
IAIK

Professor Horst Cerjak, 19.12.2005

1

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

See http://deadlockempire.github.io/#2-flags

IAIK

Professor Horst Cerjak, 19.12.2005

2

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Verification & Testing

Dynamic Algorithms for Concurrency

Problems

Benedikt Maderbacher
Sources:

• Savage, Burrows, Nelson, Sobalvarro, Anderson, Eraser: A
Dynamic Race Detector for Multithreaded Programs. ACM
Transactions on Computer Systems 15, 1997

• Visser et al, Model Checking Programs, Model Checking
Programs, Automated Software Engineering 10, 2003

IAIK

Professor Horst Cerjak, 19.12.2005

3

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Static & Dynamic

Static verification. Consider program code, check

for all possible executions

Dynamic verification: Runtime verification of

executions

IAIK

Professor Horst Cerjak, 19.12.2005

4

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Deadlocks & Race Conditions

Deadlocks show themselves when a program hangs

Race conditions cause unexpected results

• Hard to find because they often occur only with a specific

scheduling.

• Often not found during testing but as low-frequency

(high-impact) bugs at client site. Hard to reproduce.

• Today: Algorithms that find these problems without

looking at all schedulings.

IAIK

Professor Horst Cerjak, 19.12.2005

5

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Dynamic Tools for Concurrency Problems

What we want:

• better than testing

• works for any program we can run!

• We can sacrifice precision: unnecessary warnings,
undiscovered bugs are OK

Subject: dynamic methods to find concurrency errors –
deadlocks and race conditions

Dynamic methods:

• Result depends on exact run (inputs and scheduling)

• Try to minimize dependence on scheduling

IAIK

Professor Horst Cerjak, 19.12.2005

11

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Locking Example
int available = 0;

thread 1:
public synchronized int get() {
 while (!available) {
 try { wait(); }
 catch (InterruptedException e) { }
 }
 available = false;
 notifyAll();
 return contents; //still locked!
}

thread 2:
public synchronized void put(int value) {
 while (available) {
 try { wait(); }
 catch (InterruptedException e) { }
 }
 contents = value;
 available = true;
 notifyAll();
}

IAIK

Professor Horst Cerjak, 19.12.2005

12

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Explicit Locks

ReentrantLock l = new ReentrantLock();

l.lock();

…

l.unlock();

Note: synchronized locks are just locks on “this”

IAIK

Professor Horst Cerjak, 19.12.2005

13

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Deadlock

A deadlock is a circular wait

For locks, this is called lock reversal:

– Thread 1 holds lock A, waits for B

– Thread 2 holds lock B, waits for A

or with three threads:

– Thread 1 holds lock A, waits for B

– Thread 2 holds lock B, waits for C

– Thread 3 holds lock C, waits for A

IAIK

Professor Horst Cerjak, 19.12.2005

14

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Deadlock Example
ReentrantLock ALock =

 new ReentrantLock;

ReentrantLock BLock =

 new ReentrantLock;

class Alice{

 void hug(){

 ALock.lock();

 Block.lock();

 work…

 Block.unlock()

 ALock.unlock();

}}

class Bob{

 void hug(){

 BLock.lock();

 Alock.lock();

 work…

 Alock.unlock();

 BLock.unlock();

}}

Thread 1 calls Alice.hug()

Thread 1 calls ALock.lock()

[T1 holds AlLock]

Thread 2 calls Bob.hug

Thread 2 calls Block.lock();

[T1 holds AlLock, T2 holds BLock]

Thread 1 calls Block.lock()

[T1 holds ALock waits for BLock, T2 holds BLock]

Thread 2 calls Alock.lock()

[T1 holds ALock waits for BLock,

 T2 holds BLock, waits for ALock]

(deadly embrace)

IAIK

Professor Horst Cerjak, 19.12.2005

16

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Gate Locks
A gate lock prevents a deadlock by protecting
the areas with lock reversal

ReentrantLock gateLock;

class Alice{

void hug(){

gateLock.lock();

