expect from you

• 3-4 (if SLP is one of them): Congratulations, you are well prepared!

• 2-3: You are not well prepared → additional time investment necessary.

• 1-2: You are not prepared → huge time investment or positive grade at risk.

• 0: You are seriously unprepared → even with huge time investment positive grade

is at risk.

6 Daniel Gruss

What we expect from you

• 3-4 (if SLP is one of them): Congratulations, you are well prepared!

• 2-3: You are not well prepared → additional time investment necessary.

• 1-2: You are not prepared → huge time investment or positive grade at risk.

• 0: You are seriously unprepared → even with huge time investment positive grade

is at risk.

6 Daniel Gruss

What we expect from you

• 3-4 (if SLP is one of them): Congratulations, you are well prepared!

• 2-3: You are not well prepared → additional time investment necessary.

• 1-2: You are not prepared → huge time investment or positive grade at risk.

• 0: You are seriously unprepared → even with huge time investment positive grade

is at risk.

6 Daniel Gruss

What we expect from you

• 3-4 (if SLP is one of them): Congratulations, you are well prepared!

• 2-3: You are not well prepared → additional time investment necessary.

• 1-2: You are not prepared → huge time investment or positive grade at risk.

• 0: You are seriously unprepared → even with huge time investment positive grade

is at risk.

6 Daniel Gruss

How much effort is it?

• Depends significantly on your knowledge and experience ...

• ... and on your team members.

• Short good solutions add around 4000 lines of code → 1000 lines of code per

member

7 Daniel Gruss

How much effort is it?

• Depends significantly on your knowledge and experience ...

• ... and on your team members.

• Short good solutions add around 4000 lines of code → 1000 lines of code per

member

7 Daniel Gruss

How much effort is it?

• Depends significantly on your knowledge and experience ...

• ... and on your team members.

• Short good solutions add around 4000 lines of code → 1000 lines of code per

member

7 Daniel Gruss

How much effort is it?

• Depends significantly on your knowledge and experience ...

• ... and on your team members.

• Short good solutions add around 4000 lines of code → 1000 lines of code per

member

7 Daniel Gruss

“I am afraid now!”

• No need to be afraid!

• Before COVID, 35%-45% of students got a 1 in OS, every semester.

• Is it easy?

• No.

• Is it doable?

• Yes, very much so.

8 Daniel Gruss

“I am afraid now!”

• No need to be afraid!

• Before COVID, 35%-45% of students got a 1 in OS, every semester.

• Is it easy?

• No.

• Is it doable?

• Yes, very much so.

8 Daniel Gruss

“I am afraid now!”

• No need to be afraid!

• Before COVID, 35%-45% of students got a 1 in OS, every semester.

• Is it easy?

• No.

• Is it doable?

• Yes, very much so.

8 Daniel Gruss

“I am afraid now!”

• No need to be afraid!

• Before COVID, 35%-45% of students got a 1 in OS, every semester.

• Is it easy?

• No.

• Is it doable?

• Yes, very much so.

8 Daniel Gruss

“I am afraid now!”

• No need to be afraid!

• Before COVID, 35%-45% of students got a 1 in OS, every semester.

• Is it easy?

• No.

• Is it doable?

• Yes, very much so.

8 Daniel Gruss

“I am afraid now!”

• No need to be afraid!

• Before COVID, 35%-45% of students got a 1 in OS, every semester.

• Is it easy?

• No.

• Is it doable?

• Yes, very much so.

8 Daniel Gruss

“I’m still afraid!”

• No one should be afraid of OS.

• We even added a course to prepare you for OS (and other courses): SLP!

→ SLP is sort of the “‘booster”’ for OS

• Statistics confirm: if you did well in SLP, OS becomes very much doable

• Steep learning curve in the beginning?

No worries, you will manage!

9 Daniel Gruss

“I’m still afraid!”

• No one should be afraid of OS.

• We even added a course to prepare you for OS (and other courses): SLP!

→ SLP is sort of the “‘booster”’ for OS

• Statistics confirm: if you did well in SLP, OS becomes very much doable

• Steep learning curve in the beginning?

No worries, you will manage!

9 Daniel Gruss

“I’m still afraid!”

• No one should be afraid of OS.

• We even added a course to prepare you for OS (and other courses): SLP!

→ SLP is sort of the “‘booster”’ for OS

• Statistics confirm: if you did well in SLP, OS becomes very much doable

• Steep learning curve in the beginning?

No worries, you will manage!

9 Daniel Gruss

“I’m still afraid!”

• No one should be afraid of OS.

• We even added a course to prepare you for OS (and other courses): SLP!

→ SLP is sort of the “‘booster”’ for OS

• Statistics confirm: if you did well in SLP, OS becomes very much doable

• Steep learning curve in the beginning?

No worries, you will manage!

9 Daniel Gruss

“I’m still afraid!”

• No one should be afraid of OS.

• We even added a course to prepare you for OS (and other courses): SLP!

→ SLP is sort of the “‘booster”’ for OS

• Statistics confirm: if you did well in SLP, OS becomes very much doable

• Steep learning curve in the beginning?

No worries, you will manage!

9 Daniel Gruss

“I’m still afraid!”

• No one should be afraid of OS.

• We even added a course to prepare you for OS (and other courses): SLP!

→ SLP is sort of the “‘booster”’ for OS

• Statistics confirm: if you did well in SLP, OS becomes very much doable

• Steep learning curve in the beginning?

No worries, you will manage!

9 Daniel Gruss

“I’m still afraid!”

• No one should be afraid of OS.

• We even added a course to prepare you for OS (and other courses): SLP!

→ SLP is sort of the “‘booster”’ for OS

• Statistics confirm: if you did well in SLP, OS becomes very much doable

• Steep learning curve in the beginning? No worries, you will manage!

9 Daniel Gruss

From Duke university

Note to students

While we have made an effort to simplify these projects for you, most Duke students

find these projects sufficiently difficult to dominate their lives during the one-semester

course.

A common misconception from earlier semesters is that we are sadistic

individuals who enjoy seeing students suffer. Actually, this is not the case. We enjoy

seeing students who are proud of what they have accomplished and excited by the

power that flows from a relatively small set of simple abstractions in an operating

system, even a toy one like Nachos.

10 Daniel Gruss

From Duke university

Note to students

While we have made an effort to simplify these projects for you, most Duke students

find these projects sufficiently difficult to dominate their lives during the one-semester

course. A common misconception from earlier semesters is that we are sadistic

individuals who enjoy seeing students suffer.

Actually, this is not the case. We enjoy

seeing students who are proud of what they have accomplished and excited by the

power that flows from a relatively small set of simple abstractions in an operating

system, even a toy one like Nachos.

10 Daniel Gruss

From Duke university

Note to students

While we have made an effort to simplify these projects for you, most Duke students

find these projects sufficiently difficult to dominate their lives during the one-semester

course. A common misconception from earlier semesters is that we are sadistic

individuals who enjoy seeing students suffer. Actually, this is not the case. We enjoy

seeing students who are proud of what they have accomplished and excited by the

power that flows from a relatively small set of simple abstractions in an operating

system, even a toy one like Nachos.

10 Daniel Gruss

From our evaluations

11 Daniel Gruss

From our evaluations

12 Daniel Gruss

From our evaluations

13 Daniel Gruss

uSTL hilfreich?

Vielleicht hätte man hervorheben sollen, dass uSTL NICHT kompatibel zu STL ist!

ustl::list gehört eigentlich verboten. Man kommt in Teufels Küche, wenn man von ihr

ableiten möchte. Man gibt sich einer Illusion hin, die nicht stimmt. Einfügen und

Löschen sind NICHT effizient und Iteratoren verlieren die Gültigkeit, wo sie es nicht

sollten. Trotzdem war es hilfreich.

14 Daniel Gruss

uSTL hilfreich?

Vielleicht hätte man hervorheben sollen, dass uSTL NICHT kompatibel zu STL ist!

ustl::list gehört eigentlich verboten.

Man kommt in Teufels Küche, wenn man von ihr

ableiten möchte. Man gibt sich einer Illusion hin, die nicht stimmt. Einfügen und

Löschen sind NICHT effizient und Iteratoren verlieren die Gültigkeit, wo sie es nicht

sollten. Trotzdem war es hilfreich.

14 Daniel Gruss

uSTL hilfreich?

Vielleicht hätte man hervorheben sollen, dass uSTL NICHT kompatibel zu STL ist!

ustl::list gehört eigentlich verboten. Man kommt in Teufels Küche, wenn man von ihr

ableiten möchte.

Man gibt sich einer Illusion hin, die nicht stimmt. Einfügen und

Löschen sind NICHT effizient und Iteratoren verlieren die Gültigkeit, wo sie es nicht

sollten. Trotzdem war es hilfreich.

14 Daniel Gruss

uSTL hilfreich?

Vielleicht hätte man hervorheben sollen, dass uSTL NICHT kompatibel zu STL ist!

ustl::list gehört eigentlich verboten. Man kommt in Teufels Küche, wenn man von ihr

ableiten möchte. Man gibt sich einer Illusion hin, die nicht stimmt.

Einfügen und

Löschen sind NICHT effizient und Iteratoren verlieren die Gültigkeit, wo sie es nicht

sollten. Trotzdem war es hilfreich.

