
Secure Software Development – SSD
Assignment Defensive Programming
06.12.2023

Winter 2023/24, www.iaik.tugraz.at/ssd



Defensive Programming



Since you’re now an expert in fixing and exploiting bugs,
it is important to know how to avoid them.



Mistakes can happen everywhere www.tugraz.at

• Mistakes happen everywhere
• Especially in low-level C code

• Look at the defenselets

• It is up to you to write better, safer code

2 | Winter 2023/24, www.iaik.tugraz.at/ssd



Write Readable Code www.tugraz.at

• What does the following code do?
!ErrorHasOccured() ??!??! HandleError();

• Error handling, but what is the ??!??! operator?
#define MAGIC(e) (sizeof(struct { int:-!!(e); }))

• It is magic of course! What is :-!! though?
• Such code is unreadable and easily causes bugs

https://stackoverflow.com/questions/7825055/what-does-the-operator-do-in-c

https://stackoverflow.com/questions/9229601/what-is-in-c-code

https://stackoverflow.com/questions/652788/what-is-the-worst-real-world-macros

3 | Winter 2023/24, www.iaik.tugraz.at/ssd

https://stackoverflow.com/questions/7825055/what-does-the-operator-do-in-c
https://stackoverflow.com/questions/9229601/what-is-in-c-code
https://stackoverflow.com/questions/652788/what-is-the-worst-real-world-macros


Goal www.tugraz.at

• Implement software in a secure manner
• Use good coding style
• Use defensive programming principles
• Do proper error handling
• Write your own tests

• Become a better software-engineer

4 | Winter 2023/24, www.iaik.tugraz.at/ssd



Task: Defensive Programming



Timeline www.tugraz.at

Defensive-Programming Part 1:
Deadline: 14th of January 23:59 (14.01.2024)

Tag: defensive

Next KU dates (possible to ask assignment
questions):

13.12.2023 / 20.12.2023 / 10.01.2024

5 | Winter 2023/24, www.iaik.tugraz.at/ssd



Timeline www.tugraz.at

Defensive-Programming Part 1:
Deadline: 14th of January 23:59 (14.01.2024)

Tag: defensive

Next KU dates (possible to ask assignment
questions):

13.12.2023 / 20.12.2023 / 10.01.2024

5 | Winter 2023/24, www.iaik.tugraz.at/ssd



Links www.tugraz.at

• Upstream: https://extgit.iaik.tugraz.at/sase/practicals/
2023/exercise2023-upstream.git

• defensive/docker.sh

6 | Winter 2023/24, www.iaik.tugraz.at/ssd

https://extgit.iaik.tugraz.at/sase/practicals/2023/exercise2023-upstream.git
https://extgit.iaik.tugraz.at/sase/practicals/2023/exercise2023-upstream.git


libdataformatx www.tugraz.at

• Library to handle our own dataformat
• Load/Write to/from files (already
implemented)

• Working with structure (add, remove, create,
free nodes)

• Handle values of nodes (set, get, merge, split,
replace)

• Assignment: Implement remaining functionality

7 | Winter 2023/24, www.iaik.tugraz.at/ssd



libdataformatx www.tugraz.at

• Library to handle our own dataformat
• Load/Write to/from files (already
implemented)

• Working with structure (add, remove, create,
free nodes)

• Handle values of nodes (set, get, merge, split,
replace)

• Assignment: Implement remaining functionality

7 | Winter 2023/24, www.iaik.tugraz.at/ssd



libdataformatx www.tugraz.at

• Library to handle our own dataformat
• Load/Write to/from files (already
implemented)

• Working with structure (add, remove, create,
free nodes)

• Handle values of nodes (set, get, merge, split,
replace)

• Assignment: Implement remaining functionality

7 | Winter 2023/24, www.iaik.tugraz.at/ssd



libdataformatx www.tugraz.at

• Library to handle our own dataformat
• Load/Write to/from files (already
implemented)

• Working with structure (add, remove, create,
free nodes)

• Handle values of nodes (set, get, merge, split,
replace)

• Assignment: Implement remaining functionality

7 | Winter 2023/24, www.iaik.tugraz.at/ssd



libdataformatx www.tugraz.at

• Library to handle our own dataformat
• Load/Write to/from files (already
implemented)

• Working with structure (add, remove, create,
free nodes)

• Handle values of nodes (set, get, merge, split,
replace)

• Assignment: Implement remaining functionality

7 | Winter 2023/24, www.iaik.tugraz.at/ssd



Defensive Programming www.tugraz.at

• We provide you with some basic implementation!
• Implement the remaining functions in a secure manner!
• Make sure the functions adhere to the documentation
• Use tools to find and fix implementation flaws!

