
Project 2 1

SIP WS 2023
Project 2: FPGA-based image classification

1 Organization

• Group size: 2-4

• Deadline 2a: 12.12.2023, 23:59

• Deadline 2b: 23.01.2023, 23:59

• git repositories: git.teaching.iaik.tugraz.at

• Project material: https://extgit.iaik.tugraz.at/sip/project2

Where to ask questions

• In our weekly sessions

• Discord: https://discord.gg/9KKGfndsD5

• E-Mail: sip-team@iaik.tugraz.at

CPU

SD Card

weights

FPGA
SIPnet

"8"

Figure 1: System overview

2 System specification

FPGAs play an increasingly important role in the artificial intelligence field. In this project
we will explore hardware-accelerated image recognition by porting SIPnet, a simple neural
network, to an FPGA. SIPnet reads an input image from the MNIST dataset [4, 5], which
consists of images of handwritten digits, performs classification and outputs the digit which is
visible in the image. SIPnet has already been trained, i.e., all the values for weights are already
available, we will focus on the evaluation phase. In our system, the images and weights are
stored on the SD card. To initialize SIPnet, the weights are first written into the FPGA’s

git.teaching.iaik.tugraz.at
https://extgit.iaik.tugraz.at/sip/project2
https://discord.gg/9KKGfndsD5
mailto:sip-team@iaik.tugraz.at


Project 2 2

Layer 3Layer 2Layer 1Input layer

28

28

(784)

relu

relu

relu

relu

relu

relu

(50)

... ...

relu

relu

relu

relu

relu

relu

...

(25)

...

(10)

"5"

W1: (784x50)
b1: (784)

W2: (50x25)
b2: (25)

W3: (25x10)
b3: (10)

0
0
0
0
0
1
0
0
0
0

Figure 2: Overview of SIPnet

block RAM (BRAM) by the CPU. The BRAM is memory used to store large amounts of data
which needs to be easily accessible by the FPGA and via the AXI bus by the CPU. In order to
classify an image, the image is written to the BRAM by the CPU. During classification, SIPnet
loads the weights and image data from the BRAM, performs the respective computations and
outputs the correct digit.

2.1 SIPnet

As shown in Figure 2, SIPnet consists of three layers. The input layer transforms the 28x28-
image into a vector of 784 entries. Every pixel is normalized to the range [0,1], i.e. divided by
256, yielding the vector I. Layer 1 is a fully connected layer working with the 784x50-weight
matrix W1, the bias vector b1 which has 784 entries, and the ReLU activation function. The
output of layer 1 o1 is computed as follows:

o1 = ReLU(I ×W1 + b1)

o1 is a vector with 50 entries. It is given to layer 2, which is also fully connected. Layer
2 works with the 50x25-weight matrix W2, the bias vector b2 which has 25 entries, and the
ReLU activation function. The output of layer 2 o2 is computed as follows:

o2 = ReLU(o1 ×W2 + b2)

o2 is a vector with 25 entries. It is given to layer 3, the output layer, which is also fully
connected. Layer 3 works with the 25x10-weight matrix W3, the bias vector b3 which has 10
entries. The output of layer 3 o3 is computed as follows:

o3 = o2 ×W3 + b3

Note that in this case no activation function is applied. The index of the entry of o3 which
has the highest value is (most likely) the digit shown in the input image. For this project,
training of SIPnet was already done and you are given the values for weights and biases. The
accuracy of SIPnet (when evaluated on unseen test data) is 95.58%.