ALock.lock();

 Block.lock();

 Block.unlock()

 ALock.unlock();

 gateLock.unlock();

}}

class Bob{

 void hug(){

 gateLock.lock();

 BLock.lock();

 Alock.lock();

 Alock.unlock()

 BLock.unlock();

 gateLock.unlock();

}}

IAIK

Professor Horst Cerjak, 19.12.2005

17

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Lock Tree Algorithm

Dynamic algorithm to find deadlocks

• Lock reversal: only for deadlocks with two threads

• Dynamic: may miss deadlocks (statements not
executed at all or not in every possible order)

• False warnings: other mechanisms may prevent
deadlock (e.g., shared variable)

In a tree, keep track the order in which locks are
acquired and released; see if there are reversals

T1

ALock

BLock

T2

BLock

ALock

IAIK

Professor Horst Cerjak, 19.12.2005

18

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Lock Tree Algorithm

Build trees during runtime
– each tree has a current node

– If lock acquired create new child and move to it

– If node released, move up one level

After termination, analyze trees. Possible deadlock if
1. T1 contains a node Li with ancestor Lj

2. T2 tree contains a node Lj with ancestor Li

3. There is no gate lock: node Lk which is an ancestor of Li in T1 and Lj in T2

A gate lock is a lock that is
1. an ancestor of Li and Lj in T1 and

2. an ancestor of Li and Lj in T2

Limitations

• Works for deadlocks involving two threads only

• Works only for properly nested locks

IAIK

Professor Horst Cerjak, 19.12.2005

19

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Lock Tree

Thread 1:

L1.lock();

 L3.lock();

 L2.lock();

 L2.unlock();

 L4.lock();

 L4.unlock();

 L3.unlock()

L1.unlock();

L4.lock();

 L2.lock();

 L3.lock();

 L3.unlock()

 L2.unlock();

L4.unlock();

Thread 2:

L1.lock();

 L2.lock();

 L3.lock();

 L3.unlock();

 L2.unlock

L1.unlock();

L4.lock();

 L3.lock();

 L2.lock();

 L2.unlock();

 L3.unlock();

L4.unlock();

Draw lock tree by executing T1 first and then T2

IAIK

Professor Horst Cerjak, 19.12.2005

20

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Lock Tree
T1

L1

L3

L2 L4

L4

L2

L3

T2

L1

L2

L3

L4

L3

L2

Where are the potential deadlocks?

IAIK

Professor Horst Cerjak, 19.12.2005

21

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Deadlocks

Potential deadlocks in the last example,
– L3L4 left versus L4L3 right is a problem

– L3L2 left versus L2L3 right is not: protected by L1

– L2L3 left versus L3L2 right is not: protected by L4

To get deadlock:

1. Execute T2, stop when L4 acquired,

2. Execute T1 until deadlock.

Note: executing T1 first then T2 will not give deadlock.

By executing one scheduling we found a problem in a
different scheduling!

IAIK

Professor Horst Cerjak, 19.12.2005

22

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Limitations

1. Dependence on execution: If suspicious code is

never executed, we do not find deadlock

2. Deadlocks do not have to be due to locks

3. Deadlocks can be prevented without using

locks

(trick for 2,3: build your own lock.)

IAIK

Professor Horst Cerjak, 19.12.2005

23

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Limitations:

LockTree detects False Deadlock
class Lock{

Lock lock;

int a = 0; // the gate lock

class Alice{

 ReentrantLock ALock = …;

 void hug(){

 synchronize(lock){

 while(a==0) lock.wait();

 }

 ALock.lock();

 Block.lock();

 Block.unlock();

 ALock.unlock();

 a = 0;

 synchronize(lock){

 lock.notifyAll();

 }

 }

}

class Bob{

 ReentrantLock Block = …;

 void hug(){

 synchronize(lock){

 while(a==1) lock.wait();

 }

 Block.lock();

 Alock.lock();

 Alock.unlock();

