

SCIENCE PASSION TECHNOLOGY

Digital System Integration and Programming

Barbara Gigerl, Rishub Nagpal

October 4th, 2023

> www.iaik.tugraz.at

Outline

1. Digital system integration and programming

Outline

- 1. Digital system integration and programming
- 2. About this course

Outline

- 1. Digital system integration and programming
- 2. About this course
- 3. Outlook: Projects

Digital system integration

- Digital systems: very complex
- System integration: connect multiple complex systems to achieve a certain goal

Digital system integration

- Digital systems: very complex
- System integration: connect multiple complex systems to achieve a certain goal

...and programming

Hardware and software

Digital system integration

- Digital systems: very complex
- System integration: connect multiple complex systems to achieve a certain goal

...and programming

Hardware and software

Digital system integration

- Digital systems: very complex
- System integration: connect multiple complex systems to achieve a certain goal

...and programming

Hardware and software

A **System-on-a-Chip (SoC)** is a complex system which:

consists of several components.

- consists of several components.
- Each component itself is a complex system.

- consists of several components.
- Each component itself is a complex system.
 - CPU

- consists of several components.
- Each component itself is a complex system.
 - CPU
 - Memory

- consists of several components.
- Each component itself is a complex system.
 - CPU
 - Memory
 - Bus architectures

- consists of several components.
- Each component itself is a complex system.
 - CPU
 - Memory
 - Bus architectures
 - I/O modules

- consists of several components.
- Each component itself is a complex system.
 - CPU
 - Memory
 - Bus architectures
 - I/O modules
 - Co-processors

- consists of several components.
- Each component itself is a complex system.
 - CPU
 - Memory
 - Bus architectures
 - I/O modules
 - Co-processors
 - Analog circuits

A **System-on-a-Chip (SoC)** is a complex system which:

- consists of several components.
- Each component itself is a complex system.
 - CPU
 - Memory
 - Bus architectures
 - I/O modules
 - Co-processors
 - Analog circuits

•••

A quick history

• 1970s: VLSI design

- 1970s: VLSI design
 - VLSI = Very large-scale integration

- 1970s: VLSI design
 - VLSI = Very large-scale integration
 - Combining millions of MOS transistors into an integrated circuit

- 1970s: VLSI design
 - VLSI = Very large-scale integration
 - Combining millions of MOS transistors into an integrated circuit
- 1990s: System-on-a-chip

- 1970s: VLSI design
 - VLSI = Very large-scale integration
 - Combining millions of MOS transistors into an integrated circuit
- 1990s: System-on-a-chip
 - System integration: integration of a complete system, that until recently consisted of multiple ICs, onto a single IC (a SoC)

- 1970s: VLSI design
 - VLSI = Very large-scale integration
 - Combining millions of MOS transistors into an integrated circuit
- 1990s: System-on-a-chip
 - System integration: integration of a complete system, that until recently consisted of multiple ICs, onto a single IC (a SoC)
- Today: SoC is the state-of-the-art principle for designing chips

Smartphones

Smartphones

Tablets

Used in iPhone XS, XS Max, XR

- Used in iPhone XS, XS Max, XR
- 7nm CMOS, 6.9 billion transistors

- Used in iPhone XS, XS Max, XR
- 7nm CMOS, 6.9 billion transistors
- Components:

- Used in iPhone XS, XS Max, XR
- 7nm CMOS, 6.9 billion transistors
- Components:
 - 64-bit ARMv8.3A (6 performance CPUs, 4 energy-efficient CPUs)

- Used in iPhone XS, XS Max, XR
- 7nm CMOS, 6.9 billion transistors
- Components:
 - 64-bit ARMv8.3A (6 performance CPUs, 4 energy-efficient CPUs)
 - Four-core GPU

- Used in iPhone XS, XS Max, XR
- 7nm CMOS, 6.9 billion transistors
- Components:
 - 64-bit ARMv8.3A (6 performance CPUs, 4 energy-efficient CPUs)
 - Four-core GPU
 - Neural Engine with 8 cores

- Used in iPhone XS, XS Max, XR
- 7nm CMOS, 6.9 billion transistors
- Components:
 - 64-bit ARMv8.3A (6 performance CPUs, 4 energy-efficient CPUs)
 - Four-core GPU
 - Neural Engine with 8 cores

...