14 Daniel Gruss

uSTL hilfreich?

Vielleicht hätte man hervorheben sollen, dass uSTL NICHT kompatibel zu STL ist!

ustl::list gehört eigentlich verboten. Man kommt in Teufels Küche, wenn man von ihr

ableiten möchte. Man gibt sich einer Illusion hin, die nicht stimmt. Einfügen und

Löschen sind NICHT effizient und Iteratoren verlieren die Gültigkeit, wo sie es nicht

sollten.

Trotzdem war es hilfreich.

14 Daniel Gruss

uSTL hilfreich?

Vielleicht hätte man hervorheben sollen, dass uSTL NICHT kompatibel zu STL ist!

ustl::list gehört eigentlich verboten. Man kommt in Teufels Küche, wenn man von ihr

ableiten möchte. Man gibt sich einer Illusion hin, die nicht stimmt. Einfügen und

Löschen sind NICHT effizient und Iteratoren verlieren die Gültigkeit, wo sie es nicht

sollten. Trotzdem war es hilfreich.

14 Daniel Gruss

Iteratoren verlieren die Gültigkeit, wo sie es nicht sollten

Check the standard!

iterator erase (iterator position);

iterator erase (iterator first, iterator last);

erase verwenden ohne den iterator upzudaten geht mit der GNU C++ STL meistens...

→ gefährlich sich anzugewöhnen den iterator zu ignorieren

15 Daniel Gruss

Effizienz?

http://baptiste-wicht.com/posts/2012/12/

cpp-benchmark-vector-list-deque.html

16 Daniel Gruss

http://baptiste-wicht.com/posts/2012/12/cpp-benchmark-vector-list-deque.html
http://baptiste-wicht.com/posts/2012/12/cpp-benchmark-vector-list-deque.html

From this course’s evaluations

Was gefällt Ihnen an dieser LV besonders gut? 28 Antwort(en) vorhanden.

• Der ”Klick” Moment wenn man endlich verstanden hat worums geht und die

Einstellung zur LV von ”Sehr abgeneigt” zu ”Begeistert” umschwingt. [WS16/17]

17 Daniel Gruss

Haben die vielen Assertions geholfen? i

• Assertions sind eine Wunderwaffe beim Debuggen ;)

• wenn man selber welche einfügt, dann sind sie noch hilfreicher ;)

• gegen ende hin waren ca 1/3 der zeilen Asserts - Hat jedoch dem tutor nicht so

gut gefallen weil dadurch der code unleserlich war

18 Daniel Gruss

Feedback

• We try to improve our support constantly

• Feedback, Evaluations

“We will not lower the bar, but we will do what we can to help you over it.”

19 Daniel Gruss

Typical problems

• Bad time management

• Pair programming (it’s not efficient enough!!)

• Problems with working in a team

• No C/C++ experience

• Not willing to learn and use C/C++

20 Daniel Gruss

You and SWEB

Organizational Details

SWEB

Assignment 1

Booting SWEB

21 Daniel Gruss

Teaching assistants

• Will help you with all your problems

• Especially: if you’re stuck on a problem for more than a few hours → ask

• Interactive Programming units

• Student Debates

• Design reviews

• Question hours

• Review meetings (Abgabegespräche)

22 Daniel Gruss

Channels

• Website: https://iaik.tugraz.at/os

• Discord (tag your tutor, also in your own group channels!)

• Email: os@iaik.tugraz.at

• Consultation hour: send us an email

• During the question days: slower response times on Discord/email ;)

23 Daniel Gruss

https://iaik.tugraz.at/os

Channels

• Website: https://iaik.tugraz.at/os

• Discord (tag your tutor, also in your own group channels!)

• Email: os@iaik.tugraz.at

• Consultation hour: send us an email

• During the question days: slower response times on Discord/email ;)

23 Daniel Gruss

https://iaik.tugraz.at/os

Student Debates

• Take place before the design deadlines

• You are expected to bring a sketch/summary of your design

• You are expected to have done proof of concept implementations by then

• Prepare to defend your ideas

24 Daniel Gruss

Student Debates

• Take place before the design deadlines

• You are expected to bring a sketch/summary of your design

• You are expected to have done proof of concept implementations by then

• Prepare to defend your ideas

24 Daniel Gruss

Design-PoC

• Only code! No design document!

• Proof of concept implementation

• You get up to 5 points, depending on the test system score of your submission.

25 Daniel Gruss

Git is mandatory

• You have to:

• push regularly into the provided repository

• use your real name and email address for commits

26 Daniel Gruss

Git is mandatory (2)

• Personal maximum number of points

• Unlock points:

• For each commit you unlock 0.5 points

• For each 10 LoC added you unlock 0.5 points

• Max. 10 points per day can be unlocked

• Average: > 55 points unlocked

• Test system shows your current personal maximum number of points

27 Daniel Gruss

Git is mandatory (2)

• Personal maximum number of points

• Unlock points:

• For each commit you unlock 0.5 points

• For each 10 LoC added you unlock 0.5 points

• Max. 10 points per day can be unlocked

• Average: > 55 points unlocked

• Test system shows your current personal maximum number of points

27 Daniel Gruss

Git is mandatory (2)

• Personal maximum number of points

• Unlock points:

• For each commit you unlock 0.5 points

• For each 10 LoC added you unlock 0.5 points

• Max. 10 points per day can be unlocked

• Average: > 55 points unlocked

• Test system shows your current personal maximum number of points

27 Daniel Gruss

Gitlab

• We even give you master access to your repository, but:

• renaming repo = your group fails the course

• changing repo path = your group fails the course

• adding/removing group members = your group fails the course

28 Daniel Gruss

Gitlab

• We even give you master access to your repository, but:

• renaming repo = your group fails the course

• changing repo path = your group fails the course

• adding/removing group members = your group fails the course

28 Daniel Gruss

Participation

• Every team member has to participate:

• Making coffee,fetching pizza,etc. is not enough

• We expect all members to have a high level overview of design and implementation

• We expect every member to be able to read, explain and change their own

implementation, even if it’s the code of another team member

• Otherwise: 0 points

29 Daniel Gruss

Participation

• Every team member has to participate:

• Making coffee,

fetching pizza,etc. is not enough

• We expect all members to have a high level overview of design and implementation

• We expect every member to be able to read, explain and change their own

implementation, even if it’s the code of another team member

• Otherwise: 0 points

29 Daniel Gruss

Participation

• Every team member has to participate:

• Making coffee,fetching pizza,

etc. is not enough

• We expect all members to have a high level overview of design and implementation

• We expect every member to be able to read, explain and change their own

implementation, even if it’s the code of another team member

• Otherwise: 0 points

29 Daniel Gruss

Participation

• Every team member has to participate:

• Making coffee,fetching pizza,etc.

is not enough

• We expect all members to have a high level overview of design and implementation

• We expect every member to be able to read, explain and change their own

implementation, even if it’s the code of another team member

• Otherwise: 0 points

29 Daniel Gruss

Participation

• Every team member has to participate:

• Making coffee,fetching pizza,etc. is not enough

• We expect all members to have a high level overview of design and implementation

• We expect every member to be able to read, explain and change their own

implementation, even if it’s the code of another team member

• Otherwise: 0 points

29 Daniel Gruss

Participation

• Every team member has to participate:

• Making coffee,fetching pizza,etc. is not enough

• We expect all members to have a high level overview of design and implementation

• We expect every member to be able to read, explain and change their own

implementation, even if it’s the code of another team member

• Otherwise: 0 points

29 Daniel Gruss

Participation

• Every team member has to participate:

• Making coffee,fetching pizza,etc. is not enough

• We expect all members to have a high level overview of design and implementation

• We expect every member to be able to read, explain and change their own

implementation, even if it’s the code of another team member

• Otherwise: 0 points

29 Daniel Gruss

Participation

• Every team member has to participate:

• Making coffee,fetching pizza,etc. is not enough

• We expect all members to have a high level overview of design and implementation

• We expect every member to be able to read, explain and change their own

implementation, even if it’s the code of another team member

• Otherwise: 0 points

29 Daniel Gruss

Participation

Every team member must contribute points to the mandatory task categories!

30 Daniel Gruss

What if you as a team don’t fit together?

• Set internal deadlines for your team members

• No idea how to split the work and choose good internal

deadlines? Ask tutor for recommendations!

• Missed deadline? → re-assign task

• Repeatedly missed deadline → tell tutor to remove team

member from team

31 Daniel Gruss

What if you as a team don’t fit together?

• Set internal deadlines for your team members

• No idea how to split the work and choose good internal

deadlines? Ask tutor for recommendations!

• Missed deadline? → re-assign task

• Repeatedly missed deadline → tell tutor to remove team

member from team

31 Daniel Gruss

What if you as a team don’t fit together?

• Set internal deadlines for your team members

• No idea how to split the work and choose good internal

deadlines? Ask tutor for recommendations!

• Missed deadline? → re-assign task

• Repeatedly missed deadline → tell tutor to remove team

member from team

31 Daniel Gruss

What if you as a team don’t fit together?

• Set internal deadlines for your team members

• No idea how to split the work and choose good internal

deadlines? Ask tutor for recommendations!

