
Ahmet Can Mert
ahmet.mert@iaik.tugraz.at 

Vitis Code Tutorial

mailto:Ahmet.mert@iaik.tugraz.at


Overview

• Structure of Vitis_code:

├── main.cc      : Main file calling test function.
├── lscript.ld    : It sets the stack/heap size of the processor. Do NOT modify.
├── README.txt    : -
├── Xilinx.spec   : -
├── communication.c : It has FPGA-CPU communication related functions. You do NOT have to make any changes on this file.
├── communication.h : -
├── instruction.c  : It has functions for generating INS array (i.e., instructions encoded with address, OPCODE etc.) for different operations.
├── instruction.h  : -
├── platform.c    : It has FPGA platform related functions. You do NOT have to make any changes on this file.
├── platform.h    : -
├── platform_config.h: -
└── pke

 ├── modular_arithmetic.cc
 ├── modular_arithmetic.h
 ├── pke_parameters.h
 ├── poly_arithmetic2.c
 ├── poly_arithmetic2.h
 ├── randombytes.c
 ├── randombytes.h
 ├── test_polymul.c
 └── test_polymul.h



main.cc

• This is the main file that Vitis runs. It performs some initilizations first and then calls the 
function test_polymul() which is defined in test_polymul.c/test_polymul.h in 
pke folder. You can keep this file the same and just modify test_polymul().



pke/test_polymul.c

• It has two functions: test_polymul() and poly_mult_HW().
• test_polymul() function generates two polynomials of size 256, a and b, and then 

performs coefficient-wise multiplication of a and b using HW and SW. HW operation is 
performed by poly_mult_HW() function.

• poly_mult_HW() function presents an example for executing operations on FPGA. It 
performs the following steps:
• Sends data to FPGA
• Encodes instructions for the cryptoprocessor and sends instructions to FPGA
• Executes the instructions on FPGA
• Reads data back from the FPGA

For the Task-3 of your assignment, you can either modify poly_mult_HW() or write 
a new function similar to poly_mult_HW().



poly_mult_HW() function

• Now, we'll look into poly_mult_HW() function in detail.
• Sending data to FPGA.

We define two arrays of 64-bit data.
• INS has size of 64 and it is used to send 

instructions to instruction memory of the 
cryptoprocessor.

• fpga_memory_data has size of 1024 and it is 
used to send 64-bit coefficients to the data 
memory of the cryptoprocessor.

Here, we set the coefficients 0-255 to the first 
polynomial, coefficients 256-511 to the second 
polynomial and the rest is 0.

function (defined in communication.c) sends data to the FPGA from CPU. It takes 4 inputs.
• *p: array of 64-bit data that you want to send to FPGA
• base_address: starting write address for data/instruction memory of the cryptoprocessor
• num_words: number of 64-bit data (word) that you want to send to FPGA
• INS_flag: If this is 0, you are sending coefficients to the data memory of the cryptoprocessor
           If this is 1, you are sending instructions to the instruction memory if the cryptoprocessor

For this example, we're sending 
1024 words in fpga_memory_array 
to the data memory of the 
cryptoprocessor starting from 
address 0 of the data memory of 
the cryptoprocessor.



poly_mult_HW() function

• Now, we'll look into poly_mult_HW() function in detail.
• Encoding instructions for the cryptoprocessor and sends instructions to FPGA.

init_INS_Poly_mult() function (defined in instruction.c) takes 3 input operands (starting address of operand 1 polynomial in data 
memory,  starting address of operand 2 polynomial in data memory and starting address of resulting  polynomial in data memory), encodes 
these operands with instruction code=24. Please note that this function is specific to the instruction instruction code =24. You can create a 
similar function for every instruction (and instruction code) that you define. In instruction.c, you can find some other examples as well.

For this example, we're sending whole INS 
array to the program memory of the 
cryptoprocessor starting from address 0 of the 

program memory. The content of INS is 
already set by init_INS_Poly_mult().

Generating instruction. 
instruction code is 24. If you 
want to modify this function 
or create similar one, only this 
part should be changed (i.e., 
use your instruction code 
instead of 24).

No need to modify this part.



poly_mult_HW() function

• Now, we'll look into poly_mult_HW() function in detail.
• Executing instructions on the FPGA and reading data back to CPU.

exeIns() function (defined in 
communication.c) sends commands to the 
FPGA for performing the instructions. You do 
NOT have to modify this function.

function reads data from the data memory of the cryptoprocessor.
It takes 3 inputs:
• *p: array of 64-bit data that will store the incoming data from FPGA
• base_address: starting read address for data memory of the cryptoprocessor
• num_words: number of 64-bit data (word) that you want to read from the FPGA

For this example, it reads 1024 coefficients from data memory of the 
cryptoprocessor into the array fpga_data_memory, starting from address 0 of the 
data memory of the cryptoprocessor.



Other files in pke folder

• In pke folder, we provide some functions that you can use.
• pke_parameters.h: You can ignore this file.
• poly_arithmetic2.c: Empty file, just provides template for implementing 

schoolbook method.
• randombytes.c: Includes a function to generate random byte.
• modular_arithmetic.cc: Includes field arithmetic functions (integer 

addition/subtraction and modular multiplier) for 64-bit integers. Note that modular 
multiplier method is NOT using Montgomery method.

• You can use these functions (or you can write your own functions) to implement 
schoolbook/Karatsuba functions (in case you want to implement this approach and 
perform a part of operation in SW).


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

