Vitis Code Tutorial

Ahmet Can Mert

ahmet.mert@iaik.tugraz.at

mailto:Ahmet.mert@iaik.tugraz.at

Overview

e Structure of Vitis_code:

— main.cc : Main file calling testfunction.

— lscript.1ld : It setsthe stack/heap size of the processor. Do NOT modify.

— README. txt To-

— Xilinx.spec Do-

— communication.c : Ithas FPGA-CPUcommunication relatedfunctions.YoudoNOThave to make any changesonthisfile.
— communication.h : -

— instruction.c : Ithasfunctionsforgenerating INS array (i.e., instructions encoded with address, OPCODE etc.) for different operations.
— instruction.h T -

— platform.c : It hasFPGA platform related functions. You do NOT have to make any changes on thisfile.
— platform.h P -

— platform_config.h: -

— pke

— modular_arithmetic.cc

— modular_arithmetic.h

— pke_parameters.h

— poly_arithmetic2.c

— poly _arithmetic2.h

— randombytes.c

— randombytes.h

— test_polymul.c

— test_polymul.h

main.cc

* Thisisthe main file that Vitis runs. It performs some initilizationsfirst and then calls the
function test _polymul() which is definedin test polymul.c/test polymul.h in
pke folder. You can keep this file the same and just modify test_polymul().

init_platform();
J//axi address base = (uint32 t *) Ox00A0000000; f/ For zcul@2 board
axi_address_base = (uint3Z t *) 0x40000000; f/ For PYNQ-z2 board

int TEST_TYPE = ©; // ©: TRNG, 1:AE5, 2:PKE, 3:End

prln-tfl -- \ r)
printf| Starting SDK \n")
P L e SRR "

while(TEST_TYPE !=3){
iT(TEST_TYPE==0) test_polymul{);
else break;

printf("Type of test [@: PolyMul, 3:End] : ");
scanf("%d", &TEST TYPE);

1
d

pke/test _polymul.c

* It hastwo functions: test_polymul() and poly mult HW().
* test polymul() function generatestwo polynomialsof size 256, a and b, and then
performs coefficient-wise multiplication of a and b using HW and SW. HW operationis
performed by poly mult HW() function.

« poly mult HW() function presentsan example for executing operationson FPGA. It
performs the following steps:
* Sends datato FPGA
* Encodesinstructions for the cryptoprocessor and sends instructions to FPGA
e Executes the instructionson FPGA
* Reads databack from the FPGA

For the Task-3 of your assignment, you can either modify poly mult HW() or write
a new function similarto poly mult HW().

poly _mult_HW() function

Now, we'll look into poly _mult_HW() function in detail.

Sending data to FPGA.

We define two arrays of 64-bit data.
. INS has size of 64 and itis used tosend

uint32
uinté4
uinté4

ti,g;
t INS[64];

// send data to FPGA.

for(i=0; i<256; i++){
fpga memory data[i] = datal[i];
fpga_memory data[i+256] = data2[i];

for(i=512; i<1024; i++)

fpga memory datali] = ©;
send64(fpga_memory data, 0, 1024, 0);
delay(100);

t fpga_memory data[1@24]; // This is a memory buffer in SW.

instructionstoinstruction memory of the
cryptoprocessor.

* fpga_memory_datahassize of 1024 anditis
used to send 64-bit coefficients to the data
memory of the cryptoprocessor.

1
// Send the buffer to FPGA's BRAM

v

Here, we setthe coefficients 0-255 to the first
polynomial, coefficients 256-511 to the second
polynomialand the restisO.

AN

send64(uint64 t *p, uint32 t base address,

uint32 t num wor

* *p:array of 64-bit data thatyou wantto sendto FPGA

* base_address: starting write address for data/instruction memory of the cryptoprocessor

* num_words: number of 64-bit data (word) that you wantto send to FPGA

* INS_flag: Ifthisis 0, youare sending coefficients to the datamemory of the cryptoprocessor
Ifthisis 1, youare sendinginstructions to the instruction memory if the cryptoprocessor

ds, uint32 t INS flag);
function (defined in communication.c) sends datato the FPGA from CPU. It takes 4 inputs.