• Missed deadline? → re-assign task

• Repeatedly missed deadline → tell tutor to remove team

member from team

31 Daniel Gruss

What if you as a team don’t fit together?

• Set internal deadlines for your team members

• No idea how to split the work and choose good internal

deadlines? Ask tutor for recommendations!

• Missed deadline? → re-assign task

• Repeatedly missed deadline → tell tutor to remove team

member from team

31 Daniel Gruss

What if you as a team don’t fit together?

• Set internal deadlines for your team members

• No idea how to split the work and choose good internal

deadlines? Ask tutor for recommendations!

• Missed deadline? → re-assign task

• Repeatedly missed deadline → tell tutor to remove team

member from team

31 Daniel Gruss

What if you as a team don’t fit together?

• Set internal deadlines for your team members

• No idea how to split the work and choose good internal

deadlines? Ask tutor for recommendations!

• Missed deadline? → re-assign task

• Repeatedly missed deadline → tell tutor to remove team

member from team

31 Daniel Gruss

What if you as a team don’t fit together?

• Team member(s) not contributing enough → contact tutor via

mail!

• There will be more students with the same problem as you have

• Team doesn’t want to split but you want to leave? → also

possible

→ Merges are possible

→ Don’t pull anyone through

• small number of bonus points as compensation (if we think it’s

appropriate)

Not happy with your tutor’s resolution? → Talk to me, we’ll figure

out a solution

32 Daniel Gruss

What if you as a team don’t fit together?

• Team member(s) not contributing enough → contact tutor via

mail!

• There will be more students with the same problem as you have

• Team doesn’t want to split but you want to leave? → also

possible

→ Merges are possible

→ Don’t pull anyone through

• small number of bonus points as compensation (if we think it’s

appropriate)

Not happy with your tutor’s resolution? → Talk to me, we’ll figure

out a solution

32 Daniel Gruss

What if you as a team don’t fit together?

• Team member(s) not contributing enough → contact tutor via

mail!

• There will be more students with the same problem as you have

• Team doesn’t want to split but you want to leave? → also

possible

→ Merges are possible

→ Don’t pull anyone through

• small number of bonus points as compensation (if we think it’s

appropriate)

Not happy with your tutor’s resolution? → Talk to me, we’ll figure

out a solution

32 Daniel Gruss

What if you as a team don’t fit together?

• Team member(s) not contributing enough → contact tutor via

mail!

• There will be more students with the same problem as you have

• Team doesn’t want to split but you want to leave? → also

possible

→ Merges are possible

→ Don’t pull anyone through

• small number of bonus points as compensation (if we think it’s

appropriate)

Not happy with your tutor’s resolution? → Talk to me, we’ll figure

out a solution

32 Daniel Gruss

What if you as a team don’t fit together?

• Team member(s) not contributing enough → contact tutor via

mail!

• There will be more students with the same problem as you have

• Team doesn’t want to split but you want to leave? → also

possible

→ Merges are possible

→ Don’t pull anyone through

• small number of bonus points as compensation (if we think it’s

appropriate)

Not happy with your tutor’s resolution? → Talk to me, we’ll figure

out a solution

32 Daniel Gruss

What if you as a team don’t fit together?

• Team member(s) not contributing enough → contact tutor via

mail!

• There will be more students with the same problem as you have

• Team doesn’t want to split but you want to leave? → also

possible

→ Merges are possible

→ Don’t pull anyone through

• small number of bonus points as compensation (if we think it’s

appropriate)

Not happy with your tutor’s resolution? → Talk to me, we’ll figure

out a solution

32 Daniel Gruss

What if you as a team don’t fit together?

• Team member(s) not contributing enough → contact tutor via

mail!

• There will be more students with the same problem as you have

• Team doesn’t want to split but you want to leave? → also

possible

→ Merges are possible

→ Don’t pull anyone through

• small number of bonus points as compensation (if we think it’s

appropriate)

Not happy with your tutor’s resolution? → Talk to me, we’ll figure

out a solution

32 Daniel Gruss

What if you as a team don’t fit together?

• Team member(s) not contributing enough → contact tutor via

mail!

• There will be more students with the same problem as you have

• Team doesn’t want to split but you want to leave? → also

possible

→ Merges are possible

→ Don’t pull anyone through

• small number of bonus points as compensation (if we think it’s

appropriate)

Not happy with your tutor’s resolution? → Talk to me, we’ll figure

out a solution

32 Daniel Gruss

What if you as a team don’t fit together?

• Team member(s) not contributing enough → contact tutor via

mail!

• There will be more students with the same problem as you have

• Team doesn’t want to split but you want to leave? → also

possible

→ Merges are possible

→ Don’t pull anyone through

• small number of bonus points as compensation (if we think it’s

appropriate)

Not happy with your tutor’s resolution? → Talk to me, we’ll figure

out a solution

32 Daniel Gruss

What if you as a team don’t fit together?

• Team member(s) not contributing enough → contact tutor via

mail!

• There will be more students with the same problem as you have

• Team doesn’t want to split but you want to leave? → also

possible

→ Merges are possible

→ Don’t pull anyone through

• small number of bonus points as compensation (if we think it’s

appropriate)

Not happy with your tutor’s resolution? → Talk to me, we’ll figure

out a solution

32 Daniel Gruss

What if you as a team don’t fit together?

• Team member(s) not contributing enough → contact tutor via

mail!

• There will be more students with the same problem as you have

• Team doesn’t want to split but you want to leave? → also

possible

→ Merges are possible

→ Don’t pull anyone through

• small number of bonus points as compensation (if we think it’s

appropriate)

Not happy with your tutor’s resolution?

→ Talk to me, we’ll figure

out a solution

32 Daniel Gruss

What if you as a team don’t fit together?

• Team member(s) not contributing enough → contact tutor via

mail!

• There will be more students with the same problem as you have

• Team doesn’t want to split but you want to leave? → also

possible

→ Merges are possible

→ Don’t pull anyone through

• small number of bonus points as compensation (if we think it’s

appropriate)

Not happy with your tutor’s resolution? → Talk to me, we’ll figure

out a solution

32 Daniel Gruss

POSIX

• Existing syscall wrapper functions are POSIX-compatible

• Do not change signatures!

• We have automated tests using the POSIX interface

• If you implement new functions, try to make signatures POSIX-compatible

33 Daniel Gruss

POSIX

• Existing syscall wrapper functions are POSIX-compatible

• Do not change signatures!

• We have automated tests using the POSIX interface

• If you implement new functions, try to make signatures POSIX-compatible

33 Daniel Gruss

POSIX

• Existing syscall wrapper functions are POSIX-compatible

• Do not change signatures!

• We have automated tests using the POSIX interface

• If you implement new functions, try to make signatures POSIX-compatible

33 Daniel Gruss

Testing

• Goal: a stable and fault tolerant operating system

• How?

By writing test programs

• Think of test cases while designing and implementing

• Think of basic test scenarios as well as corner cases

34 Daniel Gruss

Testing

• Goal: a stable and fault tolerant operating system

• How? By writing test programs

• Think of test cases while designing and implementing

• Think of basic test scenarios as well as corner cases

34 Daniel Gruss

Testing

• Goal: a stable and fault tolerant operating system

• How? By writing test programs

• Think of test cases while designing and implementing

• Think of basic test scenarios as well as corner cases

34 Daniel Gruss

Testing

• Writing numerous test programs is unavoidable

• Test programs are supposed to show whether your implementation works

according to the assignment

• You will get points for the test programs

• We have our own secret test programs

35 Daniel Gruss

Testing

• Writing numerous test programs is unavoidable

• Test programs are supposed to show whether your implementation works

according to the assignment

• You will get points for the test programs

• We have our own secret test programs

35 Daniel Gruss

Testing

• Writing numerous test programs is unavoidable

• Test programs are supposed to show whether your implementation works

according to the assignment

• You will get points for the test programs

• We have our own secret test programs

35 Daniel Gruss

Testing

• Bad: Not knowing of a problem until the review meeting

• Better: Knowing of a problem but not solving it (probably because time ran out)

• Best: Knowing of a problem sufficiently before the deadline and solving it (maybe

with the help of a teaching assistant)

36 Daniel Gruss

Testing

• Bad: Not knowing of a problem until the review meeting

• Better: Knowing of a problem but not solving it (probably because time ran out)

• Best: Knowing of a problem sufficiently before the deadline and solving it (maybe

with the help of a teaching assistant)

36 Daniel Gruss

Testing

• Bad: Not knowing of a problem until the review meeting

• Better: Knowing of a problem but not solving it (probably because time ran out)

• Best: Knowing of a problem sufficiently before the deadline and solving it (maybe

with the help of a teaching assistant)

36 Daniel Gruss

Submissions

• Tag the commit you want to submit: git tag SubmissionD1 [commit_hash]

• Push to repository: git push / git push --tags

• Read the commit ID:

git show SubmissionD1

commit 196bc4a704f37d7f969d27a258b513693e3b30f4

Author: Daniel Gruss <daniel.gruss@iaik.tugraz.at>

Test System will acknowledge your submission!

