FPGAs and Neural Networks

Clemens Lechner January 24, 2024

- Basics of neural networks (NNs) and important factors for hardware design
- Why traditional computer architectures struggle with NNs
- An overview of state of the art NN accelerators
- An example NN accelerator architecture on an FPGA
- A short outlook on *future technologies*

Introduction to Neural Networks

- Fundamental *building block* of neural networks [1]
- Learnable weights
- Usually nonlinear activation function σ
- *Resources* used:
 - *Memory:* weights (and inputs)
 - *Computational:* Multiply-Accumulate (*MAC*) and activation

Figure 1: Artificial Neuron

- Network of Artificial Neurons [1]
- Architecture *varies* depending on *application* and required *model capacity*

Figure 2: Neural Network

- An appropriate loss function is added after the output layer [1]
- Loss is *evaluated* for *training samples* consisting of inputs $\langle x \rangle$ and targets $\langle t \rangle$
- *Gradient* of loss is computed and *propagated back* through the network (*Backpropagation*)
- Weights are "nudged" proportionally to their negative gradients, minimizing loss (Gradient Descend)

- Can be viewed as two separate problems
- Training:
 - Usually only performed *during development*
 - Resource intensive
- Inference:
 - Deploy a pretrained model
 - Less resources needed
- Two *different hardware platforms* could be considered (e.g.: train on server deploy on edge/embedded)

Selection of *fields of application*: [2]

- Speech recognition
- Computer vision
- Pattern recognition
- Natural language processing
- Finance

Neural Networks on Hardware Platforms

- Basis for traditional computer architectures
- Memory Access Bottleneck [3]
- Traditionally no parallelization [3]
- Modern CPUs still have *low degree of* parallelization

Figure 3: Von Neumann Architecture [4]

(GP)GPU: Solving Parallelization

- GPUs originally designed for graphics workloads (high parallelization and memory bandwidth) [5]
- *GPGPU:* general purpose computing on GPUs [5]
- APIs: CUDA (NVIDIA), OpenCL [6]
- Now: dedicated *"AI GPUs"* like NVIDIA H100 Tensor Core GPU [7]

Figure 4: CPU vs GPU architecture [5]

Try to solve two problems specifically:

- Parallelization of matrix multiplication
- Von Neumann *memory bottleneck*

Usually designed as coprocessors either as

- *standalone* ASIC (i.e.: Google TPU [8]) or as
- IP in SoC or FPGA

Figure 5: Floor plan of Google Tensor Processing Unit (TPU) [8] Currently neural network architectures are subject to *fast-paced improvements*. Thus, the *flexibility of FPGAs* could be leveraged for NN Accelerators:

- Can be tailored to a specific NN architecture
- Could complement software via runtime partial reconfiguration
- Can leverage High Level Sythesis for rapid development
- Rollout of Over-The-Air (OTA) updates

Example Architecture: ZynqNet

- Image classification using a convolutional neural network (CNN) architecture based on SqueezeNet [6]
- Accelerator for *Inference* on Zynq-7000 Series SoC
- Design for *high throughput* and *real-time* classification

Figure 6: Zynqbox Embedded Platform with ZynqNet Accelerator [6]

- NN architecture particularly suited for *operations on image data* [6]
- Several *learnable* convolutional *filter kernels*
- Exploit *locality of information* in images
- Weight sharing through convolution operation
- Can be computed using nested loops (high parallelism through loop unrolling)

Figure 7: Convolution Operation [9] ¹³

- NN architecture particularly suited for *operations on image data* [6]
- Several *learnable* convolutional *filter kernels*
- Exploit *locality of information* in images
- Weight sharing through convolution operation
- Can be computed using nested loops (high parallelism through loop unrolling)

Figure 7: Convolution Operation [9] ¹³

- NN architecture particularly suited for *operations on image data* [6]
- Several *learnable* convolutional *filter kernels*
- Exploit *locality of information* in images
- Weight sharing through convolution operation
- Can be computed using nested loops (high parallelism through loop unrolling)

- NN architecture particularly suited for *operations on image data* [6]
- Several *learnable* convolutional *filter kernels*
- Exploit *locality of information* in images
- Weight sharing through convolution operation
- Can be computed using nested loops (high parallelism through loop unrolling)

Figure 7: Convolution Operation [9]