Example: Qualcomm Snapdragon 865

• Used in smartphones by ZTE, Sony, OnePlus, LG, ...

Example: Qualcomm Snapdragon 865

- Used in smartphones by ZTE, Sony, OnePlus, LG, ...
- 7nm CMOS

- Used in smartphones by ZTE, Sony, OnePlus, LG, ...
- 7nm CMOS
- Components:

- Used in smartphones by ZTE, Sony, OnePlus, LG, ...
- 7nm CMOS
- Components:
 - Several ARM Cortex-A77 and Cortex-A55-based CPUs

- Used in smartphones by ZTE, Sony, OnePlus, LG, ...
- 7nm CMOS
- Components:
 - Several ARM Cortex-A77 and Cortex-A55-based CPUs
 - Deidcated processor for ISP for photos and videos

- Used in smartphones by ZTE, Sony, OnePlus, LG, ...
- 7nm CMOS
- Components:
 - Several ARM Cortex-A77 and Cortex-A55-based CPUs
 - Deidcated processor for ISP for photos and videos
 - Wi-Fi

- Used in smartphones by ZTE, Sony, OnePlus, LG, ...
- 7nm CMOS
- Components:
 - Several ARM Cortex-A77 and Cortex-A55-based CPUs
 - Deidcated processor for ISP for photos and videos
 - Wi-Fi
 - SPU: dedicated subsystem for boot-loader, key management unit, crypto accelerators, ...

SoC for industrial applications

- SoC for industrial applications
- Used in thermostats, firewalls, Lego Mindstorms

- SoC for industrial applications
- Used in thermostats, firewalls, Lego Mindstorms
- 1 GHz ARM CPU

- SoC for industrial applications
- Used in thermostats, firewalls, Lego Mindstorms
- 1 GHz ARM CPU
- On-chip quad-core PRU (Programmable Realtime Unit)

 Smart meters: low-resource devices to monitor and control bidirectional electricity consumption

- Smart meters: low-resource devices to monitor and control bidirectional electricity consumption
- Unauthorized access to SM data can impact operation of electric power system

- Smart meters: low-resource devices to monitor and control bidirectional electricity consumption
- Unauthorized access to SM data can impact operation of electric power system

- Smart meters: low-resource devices to monitor and control bidirectional electricity consumption
- Unauthorized access to SM data can impact operation of electric power system
- SM data needs protection but PQC schemes are very heavy

- Smart meters: low-resource devices to monitor and control bidirectional electricity consumption
- Unauthorized access to SM data can impact operation of electric power system
- SM data needs protection but PQC schemes are very heavy
- Costa et al. [CLR22]
 - ARM processor: FrodoKEM
 - FPGA: SHAKE128 hash function which is part of FrodoKEM

A traditional SoC consists of:

Processor(s): mostly ARM cores

- Processor(s): mostly ARM cores
- GPU: depending on the field of application, ranging from simple cores for small LCDs to 4k screens

- Processor(s): mostly ARM cores
- GPU: depending on the field of application, ranging from simple cores for small LCDs to 4k screens
- Co-processors: for security, real-time signal processing, neural engines...

- Processor(s): mostly ARM cores
- GPU: depending on the field of application, ranging from simple cores for small LCDs to 4k screens
- Co-processors: for security, real-time signal processing, neural engines...
- I/O interfaces: Ethernet, SPI, USB, ADC, ...

- Processor(s): mostly ARM cores
- GPU: depending on the field of application, ranging from simple cores for small LCDs to 4k screens
- Co-processors: for security, real-time signal processing, neural engines...
- I/O interfaces: Ethernet, SPI, USB, ADC, ...
- A bus connecting all components: AMBA, AXI, CoreConnect, ...

Advantages

Advantages

Low silicon area

Advantages

- Low silicon area
- Power efficiency (no need for complex component wiring)

Advantages

- Low silicon area
- Power efficiency (no need for complex component wiring)
- Low manufacturing costs

Advantages

- Low silicon area
- Power efficiency (no need for complex component wiring)
- Low manufacturing costs
- Smaller power supply unit

Advantages

- Low silicon area
- Power efficiency (no need for complex component wiring)
- Low manufacturing costs
- Smaller power supply unit

Advantages

- Low silicon area
- Power efficiency (no need for complex component wiring)
- Low manufacturing costs
- Smaller power supply unit

Disadvantages:

Resulting system is very complex

Advantages

- Low silicon area
- Power efficiency (no need for complex component wiring)
- Low manufacturing costs
- Smaller power supply unit

- Resulting system is very complex
- High design and development costs

SoC Design Methodology

SoC Players

- GDSII: data format to describe ICs
- Technology file: information about manufacturing (metals, IC layers, ...)