 Block.unlock();

 a = 1;

 synchronize(lock){

 lock.notifyAll()

 }

 }

}

IAIK

Professor Horst Cerjak, 19.12.2005

24

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Limitations: An undetected Deadlock

class Lock{}

Lock lock;

int a = 0, b = 0;

class Alice{

 void hug(){

 synchronize(lock){

 while(a==0) lock.wait();

 }

 a = 0;

 b = 1;

 synchronize(lock){

 lock.notifyAll;
 }

 }

}

class Bob{

 void hug(){

 synchronize(lock){

 while(b==0) lock.wait();

 }

 b = 0;

 a = 1;

 synchronize(lock){

 lock.notifyAll();

 }

 }

}

IAIK

Professor Horst Cerjak, 19.12.2005

25

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Data Races

IAIK

Professor Horst Cerjak, 19.12.2005

26

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Data Race

A data race exists when:

1. Two threads access variable concurrently

2. At least one access is write

3. Nothing prevents simultaneous access

Data Race → result depends on the interleaving

Not necessarily bad

• Thermometer writes to int temp, GUI reads: no locks needed

But be careful:

• Writes to ints are atomic, so this works

• if temp is a long or a structure, you need locking

How do you usually prevent race conditions?

IAIK

Professor Horst Cerjak, 19.12.2005

27

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Eraser

• Check locking behavior

• For any shared data, is some lock always held on

access?

• Sufficient to prevent deadlocks? Necessary?

• Dynamic algorithm

– Computes locks held during one run

– May not find all problems

– May warn when no problem exists

– What it finds depends on execution!

IAIK

Professor Horst Cerjak, 19.12.2005

28

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Bank Account
(Grandma’s Disappearing Money)

class Acct{

 private long balance;

 private long acctNr;

 Acct(){

 acctNr = Acct.getNewNr();

 balance = 0;

 }

 long getAcctNr(){

 return acctNr;

 }

long getBalance(){

 return balance;

 }

void deposit(long amount){

 long current;

 current = balance;

 current += amount;

 balance = current;

 }

}

IAIK

Professor Horst Cerjak, 19.12.2005

29

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Bank Account
(Grandma’s Disappearing Money)

class Acct{
 private long balance;
 private long acctNr;

 Acct(){
 acctNr = Acct.getNewNr();
 balance = 0;
 }

 long getAcctNr(){
 return acctNr;
 }

long getBalance(){
 return balance;
 }

void deposit(long amount){
 long current;

 current = balance;
 current += amount;
 balance = current;
 }
}

class Acct{
 private long balance;
 private long acctNr;

 Acct(){
 acctNr = Acct.getNewNr();
 balance = 0;
 }

 long getAcctNr(){
 return acctNr;
 }

long getBalance(){
 return balance;
 }

void deposit(long amount){
 long current;

 current = balance;
 current += amount;
 balance = current;
 }
}

IAIK

Professor Horst Cerjak, 19.12.2005

30

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Data Race
void deposit(long amount){

 long current;

 current = this.balance;

 current += depositAmount;

 this.balance = current;

}

Initial balance is 0, deposit 100 twice. Final balance: 100 instead of 200.

Thread 1 (You):

account1.deposit(100)

current = balance; (0)

current += amount; (100)

balance = current; (100)

Thread 2 (Grandma):

account1.deposit(100)

current = balance; (0)

current += amount; (100)

balance = current; (100)

Where did Grandma’s money go??

• Same problem occurs if you use balance +=amount.

IAIK

Professor Horst Cerjak, 19.12.2005

31

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Eraser – Simple Version

At any point in time, a thread t holds a set of locks: locks(t)

Associate with each variable v a set of lock candidates, C(v)

For each variable v {

 C(v) = all_locks;

}

// called when thread t reads variable v

read(t,v){

 C(v) := C(v)  locks(t);

 if C(v) =  then issue warning;

}

// same for write(t,v)

Note: minimal dependence on order of scheduling!