37 Daniel Gruss

Submissions

• Tag the commit you want to submit: git tag SubmissionD1 [commit_hash]

• Push to repository: git push / git push --tags

• Read the commit ID:

git show SubmissionD1

commit 196bc4a704f37d7f969d27a258b513693e3b30f4

Author: Daniel Gruss <daniel.gruss@iaik.tugraz.at>

Test System will acknowledge your submission!

37 Daniel Gruss

Submissions

• Tag the commit you want to submit: git tag SubmissionD1 [commit_hash]

• Push to repository: git push / git push --tags

• Read the commit ID:

git show SubmissionD1

commit 196bc4a704f37d7f969d27a258b513693e3b30f4

Author: Daniel Gruss <daniel.gruss@iaik.tugraz.at>

Test System will acknowledge your submission!

37 Daniel Gruss

Small Fixes after the Deadline

• Small fixes → small deduction

• Do this at the same time:

• Mail to os@iaik.tugraz.at!

• Submit and retag your fixed version!

38 Daniel Gruss

Assessment A1

Reference (=100%)

• Design: 5 points

• Task 1: 20 points

• Task 2: 10 points

• Elective tasks*: 15 points (or more)

Minimum

• Design: 1 point

• Mandatory tasks: 15 points

• And in total: 25 points (=50%)

(*) See the list of elective tasks on the Website!

39 Daniel Gruss

Assessment A1

Reference (=100%)

• Design: 5 points

• Task 1: 20 points

• Task 2: 10 points

• Elective tasks*: 15 points (or more)

Minimum

• Design: 1 point

• Mandatory tasks: 15 points

• And in total: 25 points (=50%)

(*) See the list of elective tasks on the Website!

39 Daniel Gruss

Assessment A2

Reference (=100%)

• Design: 5 points

• Mandatory tasks: 40 points

• Elective tasks*: 5 points (or more)

Minimum

• Design: 1 point

• Mandatory tasks: 15 points

• And in total: 25 points (=50%)

(*) See the list of elective tasks on the Website!

40 Daniel Gruss

Assessment A2

Reference (=100%)

• Design: 5 points

• Mandatory tasks: 40 points

• Elective tasks*: 5 points (or more)

Minimum

• Design: 1 point

• Mandatory tasks: 15 points

• And in total: 25 points (=50%)

(*) See the list of elective tasks on the Website!

40 Daniel Gruss

Assessment of the practicals

Minimum requirements

• A1: 25 of 50 points

• A2: 25 of 50 points

Limits

• A1: max. 60 points

• Unlimited if A2 ≥ 40 points

• A2: unlimited points

41 Daniel Gruss

Assessment of the practicals

Minimum requirements

• A1: 25 of 50 points

• A2: 25 of 50 points

Limits

• A1: max. 60 points

• Unlimited if A2 ≥ 40 points

• A2: unlimited points

41 Daniel Gruss

Assessment

• mid-term exam: 35%

• the practicals: 65%

42 Daniel Gruss

Assessment

To pass the class, you have to acquire

• overall at least 55%

• at least 50% of the possible points on written exam

• at least 50% of the possible points in the practicals

43 Daniel Gruss

Assessment

To pass the class, you have to acquire

• overall at least 55%

• at least 50% of the possible points on written exam

• at least 50% of the possible points in the practicals

43 Daniel Gruss

Assessment

To pass the class, you have to acquire

• overall at least 55%

• at least 50% of the possible points on written exam

• at least 50% of the possible points in the practicals

43 Daniel Gruss

Assessment: Second Chance

• Didn’t pass any assignment or exam?

• No worries, we have a second chance for everyone.

• DD → you can continue without Second Chance but with 0 DD/PoC points

• PoC → Second Chance PoC (examined by Lecturers)

• Exercise → Second Chance Exercise (examined by Tutors + Lecturers)

• Exam → Second Chance Exam

Getting a positive grade remains as easy, getting a 1 gets harder (with every second

chance)

44 Daniel Gruss

Assessment: Second Chance

• Didn’t pass any assignment or exam?

• No worries, we have a second chance for everyone.

• DD → you can continue without Second Chance but with 0 DD/PoC points

• PoC → Second Chance PoC (examined by Lecturers)

• Exercise → Second Chance Exercise (examined by Tutors + Lecturers)

• Exam → Second Chance Exam

Getting a positive grade remains as easy, getting a 1 gets harder (with every second

chance)

44 Daniel Gruss

Assessment: Second Chance

• Didn’t pass any assignment or exam?

• No worries, we have a second chance for everyone.

• DD → you can continue without Second Chance but with 0 DD/PoC points

• PoC → Second Chance PoC (examined by Lecturers)

• Exercise → Second Chance Exercise (examined by Tutors + Lecturers)

• Exam → Second Chance Exam

Getting a positive grade remains as easy, getting a 1 gets harder (with every second

chance)

44 Daniel Gruss

Assessment: Second Chance

• Didn’t pass any assignment or exam?

• No worries, we have a second chance for everyone.

• DD → you can continue without Second Chance but with 0 DD/PoC points

• PoC → Second Chance PoC (examined by Lecturers)

• Exercise → Second Chance Exercise (examined by Tutors + Lecturers)

• Exam → Second Chance Exam

Getting a positive grade remains as easy, getting a 1 gets harder (with every second

chance)

44 Daniel Gruss

Assessment: Second Chance

• Didn’t pass any assignment or exam?

• No worries, we have a second chance for everyone.

• DD → you can continue without Second Chance but with 0 DD/PoC points

• PoC → Second Chance PoC (examined by Lecturers)

• Exercise → Second Chance Exercise (examined by Tutors + Lecturers)

• Exam → Second Chance Exam

Getting a positive grade remains as easy, getting a 1 gets harder (with every second

chance)

44 Daniel Gruss

Assessment: Second Chance

• Didn’t pass any assignment or exam?

• No worries, we have a second chance for everyone.

• DD → you can continue without Second Chance but with 0 DD/PoC points

• PoC → Second Chance PoC (examined by Lecturers)

• Exercise → Second Chance Exercise (examined by Tutors + Lecturers)

• Exam → Second Chance Exam

Getting a positive grade remains as easy, getting a 1 gets harder (with every second

chance)

44 Daniel Gruss

Assessment: Getting a grade

Points

1. Take the team score

2. cap it by the personal unlocked points

3. apply DD deduction

4. apply AG deduction

→ final points for assignment

45 Daniel Gruss

Assessment: Getting a grade

Points

1. Take the team score

2. cap it by the personal unlocked points

3. apply DD deduction

4. apply AG deduction

→ final points for assignment

45 Daniel Gruss

Assessment: Getting a grade

Points

1. Take the team score

2. cap it by the personal unlocked points

3. apply DD deduction

4. apply AG deduction

→ final points for assignment

45 Daniel Gruss

Assessment: Getting a grade

Points

1. Take the team score

2. cap it by the personal unlocked points

3. apply DD deduction

4. apply AG deduction

→ final points for assignment

45 Daniel Gruss

Assessment: Getting a grade

Points

1. Take the team score

2. cap it by the personal unlocked points

3. apply DD deduction

4. apply AG deduction

→ final points for assignment

45 Daniel Gruss

Assessment: Getting a grade

Points (Example)

1. You get 48 points as a team → 48

2. Your personal unlocked points are 43 → 43

3. Your group had 4 points on the PoC but you didn’t say enough in the DD → 39

4. You get a 75% deduction because you couldn’t really figure out where to do what

in your SWEB in the AG → 10 points → second chance

46 Daniel Gruss

Assessment: Getting a grade

Points (Example)

1. You get 48 points as a team → 48

2. Your personal unlocked points are 43 → 43

3. Your group had 4 points on the PoC but you didn’t say enough in the DD → 39

4. You get a 75% deduction because you couldn’t really figure out where to do what

in your SWEB in the AG → 10 points → second chance

46 Daniel Gruss

Assessment: Getting a grade

Points (Example)

1. You get 48 points as a team → 48

2. Your personal unlocked points are 43 → 43

3. Your group had 4 points on the PoC but you didn’t say enough in the DD → 39

4. You get a 75% deduction because you couldn’t really figure out where to do what

in your SWEB in the AG → 10 points → second chance

46 Daniel Gruss

Assessment: Getting a grade

Points (Example)

1. You get 48 points as a team → 48

2. Your personal unlocked points are 43 → 43

3. Your group had 4 points on the PoC but you didn’t say enough in the DD → 39

4. You get a 75% deduction because you couldn’t really figure out where to do what

in your SWEB in the AG → 10 points → second chance

46 Daniel Gruss

Assessment: Getting a grade

Points (Example)

1. You get 48 points as a team → 48

2. Your personal unlocked points are 43 → 43

3. Your group had 4 points on the PoC but you didn’t say enough in the DD → 39

4. You get a 75% deduction because you couldn’t really figure out where to do what

in your SWEB in the AG → 10 points → second chance

46 Daniel Gruss

Assessment: Getting a grade

Points (Example)

1. You get 48 points as a team → 48

2. Your personal unlocked points are 57 → 48

3. You have a 25% deduction because you didn’t say enough in the DD → 36

4. You get a 20% deduction because you took too long with making changes → 29

→ barely positive

47 Daniel Gruss

Assessment: Getting a grade

Points (Example)