For thisexample, we're sending
1024 wordsin fpga_memory_array
to the data memory of the
cryptoprocessor starting from
address 0 of the data memory of
the cryptoprocessor.

poly mult HW() function

* Now, we'll look into poly mult HW() function in detail.
* Encodinginstructionsfor the cryptoprocessor and sends instructions to FPGA.

// INS: instruction array, Operandl address=0, Operand2 address=256, Output result address=512. For this example, we're sending whole INS
init INS Poly mult(INS, ©, 256, 512); arraytothe program memory of the

) }) o i) = cryptoprocessor startingfromaddress 0 of the
send64(INS, 0, 64, 1); // send polynomial multiplication INStruction to FPGA using send64() INS flag=14___o .
delay(100); — | program memory. The content of INS is

alreadysetby init_INS_Poly mult().

init INS Poly mult() function(definedininstruction.c)takes3inputoperands (startingaddress of operand 1 polynomial in data
memory, startingaddress of operand 2 polynomial in data memory and starting address of resulting polynomial in datamemory), encodes
these operands with instruction code=24. Please note that this functionis specificto the instructioninstruction code =24. You can create a

similarfunction foreveryinstruction (and instruction code) that you define. Ininstruction.c, youcan find some otherexamples as well.

void init INS Poly mult{unsigned long long *INS, unsigned int INP ADDRESSL, unsigned int INP ADDRESSZ, unsigned int OUT ADDRESS) . K .
Generating instruction.
int 1; . . .
printf("OUT_ADDRESS=%d\n", OUT_AD instruction codeis 24.Ifyou
want to modify this function
unsigned long long program word = [(unsigned long leng) 1<<35) + ((unsigned long long) OUT ADDRESS=<253) + (INP _ADDRESS2<<15)+(INP_ADDRESS1e<3 nl+ 24;)—’ or create similar one,onlythis
b .
//printf{"Program word = %llu\n", program_word); pa rtshould be cha nged (|.e.,
unsigned long long ins_group[G4] = . .
{ use your instruction code
0x000B0EEARE, .
Bx0836000014, // This instruction is overwritten by the input InStead Of 24)
0x0800000000,
0x00080AEA0E,
0x000000001T // End of computation

No need to modify this part.

ins group[1] = program word;
for(i=0; i<6d; i++)
INS[1] = ins group[i];

poly mult HW() function

* Now, we'll look into poly mult HW() function in detail.
e Executinginstructionson the FPGA and reading data back to CPU.

exeIns(); // Mow ask the FPGA to compute the instruction (i.e., polynomial multiplication) _— eernsg) f9ncﬁon(defh1edin
delay(1088); communication.c) sends commands to the
FPGA for performing the instructions. You do
-receiueﬁdufpga_memnry_data, @, 1024); // Read the BRAM of FPGA into the SW-side buffer NOT have to modify this function.
delay|(168);

receive64(uint64 t *p, uint32 t base address, uint32 t num words);

function reads datafrom the data memory of the cryptoprocessor.

It takes 3 inputs:

* *p:array of 64-bit data that will store the incoming datafrom FPGA

* base_address: startingread address for data memory of the cryptoprocessor

* num_words: number of 64-bit data (word) that you want to read from the FPGA

For thisexample, itreads 1024 coefficients from data memory of the
cryptoprocessorintothe array fpga_data_memory, starting fromaddress 0 of the
data memory of the cryptoprocessor.

Other files in pke folder

* In pke folder, we providesome functions that you can use.

* pke_ parameters.h: You canignore this file.

e poly arithmetic2.c: Emptyfile, just provides template for implementing
schoolbook method.

* randombytes.c: Includesa function to generate random byte.

* modular arithmetic.cc: Includes field arithmetic functions (integer
addition/subtraction and modular multiplier) for 64-bit integers. Note that modular
multipliermethod is NOT using Montgomery method.

* You can use these functions (or you can write your own functions) to implement
schoolbook/Karatsuba functions (in case you want to implement this approach and
perform a part of operationin SW).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