8 | Winter 2023/24, www.iaik.tugraz.at/ssd



Defensive Programming www.tugraz.at

• We provide you with some basic implementation!
• Implement the remaining functions in a secure manner!
• Make sure the functions adhere to the documentation
• Use tools to find and fix implementation flaws!

8 | Winter 2023/24, www.iaik.tugraz.at/ssd



Defensive Programming www.tugraz.at

• We provide you with some basic implementation!
• Implement the remaining functions in a secure manner!
• Make sure the functions adhere to the documentation
• Use tools to find and fix implementation flaws!

8 | Winter 2023/24, www.iaik.tugraz.at/ssd



Defensive Programming www.tugraz.at

• We provide you with some basic implementation!
• Implement the remaining functions in a secure manner!
• Make sure the functions adhere to the documentation
• Use tools to find and fix implementation flaws!

8 | Winter 2023/24, www.iaik.tugraz.at/ssd



Defensive Programming www.tugraz.at

• How to find bugs:
• Compiler warnings
• Static code analysis (cppcheck/scan-build)
• Valgrind, address-sanitizer, etc.
• Look for inconsistencies with documentation (header files)
• Test edge cases (integer overflows, out of memory, ...)
• Fuzzing (e.g. AFL)

9 | Winter 2023/24, www.iaik.tugraz.at/ssd



Defensive Programming www.tugraz.at

• How to find bugs:
• Compiler warnings
• Static code analysis (cppcheck/scan-build)
• Valgrind, address-sanitizer, etc.
• Look for inconsistencies with documentation (header files)
• Test edge cases (integer overflows, out of memory, ...)
• Fuzzing (e.g. AFL)

9 | Winter 2023/24, www.iaik.tugraz.at/ssd



Defensive Programming www.tugraz.at

• How to find bugs:
• Compiler warnings
• Static code analysis (cppcheck/scan-build)
• Valgrind, address-sanitizer, etc.
• Look for inconsistencies with documentation (header files)
• Test edge cases (integer overflows, out of memory, ...)
• Fuzzing (e.g. AFL)

9 | Winter 2023/24, www.iaik.tugraz.at/ssd



Defensive Programming www.tugraz.at

• How to find bugs:
• Compiler warnings
• Static code analysis (cppcheck/scan-build)
• Valgrind, address-sanitizer, etc.
• Look for inconsistencies with documentation (header files)
• Test edge cases (integer overflows, out of memory, ...)
• Fuzzing (e.g. AFL)

9 | Winter 2023/24, www.iaik.tugraz.at/ssd



Defensive Programming www.tugraz.at

• How to find bugs:
• Compiler warnings
• Static code analysis (cppcheck/scan-build)
• Valgrind, address-sanitizer, etc.
• Look for inconsistencies with documentation (header files)
• Test edge cases (integer overflows, out of memory, ...)
• Fuzzing (e.g. AFL)

9 | Winter 2023/24, www.iaik.tugraz.at/ssd



Defensive Programming www.tugraz.at

• How to find bugs:
• Compiler warnings
• Static code analysis (cppcheck/scan-build)
• Valgrind, address-sanitizer, etc.
• Look for inconsistencies with documentation (header files)
• Test edge cases (integer overflows, out of memory, ...)
• Fuzzing (e.g. AFL)

9 | Winter 2023/24, www.iaik.tugraz.at/ssd



Defensive Programming www.tugraz.at

• How to find bugs:
• Compiler warnings
• Static code analysis (cppcheck/scan-build)
• Valgrind, address-sanitizer, etc.
• Look for inconsistencies with documentation (header files)
• Test edge cases (integer overflows, out of memory, ...)
• Fuzzing (e.g. AFL)

9 | Winter 2023/24, www.iaik.tugraz.at/ssd



Test cases www.tugraz.at

• We provide some basic test cases
• They are correct but do not cover all edge cases!
• Implement your own exhaustive test cases
• Think of corner cases

• NULL pointers, integer overflows, out of mem, ...

• Good coverage yields bonus points (if above 50%)
Overall branch coverage Bonus points
65% <= cov < 70% 1
70% <= cov < 80% 2
80% <= cov < 90% 3
90% <= cov < 95% 4
95% <= cov 5

10 | Winter 2023/24, www.iaik.tugraz.at/ssd



Test cases www.tugraz.at

• We provide some basic test cases
• They are correct but do not cover all edge cases!
• Implement your own exhaustive test cases
• Think of corner cases

• NULL pointers, integer overflows, out of mem, ...