Results only depends on execution paths taken (which may in turn depend on scheduler)

IAIK

Professor Horst Cerjak, 19.12.2005

32

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Example

Thread 1 Thread 2 locks(T1) locks(T2) C(v)

l1.lock();

v := 1;

l1. unlock()

l2.lock()

v := v + 1;

l2.unlock()

IAIK

Professor Horst Cerjak, 19.12.2005

33

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Example

Thread 1 Thread 2 locks(T1) locks(T2) C(v)

  {l1, l2}

l1.lock(); {l1}

v := 1; {l1}

l1. unlock() 

l2.lock() {l2}

v := v + 1; :

warning!

l2.unlock() 

IAIK

Professor Horst Cerjak, 19.12.2005

34

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Bank Account, 2
class Acct{

 private long balance;

 private long acctNr;

 private ReentrantLock l;

 Acct(){

 acctNr = Acct.getNewNr();

 balance = 0;

 l = new Lock();

 }

 long getAcctNr(){

 return acctNr;

 }

long getBalance(){

 long currentBalance;

 l.lock();

 currentBalance = balance;

 l.unlock();

 return currentBalace;

 }

void deposit(long amount){

 long current;

 l.lock();

 current = balance;

 current += amount;

 balance = current;

 l.unlock();

 } }

Does this solve our problem?

IAIK

Professor Horst Cerjak, 19.12.2005

35

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Remaining Problems

Program is correct but Eraser doesn’t understand:

1. Initialization not protected

– But initialization is never simultaneous with anything

else!

2. Account number not protected

3. Efficiency problem: Two reading threads

reading have to wait for each other.

– Exclude simultaneous read/writes, simultaneous

reads are OK.

IAIK

Professor Horst Cerjak, 19.12.2005

36

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Initialization & Read-Shared

Virgin: new data

Exclusive: only one thread has
access (initialization mode)

Shared: read-only, after initialization
finished

shared-modified: at least one writer
and one reader

Start computing lock sets when
second thread accesses variable

Report warnings when moving to
shared-modified & lock set empty

Side effect: increased dependency on
scheduler. (When do we leave
Exclusive?)

Virgin

Exclusive

Shared
Shared -

Modified

rd/wr,

first thread

wr

rd
wr

wr,

new thread

rd,

new thread

rd/wr

IAIK

Professor Horst Cerjak, 19.12.2005

37

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Initialization & Read-Shared

Virgin: new data

Exclusive: only one thread has
access (initialization mode)

Shared: read-only, after initialization
finished

shared-modified: at least one writer
and one reader

Start computing lock sets when
second thread accesses variable

Report warnings when moving to
shared-modified & lock set empty

Side effect: increased dependency on
scheduler. (When do we leave
Exclusive?)

IAIK

Professor Horst Cerjak, 19.12.2005

38

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Example
Thread 1 Thread 2 locks(T1) locks(T2) state(v) C(v)

l1.lock();

v := 1;

v := v + 1

l1. unlock()

l2.lock()

l := v + 1;

l2.unlock()

l1.lock();

l := v + 1;

v = l;

l1. unlock()

IAIK

Professor Horst Cerjak, 19.12.2005

39

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Example
Thread 1 Thread 2 locks(T1) locks(T2) state(v) C(v)

  VIRGIN {l1, l2}

l1.lock(); {l1}

v := 1; EXCLUSIVE

v := v + 1

l1. unlock() 

l2.lock() {l2}

l := v + 1; SHARED {l2}

l2.unlock() 

l1.lock(); {l1}

l := v + 1; 

v = l; SHARED-MODIFIED WARNING

l1. unlock() 

IAIK

Professor Horst Cerjak, 19.12.2005

40

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Bank Account, 2
class Acct{

 private long balance;

 private long acctNr;

 private ReentrantLock l;

 Acct(){

 acctNr = Acct.getNewNr();

 balance = 0;

 l = new Lock();

 }

 long getAcctNr(){

 return acctNr;

 }

long getBalance(){

 long currentBalance;

 l.lock();

 currentBalance = balance;

 l.unlock();

 return currentBalace;

 }

void deposit(long amount){

 long current;

 l.lock();

 current = balance;

 current += amount;

 balance = current;

 l.unlock();

 } }

Does this solve our problem?