Who are we?

Barbara Gigerl

PhD student @ Graz University of Technology

Formal Verification of Side-Channel Protected Implementations

- ✓ barbara.gigerl@iaik.tugraz.at
- <mark>∠</mark> sip-team@iaik.tugraz.at

Who are we?

Rishub Nagpal

PhD student @ Graz University of Technology

Power side-channel attacks and defenses for cryptographic implementations

- ✓ rishub.nagpal@iaik.tugraz.at
- <mark>∠</mark> sip-team@iaik.tugraz.at

Topics for Master Thesis

Looking for a master thesis?

 \rightarrow https://www.iaik.tugraz.at/teaching/master-thesis/ We have lots of interesting open topics:)

Alternatively, email us.

Contact

- General information: https://www.iaik.tugraz.at/sip
- Questions and concerns by E-Mail mailto:sip-team@iaik.tugraz.at
- Questions and concerns via Discord https://discord.gg/9KKGfndsD5
- Come by our office (IF01052 and IF01060)

)	MEE6 . BOT 03/17/2021
	Please react to this message to register for a Master 's course
	for Cloud Operating Systems (CloudOS) for Cryptanalysis
	for Cryptography (Crypto)
	🧟 for Cryptographic Engineering (Crypto Engineering)
	je for Digital System Design (DSD)
	for Digital System Integration and Programming (SIP)
	for Mobile Security (MobileSec)
	👷 for Model Checking (MC)
	📩 for Modern Public Key Crypto (MPKC)
	👳 for Privacy Enhancing Technologies (PETS)
	for Secure Application Design (SEAD)
	💽 for Secure Product Lifecycle (SPL)
	👾 for Secure Software Development (SSD)
	Reference for Side-Channel Security (SCS)
	🗸 for Verification and Testing (VT) (edited)
	📤 42 🐁 44 🔑 103 💻 80 🔋 38 🔳 60 🚊 53

We build our own SoC

We focus on the front-end design

We build our own SoC

- We focus on the front-end design
- We use an FPGA in order to build a prototype of our SoC

We build our own SoC

- We focus on the front-end design
- We use an FPGA in order to build a prototype of our SoC
- Our Platform: Zybo Zynq Boards
- We focus on the front-end design
- We use an FPGA in order to build a prototype of our SoC
- Our Platform: Zybo Zynq Boards
 - Xilinx FPGA

- We focus on the front-end design
- We use an FPGA in order to build a prototype of our SoC
- Our Platform: Zybo Zynq Boards
 - Xilinx FPGA
 - 650Mhz dual-core Cortex-A9 processor

- We focus on the front-end design
- We use an FPGA in order to build a prototype of our SoC
- Our Platform: Zybo Zynq Boards
 - Xilinx FPGA
 - 650Mhz dual-core Cortex-A9 processor
 - HDMI, VGA, USB, SPI, Ethernet, Audio, ...

- We focus on the front-end design
- We use an FPGA in order to build a prototype of our SoC
- Our Platform: Zybo Zynq Boards
 - Xilinx FPGA
 - 650Mhz dual-core Cortex-A9 processor
 - HDMI, VGA, USB, SPI, Ethernet, Audio, ...
 - Connected via AXI bus

Build a working prototype

- Build a working prototype
- Project management and self-organization

- Build a working prototype
- Project management and self-organization
- Presentation of: ideas, results, technology in English

- Build a working prototype
- Project management and self-organization
- Presentation of: ideas, results, technology in English
- Preparation for project/thesis

*	
2	

SIP addresses advanced-level students. You need:

• Knowledge about hardware including an HDL (Verilog/VHDL)

- Knowledge about hardware including an HDL (Verilog/VHDL)
- Very good C/C++ skills

- Knowledge about hardware including an HDL (Verilog/VHDL)
- Very good C/C++ skills
- Some knowledge about Linux

- Knowledge about hardware including an HDL (Verilog/VHDL)
- Very good C/C++ skills
- Some knowledge about Linux

- Buildroot/Yocto, kernel modules, drivers, device trees, GPIO

- Knowledge about hardware including an HDL (Verilog/VHDL)
- Very good C/C++ skills
- Some knowledge about Linux