1. You get 48 points as a team → 48

2. Your personal unlocked points are 57 → 48

3. You have a 25% deduction because you didn’t say enough in the DD → 36

4. You get a 20% deduction because you took too long with making changes → 29

→ barely positive

47 Daniel Gruss

Assessment: Getting a grade

Points (Example)

1. You get 48 points as a team → 48

2. Your personal unlocked points are 57 → 48

3. You have a 25% deduction because you didn’t say enough in the DD → 36

4. You get a 20% deduction because you took too long with making changes → 29

→ barely positive

47 Daniel Gruss

Assessment: Getting a grade

Points (Example)

1. You get 48 points as a team → 48

2. Your personal unlocked points are 57 → 48

3. You have a 25% deduction because you didn’t say enough in the DD → 36

4. You get a 20% deduction because you took too long with making changes → 29

→ barely positive

47 Daniel Gruss

Assessment: Getting a grade

Points (Example)

1. You get 48 points as a team → 48

2. Your personal unlocked points are 57 → 48

3. You have a 25% deduction because you didn’t say enough in the DD → 36

4. You get a 20% deduction because you took too long with making changes → 29

→ barely positive

47 Daniel Gruss

Assessment: Getting a grade

Points (Example)

1. You get 45 points as a team → 45

2. Your personal unlocked points are 70 → 45

3. You participated in the DD properly → 45

4. You get a 5% deduction because you took rather long with making changes → 43

→ good grade

48 Daniel Gruss

Assessment: Getting a grade

Points (Example)

1. You get 45 points as a team → 45

2. Your personal unlocked points are 70 → 45

3. You participated in the DD properly → 45

4. You get a 5% deduction because you took rather long with making changes → 43

→ good grade

48 Daniel Gruss

Assessment: Getting a grade

Points (Example)

1. You get 45 points as a team → 45

2. Your personal unlocked points are 70 → 45

3. You participated in the DD properly → 45

4. You get a 5% deduction because you took rather long with making changes → 43

→ good grade

48 Daniel Gruss

Assessment: Getting a grade

Points (Example)

1. You get 45 points as a team → 45

2. Your personal unlocked points are 70 → 45

3. You participated in the DD properly → 45

4. You get a 5% deduction because you took rather long with making changes → 43

→ good grade

48 Daniel Gruss

Assessment: Getting a grade

Points (Example)

1. You get 45 points as a team → 45

2. Your personal unlocked points are 70 → 45

3. You participated in the DD properly → 45

4. You get a 5% deduction because you took rather long with making changes → 43

→ good grade

48 Daniel Gruss

Assessment: Getting a grade

Marks

• genügend: 55-66

• befriedigend: 67-78

• gut: 79-89

• sehr gut: 90+

49 Daniel Gruss

Review meetings (Abgabegespräche)

As a group

• You explain what you implemented and how you tested it

• Together with the teaching assistant you determine the points of your group

As a group member

• You are able to read, explain and change the code

• You can implement small new features or extend existing ones

• just quickly, no rigorous testcase writing

• tutor will stop you as soon as it’s clear that you deserve the points

• Otherwise you will get less points

50 Daniel Gruss

Plagiarism

• Discussions with other teams are appreciated

• But: no collaboration!

• We check for plagiarism

• Similarities → teams are questioned

• Both teams: 0 points in either case

• At least one team: “Ungültig/Täuschung” (with all its consequences)

51 Daniel Gruss

Plagiarism

• Discussions with other teams are appreciated

• But: no collaboration!

• We check for plagiarism

• Similarities → teams are questioned

• Both teams: 0 points in either case

• At least one team: “Ungültig/Täuschung” (with all its consequences)

51 Daniel Gruss

Plagiarism

• Discussions with other teams are appreciated

• But: no collaboration!

• We check for plagiarism

• Similarities → teams are questioned

• Both teams: 0 points in either case

• At least one team: “Ungültig/Täuschung” (with all its consequences)

51 Daniel Gruss

Plagiarism

• Do not provide your source code to other teams

• Make sure your source code is protected against unintended access from others

• Do not use source code from previous years

• Code from another team → plagiarism

• Your own code (not exactly the same team)

→ not allowed

• Your own code (exactly the same team)

→ allowed, probably not the best idea ;)

52 Daniel Gruss

Plagiarism

• Do not provide your source code to other teams

• Make sure your source code is protected against unintended access from others

• Do not use source code from previous years

• Code from another team → plagiarism

• Your own code (not exactly the same team)

→ not allowed

• Your own code (exactly the same team)

→ allowed, probably not the best idea ;)

52 Daniel Gruss

Plagiarism

• Do not provide your source code to other teams

• Make sure your source code is protected against unintended access from others

• Do not use source code from previous years

• Code from another team → plagiarism

• Your own code (not exactly the same team)

→ not allowed

• Your own code (exactly the same team)

→ allowed, probably not the best idea ;)

52 Daniel Gruss

Plagiarism

• Do not provide your source code to other teams

• Make sure your source code is protected against unintended access from others

• Do not use source code from previous years

• Code from another team → plagiarism

• Your own code (not exactly the same team)

→ not allowed

• Your own code (exactly the same team)

→ allowed, probably not the best idea ;)

52 Daniel Gruss

Plagiarism

• Do not provide your source code to other teams

• Make sure your source code is protected against unintended access from others

• Do not use source code from previous years

• Code from another team → plagiarism

• Your own code (not exactly the same team)

→ not allowed

• Your own code (exactly the same team)

→ allowed, probably not the best idea ;)

52 Daniel Gruss

Questions so far?

53 Daniel Gruss

A “lot of pressure”?

because...

• “you never know whether you already have enough points”

• because exercise interview, because of exam

→ no worry - there are second

chances

• also: each group gets 2 Õtokens

• Use one Õto ask whether your group has 0-20, 20-40, 40-60, or 60+ points

according to the test system’s prediction

→ Wisely choose as a team when to use them!

. test system’s prediction can deviate substantially from tutor’s grading

54 Daniel Gruss

A “lot of pressure”?

because...

• “you never know whether you already have enough points”

• because exercise interview, because of exam

→ no worry - there are second

chances

• also: each group gets 2 Õtokens

• Use one Õto ask whether your group has 0-20, 20-40, 40-60, or 60+ points

according to the test system’s prediction

→ Wisely choose as a team when to use them!

. test system’s prediction can deviate substantially from tutor’s grading

54 Daniel Gruss

A “lot of pressure”?

because...

• “you never know whether you already have enough points”

• because exercise interview, because of exam

→ no worry - there are second

chances

• also: each group gets 2 Õtokens

• Use one Õto ask whether your group has 0-20, 20-40, 40-60, or 60+ points

according to the test system’s prediction

→ Wisely choose as a team when to use them!

. test system’s prediction can deviate substantially from tutor’s grading

54 Daniel Gruss

A “lot of pressure”?

because...

• “you never know whether you already have enough points”

• because exercise interview, because of exam → no worry - there are second

chances

• also: each group gets 2 Õtokens

• Use one Õto ask whether your group has 0-20, 20-40, 40-60, or 60+ points

according to the test system’s prediction

→ Wisely choose as a team when to use them!

. test system’s prediction can deviate substantially from tutor’s grading

54 Daniel Gruss

A “lot of pressure”?

because...

• “you never know whether you already have enough points”

• because exercise interview, because of exam → no worry - there are second

chances

• also: each group gets 2 Õtokens

• Use one Õto ask whether your group has 0-20, 20-40, 40-60, or 60+ points

according to the test system’s prediction

→ Wisely choose as a team when to use them!

. test system’s prediction can deviate substantially from tutor’s grading

54 Daniel Gruss

A “lot of pressure”?

because...

• “you never know whether you already have enough points”

• because exercise interview, because of exam → no worry - there are second

chances

• also: each group gets 2 Õtokens

• Use one Õto ask whether your group has 0-20, 20-40, 40-60, or 60+ points

according to the test system’s prediction

→ Wisely choose as a team when to use them!

. test system’s prediction can deviate substantially from tutor’s grading

54 Daniel Gruss

A “lot of pressure”?

because...

• “you never know whether you already have enough points”

• because exercise interview, because of exam → no worry - there are second

chances

• also: each group gets 2 Õtokens

• Use one Õto ask whether your group has 0-20, 20-40, 40-60, or 60+ points

according to the test system’s prediction

→ Wisely choose as a team when to use them!

. test system’s prediction can deviate substantially from tutor’s grading

54 Daniel Gruss

A “lot of pressure”?

because...

• “you never know whether you already have enough points”

• because exercise interview, because of exam → no worry - there are second

chances

• also: each group gets 2 Õtokens

• Use one Õto ask whether your group has 0-20, 20-40, 40-60, or 60+ points

according to the test system’s prediction

→ Wisely choose as a team when to use them!

. test system’s prediction can deviate substantially from tutor’s grading

54 Daniel Gruss

A “lot of pressure”?

because...

• “2 hour exercise interview is really long”

• we can offer a break

→ agree with your tutor beforehand whether you want a break in the middle

• but: no coding during the break

55 Daniel Gruss

A “lot of pressure”?

because...

• “2 hour exercise interview is really long”

• we can offer a break

→ agree with your tutor beforehand whether you want a break in the middle

• but: no coding during the break

55 Daniel Gruss

A “lot of pressure”?

because...