Project 2 3

Fixed-point arithmetic A big challenge when creating hardware implementations of neural
networks is dealing with floating point numbers. One strategy is to use a special neural network
architecture, such as a binarized neural network [3, 6], which restricts the values of the weights,
biases and input values to ± 1. Another strategy is to use fixed-point arithmetic instead of
floating point arithmetic. The idea of fixed-point arithmetic is to represent fractional numbers
as an integer reserving a fixed number of bits for the fractional part [1, 7, 8]. For example,
considering 8-bit integers, one could reserve 5 bits for the fractional part and the MSB for
the sign bit. Each bit in the 8-bit integer represents the prefix of a power of two:

sign 23 2122 20 2-1 2-32-2,
In this format, the decimal number (6.325)10 is (00110.011)2 because:

(6.325)10 = 6 + 0.325 = 4 + 2 + 0.25 + 0.125

= 0 ∗ 23 + 1 ∗ 22 + 1 ∗ 21 + 0 ∗ 20 + 0 ∗ 2−1 + 1 ∗ 2−2 +1 ∗2−3

= (00110.011)2 = (33)16

Similar to that, the hexadecimal number (5f)16 would be (11.875)10 because:

(5f)16 = (01011.111)2

= 1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 + 1 ∗ 2−1 + 1 ∗ 2−2 +1 ∗2−3

= (11.875)10

The resolution of the fraction is 0.125, meaning that the number after the comma can only
be either .0, .125, .25, .325, .5, .625, .750 or .875.

To build SIPnet, we use 16-bit fixed point numbers. Let x be such a number, and let x[15 : 0]
be the bits of x. Then, x[15] will be used to store the sign bit, i.e., whether the number is
positive or negative. x[14 : 9] is used to store the integer bits (”before comma”), and x[8 : 0]
is used to store the fractional bits (”after comma”). While the big advantage of fixed-point
arithmetic is that it is easier to use in an hardware implementation, the disadvantage is
the loss of accuracy. In case of SIPnet, the accuracy when using fixed-point arithmetic is
95.15%. Note that for the project, all the weights and images will be given to you already in
(normalized) fixed-point format. If needed, you can find the respective conversion functions
in the fixed point arithmetic directory.



Project 2 4

Load bi <= b1[i]
j <= 0

Load wij <= W1[i][j]

m = wij * pxl, L_res += m
if (j!= 783) Load pxl <= I[j+1]

j <= j+1

i <= 0

no

yes j != 783

yes

L_res += bi, L_res_act = ReLU(L_res),
Store L_res_act

i <= i+1

no

i != 49

IN
IT

_O
U

TE
R

IN
IT

_I
N

N
ER

1

LO
AD

_W
IJ

LO
AD

_P
XL

ST
O

R
E_

R
ES

Load pxl <= I[0]

IN
IT

_I
N

N
ER

2

... Move to layer 2 ...

Figure 3: State machine used by SIPnet. States are only shown for the first layer.

2.2 BRAM

The BRAM is memory used to store large amounts of data which needs to be easily accessible
by the FPGA, and via the AXI bus by the CPU [2]. In our project, the BRAM is used to store
weights, biases and the image data itself, which are all 16-bit fixed-point numbers. Therefore,
the used BRAM has a word size of 16 bit. The BRAM size is 41644 × 16 bit, which is used
to store the values of I,W1, b1,W2, b2,W3, b3 and intermediate computation results. In order
to instantiate BRAM, the Block Memory Generator from the IP Catalog can be used.

To initialize SIPnet, the CPU reads the values of W1, b1,W2, b2,W3, b3 from the SD card
and writes it to BRAM. The connection to the BRAM is done over the AXI bus. One option
would be to directly wrap the BRAM into an AXI IP core, using the BRAM controller IP core
from the IP catalog. It is however not suitable for this project since it only supports 32-bit
word sizes, and does not allow so large BRAM sizes because every BRAM cell is mapped to
an AXI register. Instead, we use a custom IP core called DataManager, which maps a single
32-bit AXI register. Whenever the CPU writes something to it, a write is also triggered in



Project 2 5

the BRAM. The first 16 bit are used for the BRAM address, the second 16 bit are used for
the value which should be written to BRAM. To classify an image, the CPU reads the image
data from the SD card and writes it to BRAM. Initialization should only be done once in the
beginning before classifying several images.