• Good coverage yields bonus points (if above 50%)
Overall branch coverage Bonus points
65% <= cov < 70% 1
70% <= cov < 80% 2
80% <= cov < 90% 3
90% <= cov < 95% 4
95% <= cov 5

10 | Winter 2023/24, www.iaik.tugraz.at/ssd



Test cases www.tugraz.at

• We provide some basic test cases
• They are correct but do not cover all edge cases!
• Implement your own exhaustive test cases
• Think of corner cases

• NULL pointers, integer overflows, out of mem, ...

• Good coverage yields bonus points (if above 50%)
Overall branch coverage Bonus points
65% <= cov < 70% 1
70% <= cov < 80% 2
80% <= cov < 90% 3
90% <= cov < 95% 4
95% <= cov 5

10 | Winter 2023/24, www.iaik.tugraz.at/ssd



Test cases www.tugraz.at

• We provide some basic test cases
• They are correct but do not cover all edge cases!
• Implement your own exhaustive test cases
• Think of corner cases

• NULL pointers, integer overflows, out of mem, ...

• Good coverage yields bonus points (if above 50%)
Overall branch coverage Bonus points
65% <= cov < 70% 1
70% <= cov < 80% 2
80% <= cov < 90% 3
90% <= cov < 95% 4
95% <= cov 5

10 | Winter 2023/24, www.iaik.tugraz.at/ssd



Test cases www.tugraz.at

• We provide some basic test cases
• They are correct but do not cover all edge cases!
• Implement your own exhaustive test cases
• Think of corner cases

• NULL pointers, integer overflows, out of mem, ...

• Good coverage yields bonus points (if above 50%)
Overall branch coverage Bonus points
65% <= cov < 70% 1
70% <= cov < 80% 2
80% <= cov < 90% 3
90% <= cov < 95% 4
95% <= cov 5

10 | Winter 2023/24, www.iaik.tugraz.at/ssd



Test cases www.tugraz.at

• We provide some basic test cases
• They are correct but do not cover all edge cases!
• Implement your own exhaustive test cases
• Think of corner cases

• NULL pointers, integer overflows, out of mem, ...

• Good coverage yields bonus points (if above 50%)
Overall branch coverage Bonus points
65% <= cov < 70% 1
70% <= cov < 80% 2
80% <= cov < 90% 3
90% <= cov < 95% 4
95% <= cov 5

10 | Winter 2023/24, www.iaik.tugraz.at/ssd



Test cases www.tugraz.at

• We provide some basic test cases
• They are correct but do not cover all edge cases!
• Implement your own exhaustive test cases
• Think of corner cases

• NULL pointers, integer overflows, out of mem, ...

• Good coverage yields bonus points (if above 50%)
Overall branch coverage Bonus points
65% <= cov < 70% 1
70% <= cov < 80% 2
80% <= cov < 90% 3
90% <= cov < 95% 4
95% <= cov 5

10 | Winter 2023/24, www.iaik.tugraz.at/ssd



Earning Points www.tugraz.at

• 35 points for Defensive Part
• Correctly implement all functions

• 5 bonus points
• Bonus points are given for good code coverage.
• Check using: make test && make gcov

11 | Winter 2023/24, www.iaik.tugraz.at/ssd



Earning Points www.tugraz.at

• 35 points for Defensive Part
• Correctly implement all functions

• 5 bonus points
• Bonus points are given for good code coverage.
• Check using: make test && make gcov

11 | Winter 2023/24, www.iaik.tugraz.at/ssd



Earning Points www.tugraz.at

• 35 points for Defensive Part
• Correctly implement all functions

• 5 bonus points
• Bonus points are given for good code coverage.
• Check using: make test && make gcov

11 | Winter 2023/24, www.iaik.tugraz.at/ssd



Implementation Flaws www.tugraz.at

We test your submission against our own test suite.
Implementation flaws or issues will (in addition to failed testcases)
globally reduce points, regardless of whether exploitable or not!
• -5 points per issue

• Hard program crash, segfault and similar
• Memory corruptions/leaks, use after free, use of uninitialized
memory

