
Cloud Operating Systems

Daniel Gruss

2024-03-04

Cloud means Efficiency

How does the cloud bring efficiency?

Apply OS techniques - Example?

• Processes used to have access to all physical memory → that’s not efficient!

→ Virtualize memory → processes can share resources of one machine and utilize it better

• Processes need all the same pages → that’s not efficient!

→ Let them share memory, using COW, page deduplication, etc.

• Processes often cannot do anything but wait → that’s not efficient!

→ Let other processes run in between

1 Daniel Gruss

How does the cloud bring efficiency?

Apply OS techniques - Example?

• Processes used to have access to all physical memory → that’s not efficient!

→ Virtualize memory → processes can share resources of one machine and utilize it better

• Processes need all the same pages → that’s not efficient!

→ Let them share memory, using COW, page deduplication, etc.

• Processes often cannot do anything but wait → that’s not efficient!

→ Let other processes run in between

1 Daniel Gruss

How does the cloud bring efficiency?

Apply OS techniques - Example?

• Processes used to have access to all physical memory → that’s not efficient!

→ Virtualize memory → processes can share resources of one machine and utilize it better

• Processes need all the same pages → that’s not efficient!

→ Let them share memory, using COW, page deduplication, etc.

• Processes often cannot do anything but wait → that’s not efficient!

→ Let other processes run in between

1 Daniel Gruss

How does the cloud bring efficiency?

Apply OS techniques - Example?

• Processes used to have access to all physical memory → that’s not efficient!

→ Virtualize memory → processes can share resources of one machine and utilize it better

• Processes need all the same pages → that’s not efficient!

→ Let them share memory, using COW, page deduplication, etc.

• Processes often cannot do anything but wait → that’s not efficient!

→ Let other processes run in between

1 Daniel Gruss

How does the cloud bring efficiency?

Apply OS techniques - Example?

• Processes used to have access to all physical memory → that’s not efficient!

→ Virtualize memory → processes can share resources of one machine and utilize it better

• Processes need all the same pages → that’s not efficient!

→ Let them share memory, using COW, page deduplication, etc.

• Processes often cannot do anything but wait → that’s not efficient!

→ Let other processes run in between

1 Daniel Gruss

How does the cloud bring efficiency?

Apply OS techniques - Example?

• Processes used to have access to all physical memory → that’s not efficient!

→ Virtualize memory → processes can share resources of one machine and utilize it better

• Processes need all the same pages → that’s not efficient!

→ Let them share memory, using COW, page deduplication, etc.

• Processes often cannot do anything but wait → that’s not efficient!

→ Let other processes run in between

1 Daniel Gruss

IaaS: VMs, Servers, Storage, Load Balancing, Network, ... PaaS: Runtime, Database, Web server, Dev Tools, ... SaaS: CRM, Email, virtual desktop, communication, games, ...

Different techniques - similar challenges

• Efficiency

• Isolation of tenants (security, reliability, availability)

• Abstraction of hardware

2 Daniel Gruss

Different techniques - similar challenges

• Efficiency

• Isolation of tenants (security, reliability, availability)

• Abstraction of hardware

2 Daniel Gruss

Different techniques - similar challenges

• Efficiency

• Isolation of tenants (security, reliability, availability)

• Abstraction of hardware

2 Daniel Gruss

What is Virtualization?

Virtualization allows to represent resources in a computer in a way they can be used easily

and without the need to know details of their properties

3 Daniel Gruss

Virtual Machines (VM)

• Decouple operating system from hardware

• “computer in computer” - implemented in software

• includes devices (network, keyboard, sound...)

• OS in VM “sees” its hardware, irrespective from the actual hardware in use

• OS does not know if HW is concurrently used by other VMS

4 Daniel Gruss

Virtual Machines (VM)

• Decouple operating system from hardware

• “computer in computer” - implemented in software

• includes devices (network, keyboard, sound...)