While the CPU only writes to the BRAM, SIPnet performs read and write accesses. Read
accesses happen while loading the values of I,W1, b1,W2, b2,W3 and b3 from BRAM. Write
accesses happen when the intermediate results (o1 and o2) are stored to BRAM, to be loaded
again when computing the next layer. The state machine implemented by SIPnet is shown in
Figure 3, with the loads and stores highlighted.

The memory map used by CPU and SIPnet is given as follows:

Space needed
[x 16 bit]

Begin
Address

End
Address

MNIST image 784 0 783
W1 39200 784 399983
b1 50 39984 40033
W2 1250 40034 41283
b2 25 41284 41308
W3 250 41309 41558
b3 10 41559 41568
o1 50 41569 41618
o2 25 41619 41643

For example, when storing the first pixel of the image, a write to address 0 is performed.
Accessing the 28th value of b1 would require to read from address 40012.

The BRAM uses the following interface:

• addr (16 bit, input): indicates where to write to or read from

• din (16 bit, input): data to be written to BRAM

• dout (16 bit, output): data to be read from BRAM

• en (1 bit, input): indicates that a read or write access happens

• we (1 bit, input): indicates that a write access happens

Note that write accesses can only happen if both en and we are high. Reads from BRAM
have a latency of one cycle. For example, when setting the address in cycle t0, the respective
data is available in t1.

2.3 Project 2a

Create a hardware design as shown in the sketch in Figure 4, connecting SIPnet to the BRAM
and the CPU. Demonstrate that classification with SIPnet works by creating a bare-metal
application and a Linux device driver.

• Create a custom IP core which runs SIPnet. It is connected to the AXI bus. The CPU
can instruct SIPnet to start the classification (AXI Write). The CPU can also read



Project 2 6

start classification

[addr,value]

CPU

read

SIPNet
result (digit) AX

I

write

Block RAM
addr,value

DataManager

AX
I

Figure 4: Sketch of block design

whether the classification is finished, and the classification result (AXI Read). Find the
source code for SIPnet in the sipnet* directory. (7P)

• Create a BRAM with 41644 memory locations of 16 bit each. Use the Block Memory
Generator from the IP Catalog. It must be in Stand Alone mode, of True Dual Port
RAM type. Read and write widths are 16 bit. Make sure to untick the Primitives
Output Register option! (3P)

• Create a custom IP core called DataManager. It is connected to the AXI bus. The
CPU can write a 32-bit value to the DataManager. The first 16 bit are used for the
BRAM address, the second 16 bit are used for the value which should be written to the
BRAM. (5P)

• Connect the SIPnet to the BRAM (Port A). Connect the DataManager to the BRAM
(Port B). Be aware that SIPnet performs read and write accesses, while the DataMan-
ager only performs write accesses (set enb = web). Create an AXI VIP test environment
to demonstrate the resulting block design works. For testing purposes, perform some
AXI Read and Write accesses. (5P)

• Write a bare-metal program which reads the values for weights, biases and pixels from
the SD card, utilizes the DataManager to store the values to the BRAM, starts classi-
fication with SIPnet and reads back the digit once the classification is done. A small
demo program using files on the SD card can be found in the sddemo directory. Find
the weights, biases and images in fixed-point format in the data directory. Make sure
that building xilffs as a Supported Library is enabled in the Board Support Package
Settings. (5P)

• Write a device driver representing the DataManager and the SIPnet as a file in the
procfs. Then, write a user program demonstrating reading/writing of the weights and
classification (c.f. previous point). (5P)

* Important note: The directory includes the Verilog code of SIPnet in rtl, and a Makefile
to build a Verilator testbench. The files bram.v and SIPnet top.sv are only for simulation
using Verilator, and must not be included in your custom IP core.