• other stuff reported by valgrind, address sanitizer & co
• Format string vulnerability, integer overflow, ...
• Undefined behavior, e.g. (void*)x + 1
• Non-portable, hidden assumptions, e.g. sizeof(int) == 4
• Hard-to-read or dangerous code, e.g. #define F(x) x = x*x
• Use of global variables
• Compiler warnings with -Wall

12 | Winter 2023/24, www.iaik.tugraz.at/ssd



Implementation Flaws www.tugraz.at

We test your submission against our own test suite.
Implementation flaws or issues will (in addition to failed testcases)
globally reduce points, regardless of whether exploitable or not!
• -5 points per issue

• Hard program crash, segfault and similar
• Memory corruptions/leaks, use after free, use of uninitialized
memory

• other stuff reported by valgrind, address sanitizer & co
• Format string vulnerability, integer overflow, ...
• Undefined behavior, e.g. (void*)x + 1
• Non-portable, hidden assumptions, e.g. sizeof(int) == 4
• Hard-to-read or dangerous code, e.g. #define F(x) x = x*x
• Use of global variables
• Compiler warnings with -Wall

12 | Winter 2023/24, www.iaik.tugraz.at/ssd



Implementation Flaws www.tugraz.at

We test your submission against our own test suite.
Implementation flaws or issues will (in addition to failed testcases)
globally reduce points, regardless of whether exploitable or not!
• -5 points per issue

• Hard program crash, segfault and similar
• Memory corruptions/leaks, use after free, use of uninitialized
memory

• other stuff reported by valgrind, address sanitizer & co
• Format string vulnerability, integer overflow, ...
• Undefined behavior, e.g. (void*)x + 1
• Non-portable, hidden assumptions, e.g. sizeof(int) == 4
• Hard-to-read or dangerous code, e.g. #define F(x) x = x*x
• Use of global variables
• Compiler warnings with -Wall

12 | Winter 2023/24, www.iaik.tugraz.at/ssd



Implementation Flaws www.tugraz.at

We test your submission against our own test suite.
Implementation flaws or issues will (in addition to failed testcases)
globally reduce points, regardless of whether exploitable or not!
• -5 points per issue

• Hard program crash, segfault and similar
• Memory corruptions/leaks, use after free, use of uninitialized
memory

• other stuff reported by valgrind, address sanitizer & co
• Format string vulnerability, integer overflow, ...
• Undefined behavior, e.g. (void*)x + 1
• Non-portable, hidden assumptions, e.g. sizeof(int) == 4
• Hard-to-read or dangerous code, e.g. #define F(x) x = x*x
• Use of global variables
• Compiler warnings with -Wall

12 | Winter 2023/24, www.iaik.tugraz.at/ssd



Implementation Flaws www.tugraz.at

We test your submission against our own test suite.
Implementation flaws or issues will (in addition to failed testcases)
globally reduce points, regardless of whether exploitable or not!
• -5 points per issue

• Hard program crash, segfault and similar
• Memory corruptions/leaks, use after free, use of uninitialized
memory

• other stuff reported by valgrind, address sanitizer & co
• Format string vulnerability, integer overflow, ...
• Undefined behavior, e.g. (void*)x + 1
• Non-portable, hidden assumptions, e.g. sizeof(int) == 4
• Hard-to-read or dangerous code, e.g. #define F(x) x = x*x
• Use of global variables
• Compiler warnings with -Wall

12 | Winter 2023/24, www.iaik.tugraz.at/ssd



Implementation Flaws www.tugraz.at

We test your submission against our own test suite.
Implementation flaws or issues will (in addition to failed testcases)
globally reduce points, regardless of whether exploitable or not!
• -5 points per issue

• Hard program crash, segfault and similar
• Memory corruptions/leaks, use after free, use of uninitialized
memory

• other stuff reported by valgrind, address sanitizer & co
• Format string vulnerability, integer overflow, ...
• Undefined behavior, e.g. (void*)x + 1
• Non-portable, hidden assumptions, e.g. sizeof(int) == 4
• Hard-to-read or dangerous code, e.g. #define F(x) x = x*x
• Use of global variables
• Compiler warnings with -Wall

12 | Winter 2023/24, www.iaik.tugraz.at/ssd



Implementation Flaws www.tugraz.at

We test your submission against our own test suite.
Implementation flaws or issues will (in addition to failed testcases)
globally reduce points, regardless of whether exploitable or not!
• -5 points per issue

• Hard program crash, segfault and similar
• Memory corruptions/leaks, use after free, use of uninitialized
memory