• OS in VM “sees” its hardware, irrespective from the actual hardware in use

• OS does not know if HW is concurrently used by other VMS

4 Daniel Gruss

Virtual Machines (VM)

• Decouple operating system from hardware

• “computer in computer” - implemented in software

• includes devices (network, keyboard, sound...)

• OS in VM “sees” its hardware, irrespective from the actual hardware in use

• OS does not know if HW is concurrently used by other VMS

4 Daniel Gruss

Virtual Machines (VM)

• Decouple operating system from hardware

• “computer in computer” - implemented in software

• includes devices (network, keyboard, sound...)

• OS in VM “sees” its hardware, irrespective from the actual hardware in use

• OS does not know if HW is concurrently used by other VMS

4 Daniel Gruss

Virtual Machines (VM)

• Decouple operating system from hardware

• “computer in computer” - implemented in software

• includes devices (network, keyboard, sound...)

• OS in VM “sees” its hardware, irrespective from the actual hardware in use

• OS does not know if HW is concurrently used by other VMS

4 Daniel Gruss

Why virtualization

• Cheaper hardware: one server for one task was common

• most of these servers: idle time 90%

• cost issue:

• support, maintenance

• power consumption (operation, cooling)

• space

• Virtualization allows consolidation

• multiple servers on one box

5 Daniel Gruss

Why virtualization

• Cheaper hardware: one server for one task was common

• most of these servers: idle time 90%

• cost issue:

• support, maintenance

• power consumption (operation, cooling)

• space

• Virtualization allows consolidation

• multiple servers on one box

5 Daniel Gruss

Why virtualization

• Cheaper hardware: one server for one task was common

• most of these servers: idle time 90%

• cost issue:

• support, maintenance

• power consumption (operation, cooling)

• space

• Virtualization allows consolidation

• multiple servers on one box

5 Daniel Gruss

Why virtualization

• Cheaper hardware: one server for one task was common

• most of these servers: idle time 90%

• cost issue:

• support, maintenance

• power consumption (operation, cooling)

• space

• Virtualization allows consolidation

• multiple servers on one box

5 Daniel Gruss

Why virtualization

• Cheaper hardware: one server for one task was common

• most of these servers: idle time 90%

• cost issue:

• support, maintenance

• power consumption (operation, cooling)

• space

• Virtualization allows consolidation

• multiple servers on one box

5 Daniel Gruss

Why virtualization

• Cheaper hardware: one server for one task was common

• most of these servers: idle time 90%

• cost issue:

• support, maintenance

• power consumption (operation, cooling)

• space

• Virtualization allows consolidation

• multiple servers on one box

5 Daniel Gruss

Why virtualization

• Cheaper hardware: one server for one task was common

• most of these servers: idle time 90%

• cost issue:

• support, maintenance

• power consumption (operation, cooling)

• space

• Virtualization allows consolidation

• multiple servers on one box

5 Daniel Gruss

Why virtualization

• Cheaper hardware: one server for one task was common

• most of these servers: idle time 90%

• cost issue:

• support, maintenance

• power consumption (operation, cooling)

• space

• Virtualization allows consolidation

• multiple servers on one box

5 Daniel Gruss

Why virtualization

• Cheaper hardware: one server for one task was common

• most of these servers: idle time 90%

• cost issue:

• support, maintenance

• power consumption (operation, cooling)

• space

• Virtualization allows consolidation

• multiple servers on one box

5 Daniel Gruss

Why virtualization

• Cheaper hardware: one server for one task was common

• most of these servers: idle time 90%

• cost issue:

• support, maintenance

• power consumption (operation, cooling)

• space

• Virtualization allows consolidation

• multiple servers on one box

5 Daniel Gruss

Why virtualization

• Cheaper hardware: one server for one task was common

• most of these servers: idle time 90%

• cost issue:

• support, maintenance

• power consumption (operation, cooling)