IAIK

Professor Horst Cerjak, 19.12.2005

41

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Eraser, version II
//called when thread t reads var v

read(t,v){

 case state(v) of{

 VIRGIN: read before write!;

 EXCLUSIVE:

 if(t != threadid(v)){

 state(v) = SHARED;

 locks(v) = locks(t); }

 SHARED:

 locks(v) = locks(v)  locks(t);

 SHARED-MODIFIED:

 locks(v) = locks(v)  locks(t);

 if(locks(v) = ) emit warning;

 endcase

}

Per variable keep:

• state

• when exclusive: thread id

• when shared: lock set

//called when thread t writes var v

write(t,v){

 case state(v) of{

 VIRGIN:

 state(v) = EXCLUSIVE;

 threadid(v) = t;

 EXCLUSIVE:

 if(t != threadid(v)){

 state(v) = SHARED-MODIFIED;

 locks(v) = locks(t);

 if(locks(v) = ) emit warning;

 }

 SHARED:

 state(v) = SHARED-MODIFED;

 locks(v) = locks(v)  locks(t);

 if(locks(v) = ) emit warning;

 SHARED-MODIFIED:

 locks(v) = locks(v)  locks(t);

 if(locks(v) = ) emit warning;

 endcase

}

Note for C programmers: who needs breaks?

IAIK

Professor Horst Cerjak, 19.12.2005

42

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Problem 2: Read/Write Locks

Let’s solve problem 2: simultaneous reads should be allowed

Read-write locks allow for

• multiple simultaneous readers,

• a write is never simultaneous with another read or write.

Useful if you have many reads, regular writes. (Tricky to implement: prevention
of starvation for writers)

Lock l = new ReentrantReadWriteLock();

// acquire/release l in read mode

l.readLock().lock();

l.readLock().unlock();

// acquire/release l in write mode

l.writeLock().lock();

l.writeLock().unlock();

IAIK

Professor Horst Cerjak, 19.12.2005

43

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Bank Account, 3
class Acct{

 private long balance;

 private long acctNr;

 private ReentrantReadWriteLock l;

 Acct(){

 acctNr = Acct.getNewNr();

 balance = 0;

 l = new ReentrantReadWriteLock();

 }

 long getAcctNr(){

 return acctNr;

 }

long getBalance(){

 long currentBalance;

 l.readLock().lock();

 currentBalance = balance;

 l.readLock().unlock();

 return currentBalace;

 }

void deposit(long amount){

 long current;

 l.writeLock().lock();

 current = balance;

 current += depositAmount;

 balance = current;

 l.writeLock().unlock();

 } }

IAIK

Professor Horst Cerjak, 19.12.2005

44

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Problem

Lockset does not work properly

Bank account is correct, but

– write lock is not always held and

– always holding read lock is not enough (a write with

just a read lock would be a problem)

IAIK

Professor Horst Cerjak, 19.12.2005

45

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Lockset for Read/Write Locks

Let locks(t) be the set of locks held by t

Let write_locks(t) be the set of write locks held by t

For each variable v {

 C(v) = all_locks;

}

read(t,v){

 C(v) := C(v)  locks(t);

 if C(v) =  then issue warning;

}

wite(t,v){

 C(v) := C(v)  write_locks(t);

 if C(v) =  then issue warning;

}

IAIK

Professor Horst Cerjak, 19.12.2005

46

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Example

Thread 1 rlocks wlocks Thread 2 rlocks wlocks C(v)

    all locks

l.rdl.lk() {l}

l.rdl.lk() {l}

read v {l}

read v {l}

l.rdl.ulk() 

l.rdl.ulk() 

l.wl.lk() {l}

write v {l}

l.wl.ulk() 

l.rl.lk() {l}

write v : warning!