Project 2 7

2.4 Project 2b

CPU
SD Card

weights
FPGA
SIPnet

"8"

User 1 User 2 User 3 User 4 User 5

Figure 5: System overview

The FPGA which runs SIPnet will be offered to customers as a service on the web. Customers
can submit an image from the MNIST dataset and retrieve the respective digit via ethernet.
However, sometimes the system is very busy and a lot of customers might be submitting a lot
of images at the same time. Create mechanisms to handle a lot of user requests, i.e., every
user should get the classification result eventually.

• Create a web server which allows a single user to connect to the system and upload an
MNIST image. Classify the image (as done in part 2a) and send the result back to the
user. (10P)

• Extend the web server such that multiple users can submit MNIST images at the same
time. Every user must eventually get their classification result. Create a test setup to
demonstrate the functionality of the system in a multi-user environment. (7P)

• Is the resulting system secure? If no, which attacks would be possible? How can these
attacks be prevented? Note down at least three ideas in a file called security.md (3P)

3 Submission

1. Export your block design within Vivado: write bd tcl −force bd. tcl

2. Commit bd.tcl and your constraints file (base.xdc)

3. Commit your custom IP cores.



Project 2 8

4. Commit all the relevant software (device driver, bare metal program, ...)

5. Add a readme including any other relevant information.

6. Tag your submission:

git tag Project2[a|b]

git push --tags

7. Choose a time slot for the exercise interview (will be sent out via E-mail)

References

[1] Mokhtar Aboelaze. Verilog Review and Fixed Point Arithmetics. 2012. url: https :

//www.eecs.yorku.ca/course_archive/2011-12/W/4210/L3.pdf.

[2] Inc. Advanced Micro Devices. LogiCORE IP Block Memory Generator v7.1. 2012. url:
https://docs.xilinx.com/v/u/en-US/blk_mem_gen_ds512.

[3] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
“Binarized Neural Networks”. In: Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain. Ed. by Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg,
Isabelle Guyon, and Roman Garnett. 2016, pp. 4107–4115.

[4] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-based learning
applied to document recognition”. In: Proc. IEEE 86.11 (1998), pp. 2278–2324.

[5] Yann LeCun, Corinna cortes, and Christopher J.C. Burges. 1998. url: http://yann.

lecun.com/exdb/mnist/.

[6] Eriko Nurvitadhi, David Sheffield, Jaewoong Sim, Asit K. Mishra, Ganesh Venkatesh,
and Debbie Marr. “Accelerating Binarized Neural Networks: Comparison of FPGA, CPU,
GPU, and ASIC”. In: 2016 International Conference on Field-Programmable Technology,
FPT 2016, Xi’an, China, December 7-9, 2016. Ed. by Yuchen Song, Shaojun Wang,
Brent Nelson, Junbao Li, and Yu Peng. IEEE, 2016, pp. 77–84.

[7] Hayden So. Introduction to Fixed Point Number Representation. 2006. url: https:

//inst.eecs.berkeley.edu/~cs61c/sp06/handout/fixedpt.html.

[8] Randy Yates. Fixed-Point Arithmetic: An Introduction. 2007. url: https://courses.cs.
washington.edu/courses/cse467/08au/labs/l5/fp.pdf.

https://www.eecs.yorku.ca/course_archive/2011-12/W/4210/L3.pdf
https://www.eecs.yorku.ca/course_archive/2011-12/W/4210/L3.pdf
https://docs.xilinx.com/v/u/en-US/blk_mem_gen_ds512
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://inst.eecs.berkeley.edu/~cs61c/sp06/handout/fixedpt.html
https://inst.eecs.berkeley.edu/~cs61c/sp06/handout/fixedpt.html
https://courses.cs.washington.edu/courses/cse467/08au/labs/l5/fp.pdf
https://courses.cs.washington.edu/courses/cse467/08au/labs/l5/fp.pdf

	Organization
	System specification
	SIPnet
	BRAM
	Project 2a
	Project 2b

	Submission