- NN architecture particularly suited for *operations on image data* [6]
- Several *learnable* convolutional *filter kernels*
- Exploit *locality of information* in images
- Weight sharing through convolution operation
- Can be computed using nested loops (high parallelism through loop unrolling)

Figure 7: Convolution Operation [9]

- NN architecture particularly suited for *operations on image data* [6]
- Several *learnable* convolutional *filter kernels*
- Exploit *locality of information* in images
- Weight sharing through convolution operation
- Can be computed using nested loops (high parallelism through loop unrolling)

Figure 7: Convolution Operation [9]

ZynqNet Topology

Figure 8: High-Level Visualization of the ZynqNet Topology. Red dots symbolize *Convolutional Layers* with ReLu Activations, yellow dots *Concatenations* or the final *Average Pooling*. [6]

Figure 9: Sample Images from the *ImageNet Dataset* (white shark, banana, volcano, fire engine, pomeranian, space shuttle, toilet paper) [6]

ZynqNet Hardware Architecture

Implemented as AXI-Peripheral [6]

- *N*_{PE} = 16 parallel MAC units for filter dot products
- Uses single-precision *floating-point arithmetic*
- Caches for
 - Image (ICache)
 - Outputs (OCache)
 - Weights (WCache)
 - Global Pooling (GPoolCache)
- Implemented with *ideal caching* strategy

Figure 10: Block Diagram of ZynqNet accelerator [6]

Results (1)

- Maximum operating frequency:
 f_{max} = 200 MHz [6]
- Throughput: 1.95 s per frame vs 45 s on ARM CPU at f = 100 MHz
- Stated improvements:
 - Configuring the FPGA clock at $f_{max} = 200 \text{ MHz}$
 - Using 16-bit *fixed-point* instead of single-precision floating-point
 - Resolving a *pipeline flushing issue* in the High-Level-Synthesis (slow-down factor of 6.2x)

Table 1: Resource Requirements and FPGAUtilization of ZynqNet when synthesized forZynq XC-7Z045. [6]

Block RAM	DSP Slices	FF	LUT
996 1090	739	137 k	154 k
91%	82%	437 K 31 %	70%
	Block RAM 996 1090 91%	Block RAM DSP Slices 996 739 1090 900 911% 82%	Block RAM DSP Slices FF 996 739 137 k 1090 0900 437 k 91% 82 % 31 %

Results (2)

Table 2: Comparison of ZynqNet CNN to CNN Architectures from prior work [6]

	#conv. layers	#MACCs [millions]	#params [millions]	#activations [millions]	ImageNet top-5 error
ZynqNet CNN	18	530	2.5	8.8	15.4%
AlexNet	5	1 140	62.4	2.4	19.7%
Network-in-Network	12	$1\ 100$	7.6	4.0	~19.0%
VGG-16	16	15 470	138.3	29.0	8.1%
GoogLeNet	22	1600	7.0	10.4	9.2%
ResNet-50	50	3 870	25.6	46.9	7.0%
Inception v3	48	5 710	23.8	32.6	5.6%
Inception-ResNet-v2	96	9 210	31.6	74.5	4.9%
SqueezeNet	18	860	1.2	12.7	19.7%
SqueezeNet v1.1	18	390	1.2	7.8	19.7%

Reducing weight and activation precision for inference. [10]

- Enables *small, low-latency and energy efficient* neural network solutions.
- Two main classes of algorithms:
 - Post-Training-Quantization (PTQ)
 - Quantization-Aware-Training (QAT)
- Example: Moving from 32 to 8 bits:
 - Memory overhead decreases by factor of 4.
 - Computational cost for matrix multiplications decreases quadratically by factor of 16.
- Moving from Floating-Point to Fixed-Point eliminates need for floating-point logic

Quantization Grids Comparison

Figure 11: A visual explanation of the different uniform quantization grids for a bit width of 8. [10]

Post-Training-Quantization (PTQ)

Figure 12: Standard PTQ pipeline according to [10]. CLE stands for Cross-layer-equalization.