IAIK

Professor Horst Cerjak, 19.12.2005

47

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Remaining False Alarms

• Memory reuse: a private memory manager may use a
location for one purpose first, then for another purpose.
Locks will be different

• Private locks.

• Benign races

Solution: annotations
– EraserReuse()

– Eraser{Read/Write}{Lock/Unlock}()

– EraserIgnore{On/Off}()

IAIK

Professor Horst Cerjak, 19.12.2005

54

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Conclusions

Dynamic algorithms

• May give false alarms

• May not find all problems

Locktree finds possible deadlocks

Eraser finds possible race conditions

Little dependence on scheduling: Can find bug in
one scheduling by executing another one: better
than testing.

IAIK

Professor Horst Cerjak, 19.12.2005

55

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Practical Course

Calendar:

Individual work

Exercise interviews: 23 Jan

Assignment Points Handout Question

Hour

Deadline

A1 Locktree 25 12 Oct 25 Oct 17:00 03 Nov 23:59

A2 Hoare Logic 40 16 Nov 30 Nov 17:30 14 Dec 23:59

A3 Slam 35 14 Dec 11 Jan 17:30 18 Jan 23:59

Total Points Grade

100 - 87 1

86 - 75 2

62 - 74 3

50 - 61 4

0 - 49 5

IAIK

Professor Horst Cerjak, 19.12.2005

56

Benedikt Maderbacher V&T 02 Dynamic Algorithms for Concurrency

Practical Course

Benedikt Maderbacher (benedikt.maderbacher@iaik.tugraz.at)

Sebastian Puck (sebastian.puck@student.tugraz.at)

Discord:

https://discord.gg/7ScBn2u6 channel VT (activate with check mark)

Upstream git repo:
https://extgit.iaik.tugraz.at/scos/scos.teaching/scos.teaching.vt/vt2324/vt-sources

mailto:benedikt.maderbacher@iaik.tugraz.at
mailto:sebastian.puck@student.tugraz.at
https://discord.gg/7ScBn2u6
https://extgit.iaik.tugraz.at/scos/scos.teaching/scos.teaching.vt/vt2324/vt-sources

	Folie 1
	Folie 2: Verification & Testing Dynamic Algorithms for Concurrency Problems
	Folie 3: Static & Dynamic
	Folie 4: Deadlocks & Race Conditions
	Folie 5: Dynamic Tools for Concurrency Problems
	Folie 11: Locking Example
	Folie 12: Explicit Locks
	Folie 13: Deadlock
	Folie 14: Deadlock Example
	Folie 16: Gate Locks
	Folie 17: Lock Tree Algorithm
	Folie 18: Lock Tree Algorithm
	Folie 19: Lock Tree
	Folie 20: Lock Tree
	Folie 21: Deadlocks
	Folie 22: Limitations
	Folie 23: Limitations: LockTree detects False Deadlock
	Folie 24: Limitations: An undetected Deadlock
	Folie 25: Data Races
	Folie 26: Data Race
	Folie 27: Eraser
	Folie 28: Bank Account (Grandma’s Disappearing Money)
	Folie 29: Bank Account (Grandma’s Disappearing Money)
	Folie 30: Data Race
	Folie 31: Eraser – Simple Version
	Folie 32: Example
	Folie 33: Example
	Folie 34: Bank Account, 2
	Folie 35: Remaining Problems
	Folie 36: Initialization & Read-Shared
	Folie 37: Initialization & Read-Shared
	Folie 38: Example
	Folie 39: Example
	Folie 40: Bank Account, 2
	Folie 41: Eraser, version II
	Folie 42: Problem 2: Read/Write Locks
	Folie 43: Bank Account, 3
	Folie 44: Problem
	Folie 45: Lockset for Read/Write Locks
	Folie 46: Example
	Folie 47: Remaining False Alarms
	Folie 54: Conclusions
	Folie 55: Practical Course
	Folie 56: Practical Course