• “2 hour exercise interview is really long”

• we can offer a break

→ agree with your tutor beforehand whether you want a break in the middle

• but: no coding during the break

55 Daniel Gruss

A “lot of pressure”?

because...

• “2 hour exercise interview is really long”

• we can offer a break

→ agree with your tutor beforehand whether you want a break in the middle

• but: no coding during the break

55 Daniel Gruss

You and SWEB

Organizational Details

SWEB

Assignment 1

Booting SWEB

56 Daniel Gruss

History and the others

• VU Amsterdam: Minix (1987), Minix3 (2005)

• Berkeley: Nachos (1992)

• Stanford: Pintos (2004)

• Graz

• Nachos until 2006

• Now: SWEB

57 Daniel Gruss

History and the others

• VU Amsterdam: Minix (1987), Minix3 (2005)

• Berkeley: Nachos (1992)

• Stanford: Pintos (2004)

• Graz

• Nachos until 2006

• Now: SWEB

57 Daniel Gruss

History and the others

• VU Amsterdam: Minix (1987), Minix3 (2005)

• Berkeley: Nachos (1992)

• Stanford: Pintos (2004)

• Graz

• Nachos until 2006

• Now: SWEB

57 Daniel Gruss

History and the others

• VU Amsterdam: Minix (1987), Minix3 (2005)

• Berkeley: Nachos (1992)

• Stanford: Pintos (2004)

• Graz

• Nachos until 2006

• Now: SWEB

57 Daniel Gruss

History of SWEB

• BS KU 2004/2005

• Advanced group of students together with Philip Lawatsch and Bernhard

Tittelbach

• Many subsequent projects

• BS KU: since 2007 SWEB only

58 Daniel Gruss

History of SWEB

• BS KU 2004/2005

• Advanced group of students together with Philip Lawatsch and Bernhard

Tittelbach

• Many subsequent projects

• BS KU: since 2007 SWEB only

58 Daniel Gruss

History of SWEB

• BS KU 2004/2005

• Advanced group of students together with Philip Lawatsch and Bernhard

Tittelbach

• Many subsequent projects

• BS KU: since 2007 SWEB only

58 Daniel Gruss

History of SWEB

• BS KU 2004/2005

• Advanced group of students together with Philip Lawatsch and Bernhard

Tittelbach

• Many subsequent projects

• BS KU: since 2007 SWEB only

58 Daniel Gruss

Base Line SWEB

• Minimalistic operating system kernel

• Runs on x86-32, x86-64, ARM

• Emulated using qemu

• Important features are missing

• Your task: Make your SWEB a beautiful, feature-rich kernel

59 Daniel Gruss

Base Line SWEB

• Minimalistic operating system kernel

• Runs on x86-32, x86-64, ARM

• Emulated using qemu

• Important features are missing

• Your task: Make your SWEB a beautiful, feature-rich kernel

59 Daniel Gruss

What is possible in SWEB

• Mouse driver

• Window manager

• Network driver

• Soundblaster driver

• Gameboy emulator

• 3D game engine

• Running it on a small ARM board with only 256KB RAM

60 Daniel Gruss

What is possible in SWEB

• Mouse driver

• Window manager

• Network driver

• Soundblaster driver

• Gameboy emulator

• 3D game engine

• Running it on a small ARM board with only 256KB RAM

60 Daniel Gruss

What is possible in SWEB

• Mouse driver

• Window manager

• Network driver

• Soundblaster driver

• Gameboy emulator

• 3D game engine

• Running it on a small ARM board with only 256KB RAM

60 Daniel Gruss

What is possible in SWEB

• Mouse driver

• Window manager

• Network driver

• Soundblaster driver

• Gameboy emulator

• 3D game engine

• Running it on a small ARM board with only 256KB RAM

60 Daniel Gruss

What is possible in SWEB

• Mouse driver

• Window manager

• Network driver

• Soundblaster driver

• Gameboy emulator

• 3D game engine

• Running it on a small ARM board with only 256KB RAM

60 Daniel Gruss

What is possible in SWEB

• Mouse driver

• Window manager

• Network driver

• Soundblaster driver

• Gameboy emulator

• 3D game engine

• Running it on a small ARM board with only 256KB RAM

60 Daniel Gruss

What is possible in SWEB

• Mouse driver

• Window manager

• Network driver

• Soundblaster driver

• Gameboy emulator

• 3D game engine

• Running it on a small ARM board with only 256KB RAM

60 Daniel Gruss

First steps

• Try out the tutorials on http://iaik.tugraz.at/os

• Set up development environment

• Implement your first syscall

• Get acquainted with the source code: Try out implementing things in SWEB

• Start with the practicals NOW! (or rather already a week ago)

61 Daniel Gruss

http://iaik.tugraz.at/os

First steps

• Try out the tutorials on http://iaik.tugraz.at/os

• Set up development environment

• Implement your first syscall

• Get acquainted with the source code: Try out implementing things in SWEB

• Start with the practicals NOW! (or rather already a week ago)

61 Daniel Gruss

http://iaik.tugraz.at/os

First steps

• Try out the tutorials on http://iaik.tugraz.at/os

• Set up development environment

• Implement your first syscall

• Get acquainted with the source code: Try out implementing things in SWEB

• Start with the practicals NOW! (or rather already a week ago)

61 Daniel Gruss

http://iaik.tugraz.at/os

You and SWEB

Organizational Details

SWEB

Assignment 1

Booting SWEB

62 Daniel Gruss

Task 1: Multithreading

• Base line SWEB: a user process is a (kernel) thread

• We want: multiple threads per user process

• What do we have to change?

63 Daniel Gruss

Task 1: Multithreading

• Base line SWEB: a user process is a (kernel) thread

• We want: multiple threads per user process

• What do we have to change?

63 Daniel Gruss

Task 1: Multithreading

• Base line SWEB: a user process is a (kernel) thread

• We want: multiple threads per user process

• What do we have to change?

63 Daniel Gruss

Task 1: Multithreading

• Each thread has its own instances of some resources

• id, stack, registers, status, ...

• Other resources are shared among all threads

• memory, files, ...

64 Daniel Gruss

Task 1: Multithreading

• Each thread has its own instances of some resources

• id, stack, registers, status, ...

• Other resources are shared among all threads

• memory, files, ...

64 Daniel Gruss

Task 1: Multithreading

• How to “use” multithreading?

• Syscalls!

• Which ones?

• You decide - but function names and arguments have to be POSIX-compatible!

• Minimum requirements:

pthread_create

pthread_exit

pthread_cancel

pthread_join

65 Daniel Gruss

Task 1: Multithreading

• How to “use” multithreading?

• Syscalls!

• Which ones?

• You decide - but function names and arguments have to be POSIX-compatible!

• Minimum requirements:

pthread_create

pthread_exit

pthread_cancel

pthread_join

65 Daniel Gruss

Task 1: Multithreading

• How to “use” multithreading?

• Syscalls!

• Which ones?

• You decide - but function names and arguments have to be POSIX-compatible!

• Minimum requirements:

pthread_create

pthread_exit

pthread_cancel

pthread_join

65 Daniel Gruss

Task 1: Multithreading

• How to “use” multithreading?

• Syscalls!

• Which ones?

• You decide - but function names and arguments have to be POSIX-compatible!

• Minimum requirements:

pthread_create

pthread_exit

pthread_cancel

pthread_join

65 Daniel Gruss

Syscalls (system calls)

• By definiton: Operating system is written by people who know what they do

• User programs?

• System calls provide a “safe” interface

• Control flow is transmitted to kernel code

• Typical syscalls: fork(), read(), write(), execve(), wait(), exit()

• You will step through a syscall in the tutorial this week!

66 Daniel Gruss

Syscalls (system calls)

• By definiton: Operating system is written by people who know what they do

• User programs?

• System calls provide a “safe” interface

• Control flow is transmitted to kernel code

• Typical syscalls: fork(), read(), write(), execve(), wait(), exit()

• You will step through a syscall in the tutorial this week!

66 Daniel Gruss

Syscalls (system calls)

• By definiton: Operating system is written by people who know what they do

• User programs?

• System calls provide a “safe” interface

• Control flow is transmitted to kernel code

• Typical syscalls: fork(), read(), write(), execve(), wait(), exit()

• You will step through a syscall in the tutorial this week!

66 Daniel Gruss

Syscalls (system calls)

• By definiton: Operating system is written by people who know what they do

• User programs?

• System calls provide a “safe” interface

• Control flow is transmitted to kernel code

• Typical syscalls: fork(), read(), write(), execve(), wait(), exit()

• You will step through a syscall in the tutorial this week!

66 Daniel Gruss

Syscalls (system calls)

• By definiton: Operating system is written by people who know what they do

• User programs?

• System calls provide a “safe” interface

• Control flow is transmitted to kernel code

• Typical syscalls: fork(), read(), write(), execve(), wait(), exit()

• You will step through a syscall in the tutorial this week!

66 Daniel Gruss

Syscalls (system calls)

• By definiton: Operating system is written by people who know what they do

• User programs?

• System calls provide a “safe” interface

• Control flow is transmitted to kernel code

• Typical syscalls: fork(), read(), write(), execve(), wait(), exit()

• You will step through a syscall in the tutorial this week!