Table 3: Performance (average over 5 runs) of PTQ pipeline for various models and tasks. *Higher is better* in all cases. [10]

		Per-tensor		Per-channel	
Models	FP32	W8A8	W4A8	W8A8	W4A8
ResNet18	69.68	69.60	68.62	69.56	68.91
ResNet50	76.07	75.87	75.15	75.88	75.43
MobileNetV2	71.72	70.99	69.21	71.16	69.79
InceptionV3	77.40	77.68	76.48	77.71	76.82
EfficientNet lite	75.42	75.25	71.24	75.39	74.01
DeeplabV3	72.94	72.44	70.80	72.27	71.67
EfficientDet-D1	40.08	38.29	0.31	38.67	35.08
BERT-base [†]	83.06	82.43	81.76	82.77	82.02

Quantization-Aware-Training (QAT)

 Symmetric Weights
 MSE Range Setting

 Pre-trained FP model
 CLE
 Add Quantizers
 Range Estimation
 Learnable Quantization Params

 Add Add Add Add Austrizers
 Range Estimation
 Description

Figure 14: Standard QAT pipeline according to [10]. CLE stands for Croll-layer-equalization.

Figure 13: Forward and backward computation graph for Quantization-Aware-Training [10]

Table 4: Performance (average over 3 runs) of QAT pipeline for various models and tasks.Higher is better in all cases. [10]

		Per-tensor			Per-channel		
Models	FP32	W8A8	W4A8	W4A4	W8A8	W4A8	W4A4
ResNet18	69.68	70.38	69.76	68.32	70.43	70.01	68.83
ResNet50	76.07	76.21	75.89	75.10	76.58	76.52	75.53
InceptionV3	77.40	78.33	77.84	77.49	78.45	78.12	77.74
MobileNetV2	71.72	71.76	70.17	66.43	71.82	70.48	66.89
EfficientNet lite	75.42	75.17	71.55	70.22	74.75	73.92	71.55
DeeplabV3	72.94	73.99	70.90	66.78	72.87	73.01	68.90
EfficientDet-D1	40.08	38.94	35.34	24.70	38.97	36.75	28.68
BERT-base	83.06	83.26	82.64	78.83	82.44	82.39	77.63

Outlook: Breaking the Memory Bottleneck

In-Memory Computing (IMC)

Idea: *Compute in situ* instead of in separate memory and compute units [11] Problem: Low density of SRAM; difficulties combining DRAM with logic

- Multiple new *nonvolatile memory (NVM)* technologies are developed to overcome IMC's integration issues.
- Analog or mixed approaches to solve common operations are explored: e.g. matrix-vector multiplication via Ohm's and Kirchhoff's laws in a memory array.

Figure 15: Performance characteristics of various emerging memory demonstrators. [11]

References

- [1] F. Pernkopf and C. Knoll, Computational intelligence (lecture notes), 2021.
- [2] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad, State-of-the-art in artificial neural network applications: A survey, 2018. [Online]. Available: https://www.cell.com/heliyon/pdf/S2405-8440(18)33206-7.pdf.
- [3] I. Arikpo, F. Ogban, and I. Eteng, Von neumann architecture and modern computers, Global Journal of Mathematical Sciences, vol. 6, no. 2, pp. 97–103, 2007.
- [4] W. Commons, Von neumann architecture, (2013), [Online]. Available: https://commons.wikimedia.org/wiki/File:Von_Neumann_Architecture.svg.

References ii

- [5] P. Gupta, Cuda refresher: Reviewing the origins of gpu computing, 2020. [Online]. Available: https://developer.nvidia.com/blog/cuda-refresher-reviewing-the-origins-of-gpucomputing/.
- [6] D. Gschwend, Zynqnet: An fpga-accelerated embedded convolutional neural network, arXiv preprint arXiv:2005.06892, 2020.
- [7] Nvidia h100 tensor core gpu datasheet, NVIDIA Corporation, 2023. [Online]. Available: https: //resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet.
- [8] N. P. Jouppi, C. Young, N. Patil, et al., In-datacenter performance analysis of a tensor processing unit, in Proceedings of the 44th annual international symposium on computer architecture, 2017, pp. 1–12.
- [9] S. Saha, A comprehensive guide to convolutional neural networks, 2018. [Online]. Available: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neuralnetworks-the-eli5-way-3bd2b1164a53.

- [10] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. Van Baalen, and T. Blankevoort, A white paper on neural network quantization, arXiv preprint arXiv:2106.08295, 2021.
- [11] S. Yu, H. Jiang, S. Huang, X. Peng, and A. Lu, Compute-in-memory chips for deep learning: Recent trends and prospects, IEEE Circuits and Systems Magazine, vol. 21, no. 3, pp. 31–56, 2021. DOI: 10.1109/MCAS.2021.3092533.