• space

• Virtualization allows consolidation

• multiple servers on one box

5 Daniel Gruss

Advantages

• Better hardware utilization

• Lower administration cost

• long-term operations of older applications

• lower down-times

• simple migration to more powerful hardware

6 Daniel Gruss

Advantages

• Better hardware utilization

• Lower administration cost

• long-term operations of older applications

• lower down-times

• simple migration to more powerful hardware

6 Daniel Gruss

Advantages

• Better hardware utilization

• Lower administration cost

• long-term operations of older applications

• lower down-times

• simple migration to more powerful hardware

6 Daniel Gruss

Advantages

• Better hardware utilization

• Lower administration cost

• long-term operations of older applications

• lower down-times

• simple migration to more powerful hardware

6 Daniel Gruss

Advantages

• Better hardware utilization

• Lower administration cost

• long-term operations of older applications

• lower down-times

• simple migration to more powerful hardware

6 Daniel Gruss

Advantages

• Better hardware utilization

• Lower administration cost

• long-term operations of older applications

• lower down-times

• simple migration to more powerful hardware

6 Daniel Gruss

Advantages

• Better hardware utilization

• Lower administration cost

• long-term operations of older applications

• lower down-times

• simple migration to more powerful hardware

6 Daniel Gruss

Advantages

• Better hardware utilization

• Lower administration cost

• long-term operations of older applications

• lower down-times

• simple migration to more powerful hardware

6 Daniel Gruss

Disadvantages

• Performance cost: slower I/O operation

• single point of failure: requires better hardware reliability

• security gets more complex

7 Daniel Gruss

Disadvantages

• Performance cost: slower I/O operation

• single point of failure: requires better hardware reliability

• security gets more complex

7 Daniel Gruss

Disadvantages

• Performance cost: slower I/O operation

• single point of failure: requires better hardware reliability

• security gets more complex

7 Daniel Gruss

Disadvantages

• Performance cost: slower I/O operation

• single point of failure: requires better hardware reliability

• security gets more complex

7 Daniel Gruss

Disadvantages

• Performance cost: slower I/O operation

• single point of failure: requires better hardware reliability

• security gets more complex

7 Daniel Gruss

Disadvantages

• Performance cost: slower I/O operation

• single point of failure: requires better hardware reliability

• security gets more complex

7 Daniel Gruss

Virtualization: Trend 1990s → 2000s

• Virtualization no significant role in internet hosting

• often PaaS

• Web hosts (FTP access, HTTP website)

• Isolation on the OS level (tenants as users)

• no hardware support → expensive + many problems

8 Daniel Gruss

Virtualization: Trend 1990s → 2000s

• Virtualization no significant role in internet hosting

• often PaaS

• Web hosts (FTP access, HTTP website)

• Isolation on the OS level (tenants as users)

• no hardware support → expensive + many problems

8 Daniel Gruss

Virtualization: Trend 1990s → 2000s

• Virtualization no significant role in internet hosting

• often PaaS

• Web hosts (FTP access, HTTP website)

• Isolation on the OS level (tenants as users)

• no hardware support → expensive + many problems

8 Daniel Gruss

Virtualization: Trend 1990s → 2000s

• Virtualization no significant role in internet hosting

• often PaaS

• Web hosts (FTP access, HTTP website)

• Isolation on the OS level (tenants as users)

• no hardware support → expensive + many problems

8 Daniel Gruss

Virtualization: Trend 1990s → 2000s

• Virtualization no significant role in internet hosting

• often PaaS

• Web hosts (FTP access, HTTP website)

• Isolation on the OS level (tenants as users)

• no hardware support → expensive + many problems

8 Daniel Gruss

Modern Virtualization

• OS-level Virtualization

• Para-Virtualization

• Full Virtualization

• Hardware-Assisted Virtualization

9 Daniel Gruss

Modern Virtualization

• OS-level Virtualization

• Para-Virtualization

• Full Virtualization

• Hardware-Assisted Virtualization

9 Daniel Gruss

Modern Virtualization

• OS-level Virtualization

• Para-Virtualization

• Full Virtualization

• Hardware-Assisted Virtualization

9 Daniel Gruss

Modern Virtualization

• OS-level Virtualization

• Para-Virtualization

• Full Virtualization

• Hardware-Assisted Virtualization

9 Daniel Gruss

OS-level Virtualization

• integrated into kernel

• all application software intended to run in a virtual environment get strictly separated

virtual runtime environments (container, jail)