66 Daniel Gruss

Task 2: fork

• fork() creates a new process by duplicating the calling process

• The new process (=the child), is an exact duplicate of the calling process (=the

parent)

• Interesting in combination with multithreading!

67 Daniel Gruss

Task 2: fork

• fork() creates a new process by duplicating the calling process

• The new process (=the child), is an exact duplicate of the calling process (=the

parent)

• Interesting in combination with multithreading!

67 Daniel Gruss

Additional Task: exec

• Replaces the current process image with a new process image

• exec with arguments → more points

• fork()/exec() combination often used

68 Daniel Gruss

Additional Task: exec

• Replaces the current process image with a new process image

• exec with arguments → more points

• fork()/exec() combination often used

68 Daniel Gruss

Additional Task: exec

• Replaces the current process image with a new process image

• exec with arguments → more points

• fork()/exec() combination often used

68 Daniel Gruss

Additional Task: sleep/clock

• sleep() sets a thread asleep for a given number of seconds

• clock returns how much cpu time the current process consumed

69 Daniel Gruss

Additional Task: sleep/clock

• sleep() sets a thread asleep for a given number of seconds

• clock returns how much cpu time the current process consumed

69 Daniel Gruss

Additional Task: exit

• exit() terminates the current process

• Already implemented, but ...

• ... you will break the current implementation with multithreading

70 Daniel Gruss

Additional Task: exit

• exit() terminates the current process

• Already implemented, but ...

• ... you will break the current implementation with multithreading

70 Daniel Gruss

Additional Task: exit

• exit() terminates the current process

• Already implemented, but ...

• ... you will break the current implementation with multithreading

70 Daniel Gruss

Additional Task: I/O syscalls

• I/O syscalls are already implemented, but ...

• ... they use global (not process specific) file descriptors

• Why is that a problem?

71 Daniel Gruss

Additional Task: I/O syscalls

• I/O syscalls are already implemented, but ...

• ... they use global (not process specific) file descriptors

• Why is that a problem?

71 Daniel Gruss

Additional Task: Synchronization

• Threads need synchronization

• Kernel has mutexes and condition variables

• We want: mutexes, condition variables and semaphores, both in kernelspace and

userspace

• Pure userspace implementation (except for initialization and for going to sleep)

• Implement test programs (Readers-Writers-Problem, Sleeping Barber, etc.)

72 Daniel Gruss

Additional Task: Synchronization

• Threads need synchronization

• Kernel has mutexes and condition variables

• We want: mutexes, condition variables and semaphores, both in kernelspace and

userspace

• Pure userspace implementation (except for initialization and for going to sleep)

• Implement test programs (Readers-Writers-Problem, Sleeping Barber, etc.)

72 Daniel Gruss

Additional Task: Synchronization

• Threads need synchronization

• Kernel has mutexes and condition variables

• We want: mutexes, condition variables and semaphores, both in kernelspace and

userspace

• Pure userspace implementation (except for initialization and for going to sleep)

• Implement test programs (Readers-Writers-Problem, Sleeping Barber, etc.)

72 Daniel Gruss

Additional Task: Synchronization

• Threads need synchronization

• Kernel has mutexes and condition variables

• We want: mutexes, condition variables and semaphores, both in kernelspace and

userspace

• Pure userspace implementation (except for initialization and for going to sleep)

• Implement test programs (Readers-Writers-Problem, Sleeping Barber, etc.)

72 Daniel Gruss

Additional Task: Synchronization

• Threads need synchronization

• Kernel has mutexes and condition variables

• We want: mutexes, condition variables and semaphores, both in kernelspace and

userspace

• Pure userspace implementation (except for initialization and for going to sleep)

• Implement test programs (Readers-Writers-Problem, Sleeping Barber, etc.)

72 Daniel Gruss

Additional Task: Your own ideas

• Own ideas are the most fun!

• See https://www.iaik.tugraz.at/teaching/materials/os/assignments/

for suggestions

• Please note: Assignment 1 tasks will only be counted in Assignment 1 assessment

Assignment 2 tasks will only be counted in Assignment 2 assessment

73 Daniel Gruss

https://www.iaik.tugraz.at/teaching/materials/os/assignments/

Additional Task: Your own ideas

• Own ideas are the most fun!

• See https://www.iaik.tugraz.at/teaching/materials/os/assignments/

for suggestions

• Please note: Assignment 1 tasks will only be counted in Assignment 1 assessment

Assignment 2 tasks will only be counted in Assignment 2 assessment

73 Daniel Gruss

https://www.iaik.tugraz.at/teaching/materials/os/assignments/

Additional Task: Your own ideas

• Own ideas are the most fun!

• See https://www.iaik.tugraz.at/teaching/materials/os/assignments/

for suggestions

• Please note: Assignment 1 tasks will only be counted in Assignment 1 assessment

Assignment 2 tasks will only be counted in Assignment 2 assessment

73 Daniel Gruss

https://www.iaik.tugraz.at/teaching/materials/os/assignments/

Additional Task: Your own ideas

• Own ideas are the most fun!

• See https://www.iaik.tugraz.at/teaching/materials/os/assignments/

for suggestions

• Please note: Assignment 1 tasks will only be counted in Assignment 1 assessment

Assignment 2 tasks will only be counted in Assignment 2 assessment

73 Daniel Gruss

https://www.iaik.tugraz.at/teaching/materials/os/assignments/

Tutors Point List

• Don’t use it.

• No explanation. No details on how much you have to do for which point.

• Not suitable to choose tasks.

• Not suitable to estimate your points (points vary a lot!).

74 Daniel Gruss

Tutors Point List, pthread cancel example

• Tutors Point List says 2 points

• “ah, actually cancel only works up to 5 times, then it stops working” → 0-1 points

• “actually, we have implemented it including cancelstate, canceltype, cleanup push,

pthread keys, correct cancel and join interaction” without any problems → maybe

8-12 points

→ You see? The 2 points doesn’t tell you much! Can be a lot more, can be a lot

less, all depends on how much you do.

• 2 points refers to a minimal correct working function that implements the most

basic functionality of that syscall function

75 Daniel Gruss

Mandatory vs. Bonus

• “Is it mandatory to implement every sentence and everything that is mentioned on

the (for example) pthread cancel man page?”

• No. Minimal correctly working cancel is 2 points. Everything beyond (cancel

types, cancel states, etc.) is all elective/bonus.

→ 70% of the points you will collect in the OS exercises will be elective/bonus.

76 Daniel Gruss

You and SWEB

Organizational Details

SWEB

Assignment 1

Booting SWEB

77 Daniel Gruss

Overview

Grub

78 Daniel Gruss

Overview

Grub boot.32.C ArchCommon.cpp

78 Daniel Gruss

Overview

Grub boot.32.C ArchCommon.cpp main.cpp

78 Daniel Gruss

Overview

Grub boot.32.C ArchCommon.cpp main.cpp

Process

Registry

78 Daniel Gruss

Overview

Grub boot.32.C ArchCommon.cpp main.cpp

Process

Registry

create user

processes

78 Daniel Gruss

Overview

Grub boot.32.C ArchCommon.cpp main.cpp

Process

Registry

create user

processes
Scheduler

78 Daniel Gruss

Overview

Grub boot.32.C ArchCommon.cpp main.cpp

Process

Registry

create user

processes
Scheduler

schedule

a process

78 Daniel Gruss

Overview

Grub boot.32.C ArchCommon.cpp main.cpp

Process

Registry

create user

processes
Scheduler

schedule

a process

CPU

runs a

process

78 Daniel Gruss

Overview

Grub boot.32.C ArchCommon.cpp main.cpp

Process

Registry

create user

processes
Scheduler

schedule

a process

CPU

runs a

process

yield

78 Daniel Gruss

Overview

Grub boot.32.C ArchCommon.cpp main.cpp

Process

Registry

create user

processes
Scheduler

schedule

a process

CPU

runs a

process

yield

78 Daniel Gruss

Overview

Grub boot.32.C ArchCommon.cpp main.cpp

Process

Registry

create user

processes
Scheduler

schedule

a process

CPU

runs a

process

yield

79 Daniel Gruss

boot.32.C

extern "C" void entry ()

{

PRINT("Booting ...\n");

// ...

PRINT("Initialize Kernel Paging Structs\n");

// ...

PRINT("Enable Paging ...\n");

// ...

PRINT("Calling entry64 ()...\n");

asm("ljmp %[cs],$entry64 -BASE\n" : : [cs]"i"(KERNEL_CS));

80 Daniel Gruss

boot.32.C

• 32 bit

• Works on physical addresses

• Setup hardware

• Setup paging

• Jump into sane, virtual C world

81 Daniel Gruss

Overview

Grub boot.32.C ArchCommon.cpp main.cpp

Process

Registry

create user

processes
Scheduler

schedule

a process

CPU

runs a

process

yield

82 Daniel Gruss

ArchCommon.cpp

extern "C" void entry64 ()

{

// ...

PRINT("Switch to our own stack ...\n");

asm("mov %[stack], %%rsp\n"

"mov %[stack], %%rbp\n" : : [stack]"i"(boot_stack + 0x4000));

PRINT("Loading Long Mode Segments ...\n");

// ...