- Buildroot/Yocto, kernel modules, drivers, device trees, GPIO
- Some knowledge about FPGAs, bus protocols, CPUs, networks

- Knowledge about hardware including an HDL (Verilog/VHDL)
- Very good C/C++ skills
- Some knowledge about Linux

- Buildroot/Yocto, kernel modules, drivers, device trees, GPIO
- Some knowledge about FPGAs, bus protocols, CPUs, networks
- Very good time-management skills

- Knowledge about hardware including an HDL (Verilog/VHDL)
- Very good C/C++ skills
- Some knowledge about Linux

- Buildroot/Yocto, kernel modules, drivers, device trees, GPIO
- Some knowledge about FPGAs, bus protocols, CPUs, networks
- Very good time-management skills
- Good presentation skills

We offer:

Project driven work (group-oriented, project-centric)

- Project driven work (group-oriented, project-centric)
- Hands-on project with real hardware

- Project driven work (group-oriented, project-centric)
- Hands-on project with real hardware
- Upgrading of soft skills

Ò

- Project driven work (group-oriented, project-centric)
- Hands-on project with real hardware
- Upgrading of soft skills
 - Presentations

ď	

- Project driven work (group-oriented, project-centric)
- Hands-on project with real hardware
- Upgrading of soft skills
 - Presentations
 - Speaking English

ď

- Project driven work (group-oriented, project-centric)
- Hands-on project with real hardware
- Upgrading of soft skills
 - Presentations
 - Speaking English
 - Group communication

ď

We expect:

Investment of time

- Investment of time
 - SIP: 3 VU (5 ECTS)

- Investment of time
 - SIP: 3 VU (5 ECTS)
 - 5×25 = 125 hours work = 28 days of 8 hours

- Investment of time
 - SIP: 3 VU (5 ECTS)
 - 5×25 = 125 hours work = 28 days of 8 hours
- Active communication within your group

- Investment of time
 - SIP: 3 VU (5 ECTS)
 - 5×25 = 125 hours work = 28 days of 8 hours
- Active communication within your group
- Active participation, presence during lectures

- Investment of time
 - SIP: 3 VU (5 ECTS)
 - 5×25 = 125 hours work = 28 days of 8 hours
- Active communication within your group
- Active participation, presence during lectures
 - Courses with continual assessment (UE, VU, SE, etc.) are subject to compulsory attendance (§ 15 of the Statute part Legal Regulations for Academic Affairs).

Your grade consists of:

Project 1: 20%

- Project 1: 20%
 - Individual work, independent submissions

- Project 1: 20%
 - Individual work, independent submissions
- Project 2: 50%

- Project 1: 20%
 - Individual work, independent submissions
- Project 2: 50%
 - Team work in groups of 3-4 students

- Project 1: 20%
 - Individual work, independent submissions
- Project 2: 50%
 - Team work in groups of 3-4 students
- Seminar presentation: 30%

- Project 1: 20%
 - Individual work, independent submissions
- Project 2: 50%
 - Team work in groups of 3-4 students
- Seminar presentation: 30%
 - Selection from course catalog OR suggest your own topic

- Project 1: 20%
 - Individual work, independent submissions
- Project 2: 50%
 - Team work in groups of 3-4 students
- Seminar presentation: 30%
 - Selection from course catalog OR suggest your own topic
 - Slides are reviewed by us (submit until Monday evening)

- Project 1: 20%
 - Individual work, independent submissions
- Project 2: 50%
 - Team work in groups of 3-4 students
- Seminar presentation: 30%
 - Selection from course catalog OR suggest your own topic
 - Slides are reviewed by us (submit until Monday evening)
- Bonus points for questions during/after seminar presentations

Team work

- Team Size for Project 1: 1
- Team Size for Project 2:
 - Group size = Number of Participants / Number of Boards = 27 / 8
 - 5 groups of 3, 3 groups of 4
- Team Size for Seminar presentation: 1
Registration Process

- 1. Find a group
- 2. Register your group: sip-team@iaik.tugraz.at
- 3. Wait for the confirmation mail to get your group number
- 4. Choose a seminar topic
- 5. Register for a seminar topic: https://www.termino.gv.at/meet/b/ 96af1b7b54cbfe4fbfbcdb4a2bb94788-256179
- 6. Receive your git repositories (by email)