• other stuff reported by valgrind, address sanitizer & co
• Format string vulnerability, integer overflow, ...
• Undefined behavior, e.g. (void*)x + 1
• Non-portable, hidden assumptions, e.g. sizeof(int) == 4
• Hard-to-read or dangerous code, e.g. #define F(x) x = x*x
• Use of global variables
• Compiler warnings with -Wall

12 | Winter 2023/24, www.iaik.tugraz.at/ssd



Implementation Flaws www.tugraz.at

We test your submission against our own test suite.
Implementation flaws or issues will (in addition to failed testcases)
globally reduce points, regardless of whether exploitable or not!
• -5 points per issue

• Hard program crash, segfault and similar
• Memory corruptions/leaks, use after free, use of uninitialized
memory

• other stuff reported by valgrind, address sanitizer & co
• Format string vulnerability, integer overflow, ...
• Undefined behavior, e.g. (void*)x + 1
• Non-portable, hidden assumptions, e.g. sizeof(int) == 4
• Hard-to-read or dangerous code, e.g. #define F(x) x = x*x
• Use of global variables
• Compiler warnings with -Wall

12 | Winter 2023/24, www.iaik.tugraz.at/ssd



Implementation Flaws www.tugraz.at

We test your submission against our own test suite.
Implementation flaws or issues will (in addition to failed testcases)
globally reduce points, regardless of whether exploitable or not!
• -5 points per issue

• Hard program crash, segfault and similar
• Memory corruptions/leaks, use after free, use of uninitialized
memory

• other stuff reported by valgrind, address sanitizer & co
• Format string vulnerability, integer overflow, ...
• Undefined behavior, e.g. (void*)x + 1
• Non-portable, hidden assumptions, e.g. sizeof(int) == 4
• Hard-to-read or dangerous code, e.g. #define F(x) x = x*x
• Use of global variables
• Compiler warnings with -Wall

12 | Winter 2023/24, www.iaik.tugraz.at/ssd



Implementation Flaws www.tugraz.at

We test your submission against our own test suite.
Implementation flaws or issues will (in addition to failed testcases)
globally reduce points, regardless of whether exploitable or not!
• -5 points per issue

• Hard program crash, segfault and similar
• Memory corruptions/leaks, use after free, use of uninitialized
memory

• other stuff reported by valgrind, address sanitizer & co
• Format string vulnerability, integer overflow, ...
• Undefined behavior, e.g. (void*)x + 1
• Non-portable, hidden assumptions, e.g. sizeof(int) == 4
• Hard-to-read or dangerous code, e.g. #define F(x) x = x*x
• Use of global variables
• Compiler warnings with -Wall

12 | Winter 2023/24, www.iaik.tugraz.at/ssd



HELP! How should I start? www.tugraz.at

• Pull from upstream
• Read the provided README.md, Assignment.md
• Read the provided header files
• Check out already implemented functions
• Ask on our Discord channel!
• Come by during question hours!

13 | Winter 2023/24, www.iaik.tugraz.at/ssd



HELP! How should I start? www.tugraz.at

• Pull from upstream
• Read the provided README.md, Assignment.md
• Read the provided header files
• Check out already implemented functions
• Ask on our Discord channel!
• Come by during question hours!

13 | Winter 2023/24, www.iaik.tugraz.at/ssd



HELP! How should I start? www.tugraz.at

• Pull from upstream
• Read the provided README.md, Assignment.md
• Read the provided header files
• Check out already implemented functions
• Ask on our Discord channel!
• Come by during question hours!

13 | Winter 2023/24, www.iaik.tugraz.at/ssd



HELP! How should I start? www.tugraz.at

• Pull from upstream
• Read the provided README.md, Assignment.md
• Read the provided header files
• Check out already implemented functions
• Ask on our Discord channel!
• Come by during question hours!

13 | Winter 2023/24, www.iaik.tugraz.at/ssd



HELP! How should I start? www.tugraz.at

• Pull from upstream
• Read the provided README.md, Assignment.md
• Read the provided header files
• Check out already implemented functions
• Ask on our Discord channel!
• Come by during question hours!

13 | Winter 2023/24, www.iaik.tugraz.at/ssd



HELP! How should I start? www.tugraz.at

• Pull from upstream
• Read the provided README.md, Assignment.md
• Read the provided header files
• Check out already implemented functions
• Ask on our Discord channel!
• Come by during question hours!

13 | Winter 2023/24, www.iaik.tugraz.at/ssd




	Defensive Programming
	Task: Defensive Programming