PRINT("Calling startup ()...\n");

asm("jmp *%[startup]" : : [startup]"r"(startup));

83 Daniel Gruss

Overview

Grub boot.32.C ArchCommon.cpp main.cpp

Process

Registry

create user

processes
Scheduler

schedule

a process

CPU

runs a

process

yield

84 Daniel Gruss

main.cpp

extern "C" void startup () {

removeBootTimeIdentMapping ();

system_state = BOOTING;

PageManager :: instance ();

writeLine("PageManager and KernelMemoryManager created\n");

// ...

Scheduler :: instance ()->addNewThread(new ProcessRegistry (...));

// ...

system_state = RUNNING;

ArchInterrupts :: enableInterrupts ();

Scheduler :: instance ()->yield();

//not reached

85 Daniel Gruss

main.cpp

• Setup kernel objects

• Setup more hardware

• Enable interrupts

• Handover control to Scheduler

86 Daniel Gruss

Overview

Grub boot.32.C ArchCommon.cpp main.cpp

Process

Registry

create user

processes
Scheduler

schedule

a process

CPU

runs a

process

yield

87 Daniel Gruss

ProcessRegistry

void ProcessRegistry ::Run()

{

debug(PROCESS_REG , "mounting userprog -partition \n");

// ...

vfs_syscall.mount("idea1", "/usr", "minixfs", 0);

debug(PROCESS_REG , "mount idea1\n");

for (size_t i = 0; progs_[i]; i++)

{

createProcess(progs_[i]);

}

88 Daniel Gruss

ProcessRegistry

• Kernel Thread

• Mounts hard disk

• Creates user processes

• Sleeps until last user process died, ...

• ... and unmounts the hard disk again

89 Daniel Gruss

ProcessRegistry

• Kernel Thread

• Mounts hard disk

• Creates user processes

• Sleeps until last user process died, ...

• ... and unmounts the hard disk again

89 Daniel Gruss

Loading User Processes

PageFault

PageFaultHandler Thread

UserThreadUserProcess

Loader

ArchMemory

loadPage()

VfsSyscall

return to

userspace

90 Daniel Gruss

UserProcess

Status quo

• Derived from Thread

• Bad design is easier for you to improve ;)

• Executes binary code

• Has a virtual address space (Loader → ArchMemory)

• Has a userspace part and a kernel part

91 Daniel Gruss

UserProcess

Status quo

• Derived from Thread

• Bad design is easier for you to improve ;)

• Executes binary code

• Has a virtual address space (Loader → ArchMemory)

• Has a userspace part and a kernel part

91 Daniel Gruss

UserProcess

Status quo

• Derived from Thread

• Bad design is easier for you to improve ;)

• Executes binary code

• Has a virtual address space (Loader → ArchMemory)

• Has a userspace part and a kernel part

91 Daniel Gruss

Timer Interrupt

• Every 54.925439ms

• Implemented in InterruptUtils.cpp

extern "C" void irqHandler_0 ()

{

ArchCommon :: drawHeartBeat ();

Scheduler :: instance ()->incTicks ();

Scheduler :: instance ()->schedule ();

ArchInterrupts :: EndOfInterrupt (0);

arch_contextSwitch ();

}

92 Daniel Gruss

Scheduler

• List of threads

• schedule() on IRQ0

• schedule() on IRQ65 (yield)

• void Scheduler::addNewThread(Thread ∗thread);

• Contains IdleThread (hlt if idle)

• Contains CleanupThread

• Calls delete on dead threads

93 Daniel Gruss

Scheduling a process

A process is scheduled:

• only if switch_to_userspace_ == 1

• Scheduler loads register values from ArchThreadRegisters member variable

→ Implicitly sets RIP from ArchThreadRegisters

• RIP initially points to binary entry point

• CPU switches to user mode and continues with given RIP

94 Daniel Gruss

Entry point

userspace/libc/src/nonstd.c
extern int main();

void _start ()

{

exit(main());

}

libc is in userspace!

95 Daniel Gruss

Hello World!

userspace/tests/helloworld.c
#include <stdio.h>

int main()

{

puts("hello , world");

return 0;

}

• Off-the-shelf Hello World Program

• Brian Kernigham, 1974

96 Daniel Gruss

puts?

userspace/libc/printf.c
int puts(const char *output_string)

{

// ...

characters_written = write(STDOUT_FILENO , (void*) output_string ,

string_length);

// ...

}

• In libc again

• Sanity checks

• Actually only a wrapper for syscall write

97 Daniel Gruss

write?

userspace/libc/write.c
ssize_t write(int file_descriptor , const void *buffer , size_t count)

{

return __syscall(sc_write , file_descriptor ,

(long) buffer , count , 0x00 , 0x00);

}

• POSIX!

• fwrite is a simple write wrapper

• Down the rabbit hole: __syscall

98 Daniel Gruss

syscall

arch/x86/64/common/userspace/syscalls.c
size_t __syscall(size_t arg1 , size_t arg2 , size_t arg3 ,

size_t arg4 , size_t arg5 , size_t arg6)

{

asm("int $0x80\n" : "=a"(arg1)

: "a"(arg1), "b"(arg2), "c"(arg3),

"d"(arg4), "S"(arg5), "D"(arg6));

return arg1;

}

• Copy arguments to registers

• Issue interrupt 0x80

→ switch to kernel space

99 Daniel Gruss

Syscall Dispatching in Kernel

arch/x86/64/common/source/arch_interrupts.S
arch_syscallHandler:

pushall

movq %rsp ,%rdi

movq $0 ,%rsi
call arch_saveThreadRegisters

call syscallHandler

100 Daniel Gruss

Syscall dispatching (higher level)

InterruptUtils.cpp
extern "C" void syscallHandler () {

thread ->switch_to_userspace_ = 0;

threadRegisters = thread ->kernel_regs_;

ArchInterrupts :: enableInterrupts ();

auto ret = Syscall :: syscallException(

thread ->user_regs_ ->rax ,

thread ->user_regs_ ->rbx ,

thread ->user_regs_ ->rcx ,

thread ->user_regs_ ->rdx ,

thread ->user_regs_ ->rsi ,

thread ->user_regs_ ->rdi);

101 Daniel Gruss

Syscall handling

Syscall.cpp
size_t Syscall :: syscallException(size_t syscall_number , size_t arg1 ,

size_t arg2 , size_t arg3 , size_t arg4 , size_t arg5) {

switch (syscall_number)

{

// ...

case sc_write:

return_value = write(arg1 , arg2 , arg3);

break;

// ...

syscallException only calls the right methods with the right number of parameters

102 Daniel Gruss

Syscall handling

• sc_write constant defined in Syscall.h

• Syscall::write method is regular in-kernel C++

103 Daniel Gruss

Syscall::write

size_t Syscall :: write(size_t fd, pointer buffer , size_t size)

{

if (fd == fd_stdout) // stdout

{

debug(SYSCALL , "Syscall :: write: %.*s\n", (int)size , (char*) buffer);

kprintf("%.*s", (int)size , (char*) buffer);

}

// ...

104 Daniel Gruss

Debug Flags

common/include/console/debug.h
const size_t MAIN =Ansi_Red |ENABLED;

const size_t THREAD =Ansi_Magenta|ENABLED;

const size_t USERPROCESS=Ansi_Cyan |ENABLED;

const size_t PROCESS_REG=Ansi_Yellow |ENABLED;

const size_t BACKTRACE =Ansi_Red |ENABLED;

const size_t USERTRACE =Ansi_Red |ENABLED;

// group memory management

const size_t PM =Ansi_Green |ENABLED;

const size_t KMM =Ansi_Yellow;

Add your own debug tags!

105 Daniel Gruss

“This is not the printf you are looking for”

• kprintf → SWEB Terminal

• kprintfd → Host

• Cannot be disabled by flags

→ Prefer debug

106 Daniel Gruss

Process termination

#include <stdio.h>

int main()

{

puts("hello , world");

return 0;

}

What does return 0; do?

107 Daniel Gruss

Process termination (2)

userspace/libc/src/nonstd.c
extern int main();

void _start ()

{

exit(main());

}

108 Daniel Gruss

Exit Syscall

size_t Syscall :: syscallException (...) {

// ...

case sc_exit:

exit(arg1);

break;

// ...

}

void Syscall ::exit(size_t exit_code) {

debug(SYSCALL , "Syscall ::EXIT: called , exit_code: %zd\n", exit_code)

;

currentThread ->kill();

}

109 Daniel Gruss

Thread termination

void Thread ::kill() {

switch_to_userspace_ = 0;

state_ = ToBeDestroyed;

if (currentThread == this) {

ArchInterrupts :: enableInterrupts ();

Scheduler :: instance ()->yield();

}

}

Recall: Scheduler will call delete on thread if state_ == ToBeDestroyed

110 Daniel Gruss

Thread deletion

UserProcess ::~ UserProcess () {

delete loader_;

vfs_syscall.close(fd_);

delete working_dir_;

process_registry_ ->processExit ();

}

Thread ::~ Thread () {

delete user_registers_;

delete kernel_registers_;

}

111 Daniel Gruss

Final Advice

Get in touch with the source code!

112 Daniel Gruss

	You and SWEB
	Organizational Details
	SWEB
	Assignment 1
	Booting SWEB

