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Motivation and Goals

• Basics of neural networks (NNs) and important factors for hardware design

• Why traditional computer architectures struggle with NNs

• An overview of state of the art NN accelerators

• An example NN accelerator architecture on an FPGA

• A short outlook on future technologies
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Introduction to Neural Networks



Aritificial Neuron

• Fundamental building block of neural

networks [1]

• Learnable weights

• Usually nonlinear activation function σ

• Resources used:

• Memory: weights (and inputs)

• Computational: Multiply-Accumulate

(MAC) and activation
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Figure 1: Artificial Neuron
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Neural Network

• Network of Artificial Neurons [1]

• Architecture varies depending on

application and required model

capacity
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Figure 2: Neural Network
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Training: Backpropagation and Gradient Descent

• An appropriate loss function is added after the output layer [1]

• Loss is evaluated for training samples consisting of inputs ⟨x⟩ and targets ⟨t⟩
• Gradient of loss is computed and propagated back through the network

(Backpropagation)

• Weights are “nudged” proportionally to their negative gradients, minimizing loss

(Gradient Descend)
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Training vs. Inference

• Can be viewed as two separate problems

• Training:

• Usually only performed during development

• Resource intensive

• Inference:

• Deploy a pretrained model

• Less resources needed

• Two different hardware platforms could be considered (e.g.: train on server deploy

on edge/embedded)
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Fields of Application

Selection of fields of application: [2]

• Speech recognition

• Computer vision

• Pattern recognition

• Natural language processing

• Finance
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Neural Networks on Hardware

Platforms



Von Neumann Architecture

• Basis for traditional computer

architectures

• Memory Access Bottleneck [3]

• Traditionally no parallelization [3]

• Modern CPUs still have low degree of

parallelization

Figure 3: Von Neumann Architecture [4]
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(GP)GPU: Solving Parallelization

• GPUs originally designed for graphics

workloads (high parallelization and

memory bandwidth) [5]

• GPGPU: general purpose computing

on GPUs [5]

• APIs: CUDA (NVIDIA), OpenCL [6]

• Now: dedicated “AI GPUs” like

NVIDIA H100 Tensor Core GPU [7]
Figure 4: CPU vs GPU architecture [5]
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Dedicated Neural Network Accelerators

Try to solve two problems specifically:

• Parallelization of matrix multiplication

• Von Neumann memory bottleneck

Usually designed as coprocessors either as

• standalone ASIC (i.e.: Google TPU

[8]) or as

• IP in SoC or FPGA

Figure 5: Floor plan of Google Tensor

Processing Unit (TPU) [8]
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NN Accelerators on FPGAs

Currently neural network architectures are subject to fast-paced improvements. Thus,

the flexibility of FPGAs could be leveraged for NN Accelerators:

• Can be tailored to a specific NN architecture

• Could complement software via runtime partial reconfiguration

• Can leverage High Level Sythesis for rapid development

• Rollout of Over-The-Air (OTA) updates
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Example Architecture: ZynqNet



ZynqNet Overview

• Image classification using a

convolutional neural network

(CNN) architecture based on

SqueezeNet [6]

• Accelerator for Inference on

Zynq-7000 Series SoC

• Design for high throughput

and real-time classification Figure 6: Zynqbox Embedded Platform with ZynqNet

Accelerator [6]

12



Convolutional Neural Networks (CNNs)

• NN architecture particularly suited for

operations on image data [6]

• Several learnable convolutional filter

kernels

• Exploit locality of information in

images

• Weight sharing through convolution

operation

• Can be computed using nested loops

(high parallelism through loop

unrolling)
Figure 7: Convolution Operation [9] 13
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ZynqNet Topology

Figure 8: High-Level Visualization of the ZynqNet Topology. Red dots symbolize

Convolutional Layers with ReLu Activations, yellow dots Concatenations or the final Average

Pooling. [6]

Figure 9: Sample Images from the ImageNet Dataset (white shark, banana, volcano, fire

engine, pomeranian, space shuttle, toilet paper) [6] 14



ZynqNet Hardware Architecture

Implemented as AXI-Peripheral [6]

• NPE = 16 parallel MAC units for filter

dot products

• Uses single-precision floating-point

arithmetic

• Caches for

• Image (ICache)

• Outputs (OCache)

• Weights (WCache)

• Global Pooling (GPoolCache)

• Implemented with ideal caching

strategy

Figure 10: Block Diagram of ZynqNet accelerator [6]
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Results (1)

• Maximum operating frequency:

fmax = 200MHz [6]

• Throughput: 1.95 s per frame vs 45 s

on ARM CPU at f = 100MHz

• Stated improvements:

• Configuring the FPGA clock at

fmax = 200MHz

• Using 16-bit fixed-point instead of

single-precision floating-point

• Resolving a pipeline flushing issue in

the High-Level-Synthesis (slow-down

factor of 6.2x)

Table 1: Resource Requirements and FPGA

Utilization of ZynqNet when synthesized for

Zynq XC-7Z045. [6]
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Results (2)

Table 2: Comparison of ZynqNet CNN to CNN Architectures from prior work [6]
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Neural Network Quantization

Reducing weight and activation precision for inference. [10]

• Enables small, low-latency and energy efficient neural network solutions.

• Two main classes of algorithms:

• Post-Training-Quantization (PTQ)

• Quantization-Aware-Training (QAT)

• Example: Moving from 32 to 8 bits:

• Memory overhead decreases by factor of 4.

• Computational cost for matrix multiplications decreases quadratically by factor of 16.

• Moving from Floating-Point to Fixed-Point eliminates need for floating-point logic
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Quantization Grids Comparison

Figure 11: A visual explanation of the different uniform quantization grids for a bit width of 8.

[10]
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Post-Training-Quantization (PTQ)

Figure 12: Standard PTQ pipeline according to [10]. CLE stands for Cross-layer-equalization.
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PTQ Performance

Table 3: Performance (average over 5 runs) of PTQ pipeline for various models and tasks.

Higher is better in all cases. [10]
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Quantization-Aware-Training (QAT)

Figure 13: Forward and backward

computation graph for

Quantization-Aware-Training [10]

Figure 14: Standard QAT pipeline according to [10].

CLE stands for Croll-layer-equalization.
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QAT Performance

Table 4: Performance (average over 3 runs) of QAT pipeline for various models and tasks.

Higher is better in all cases. [10]
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Outlook: Breaking the Memory

Bottleneck



In-Memory Computing (IMC)

Idea: Compute in situ instead of in separate

memory and compute units [11]

Problem: Low density of SRAM; difficulties

combining DRAM with logic

• Multiple new nonvolatile memory (NVM)

technologies are developed to overcome IMC’s

integration issues.

• Analog or mixed approaches to solve common

operations are explored: e.g. matrix-vector

multiplication via Ohm’s and Kirchhoff’s laws

in a memory array.

Figure 15: Performance

characteristics of various emerging

memory demonstrators. [11]
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