Deadline: Monday, 9.10., 23:59

Sessions

Regular weekly sessions: Wednesday 10:00 - 12:00, IFEG042

- Regular weekly sessions: Wednesday 10:00 12:00, IFEG042
- Program for each session

- Regular weekly sessions: Wednesday 10:00 12:00, IFEG042
- Program for each session
 - 1. Seminar talk + discussion

- Regular weekly sessions: Wednesday 10:00 12:00, IFEG042
- Program for each session
 - 1. Seminar talk + discussion
 - 2. Seminar talk + discussion

- Regular weekly sessions: Wednesday 10:00 12:00, IFEG042
- Program for each session
 - 1. Seminar talk + discussion
 - 2. Seminar talk + discussion
 - 3. Seminar talk + discussion

- Regular weekly sessions: Wednesday 10:00 12:00, IFEG042
- Program for each session
 - 1. Seminar talk + discussion
 - 2. Seminar talk + discussion
 - 3. Seminar talk + discussion
 - 4. Everyone briefly (1-2 sentences) comments on own project progress

- Regular weekly sessions: Wednesday 10:00 12:00, IFEG042
- Program for each session
 - 1. Seminar talk + discussion
 - 2. Seminar talk + discussion
 - 3. Seminar talk + discussion
 - 4. Everyone briefly (1-2 sentences) comments on own project progress
 - 5. Questions, problems about the project

Preliminary timeline

Date	Торіс
04.10.	Kick-off / Introduction to Seminar Topics / SoC Design Flow Tutorial
11.10.	Embedded Linux Tutorial / Presentation Project 1
18.10.	Debugging Tutorial
25.10.	Q&A Project 1
1.11.	Public holiday (no meeting)
8.11.	Seminar talks + Q&A
15.11.	Presentation Project 2a+2b / Seminar talks + Q&A
22.11.	Seminar talks + Q&A
29.11.	Seminar talks + Q&A
6.12.	Seminar talks + Q&A
13.12.	Seminar talks + Q&A
10.01.	Seminar talks + Q&A
17.01.	Seminar talks + Q&A
24.01.	Seminar talks + Q&A

Important Dates and Deadlines

Date	Торіс
9.10., 23:59	Deadline Group Registration
14.11., 23:59	Deadline Project 1
15.1117.11.	Exercise Interviews Project 1
12.12., 23:59	Deadline Project 2a
13.1215.12.	Exercise Interviews Project 2a
23.01., 23:59	Deadline Project 2b
24.0126.01.	Exercise Interviews Project 2a

 Get to know the board and run through all steps

- Get to know the board and run through all steps
- Design hardware, build a driver, write an application

- Get to know the board and run through all steps
- Design hardware, build a driver, write an application
- Access the LEDs from a bare-metal application and from within Linux

- Get to know the board and run through all steps
- Design hardware, build a driver, write an application
- Access the LEDs from a bare-metal application and from within Linux
- No team work; everybody should do all steps (share your board within group)

- Get to know the board and run through all steps
- Design hardware, build a driver, write an application
- Access the LEDs from a bare-metal application and from within Linux
- No team work; everybody should do all steps (share your board within group)
- Aim: After completing, everybody should have the same basic knowledge.

 Use knowledge from Project 1 to build larger system

- Use knowledge from Project 1 to build larger system
- FPGA runs NN to classify images from the MNIST test dataset

- Use knowledge from Project 1 to build larger system
- FPGA runs NN to classify images from the MNIST test dataset
- Receive image via Ethernet send to NN return classification result to correct user

- Use knowledge from Project 1 to build larger system
- FPGA runs NN to classify images from the MNIST test dataset
- Receive image via Ethernet send to NN return classification result to correct user
- Team work

- Use knowledge from Project 1 to build larger system
- FPGA runs NN to classify images from the MNIST test dataset
- Receive image via Ethernet send to NN return classification result to correct user
- Team work
- Aim: Get some deeper understanding of the topic

References I

[CLR22] Vinicius Lagrota Rodrigues da Costa, Julio Lopez, and Moises Vidal Ribeiro. A System-on-a-Chip Implementation of a Post-Quantum Cryptography Scheme for Smart Meter Data Communications. Sensors 22.19 (2022), p. 7214. DOI: 10.3390/s22197214. URL: https://doi.org/10.3390/s22197214.