• no separate kernels - only process level virtualization

• can’t run other OSes - only for applications

• examples: OpenVZ, Docker, (s)chroot

10 Daniel Gruss

OS-level Virtualization

• integrated into kernel

• all application software intended to run in a virtual environment get strictly separated

virtual runtime environments (container, jail)

• no separate kernels - only process level virtualization

• can’t run other OSes - only for applications

• examples: OpenVZ, Docker, (s)chroot

10 Daniel Gruss

OS-level Virtualization

• integrated into kernel

• all application software intended to run in a virtual environment get strictly separated

virtual runtime environments (container, jail)

• no separate kernels - only process level virtualization

• can’t run other OSes - only for applications

• examples: OpenVZ, Docker, (s)chroot

10 Daniel Gruss

OS-level Virtualization

• integrated into kernel

• all application software intended to run in a virtual environment get strictly separated

virtual runtime environments (container, jail)

• no separate kernels - only process level virtualization

• can’t run other OSes - only for applications

• examples: OpenVZ, Docker, (s)chroot

10 Daniel Gruss

OS-level Virtualization

• integrated into kernel

• all application software intended to run in a virtual environment get strictly separated

virtual runtime environments (container, jail)

• no separate kernels - only process level virtualization

• can’t run other OSes - only for applications

• examples: OpenVZ, Docker, (s)chroot

10 Daniel Gruss

Para-Virtualization

• Cooperation with OS: OS is aware of virtualization

• needs to modify guest

• not usable for closed source OSes

11 Daniel Gruss

Para-Virtualization

• Cooperation with OS: OS is aware of virtualization

• needs to modify guest

• not usable for closed source OSes

11 Daniel Gruss

Para-Virtualization

• Cooperation with OS: OS is aware of virtualization

• needs to modify guest

• not usable for closed source OSes

11 Daniel Gruss

Para-Virtualization

• Cooperation with OS: OS is aware of virtualization

• needs to modify guest

• not usable for closed source OSes

11 Daniel Gruss

Para-Virtualization

• Cooperation with OS: OS is aware of virtualization

• needs to modify guest

• not usable for closed source OSes

11 Daniel Gruss

Para-Virtualization

• Cooperation with OS: OS is aware of virtualization

• needs to modify guest

• not usable for closed source OSes

11 Daniel Gruss

Full Virtualization

• OS not aware of being virtualized

• no need to adapt guest

• reduced performance

• up to 25%

• full virtualization of HW required (e.g., emulation via qemu)

• virtual machines not allowed to access physical components

• every physical component has to be virtualized and requires drivers in OS

12 Daniel Gruss

Full Virtualization

• OS not aware of being virtualized

• no need to adapt guest

• reduced performance

• up to 25%

• full virtualization of HW required (e.g., emulation via qemu)

• virtual machines not allowed to access physical components

• every physical component has to be virtualized and requires drivers in OS

12 Daniel Gruss

Full Virtualization

• OS not aware of being virtualized

• no need to adapt guest

• reduced performance

• up to 25%

• full virtualization of HW required (e.g., emulation via qemu)

• virtual machines not allowed to access physical components

• every physical component has to be virtualized and requires drivers in OS

12 Daniel Gruss

Full Virtualization

• OS not aware of being virtualized

• no need to adapt guest

• reduced performance

• up to 25%

• full virtualization of HW required (e.g., emulation via qemu)

• virtual machines not allowed to access physical components

• every physical component has to be virtualized and requires drivers in OS

12 Daniel Gruss

Full Virtualization

• OS not aware of being virtualized

• no need to adapt guest

• reduced performance

• up to 25%

• full virtualization of HW required (e.g., emulation via qemu)

• virtual machines not allowed to access physical components

• every physical component has to be virtualized and requires drivers in OS

12 Daniel Gruss

Full Virtualization

• OS not aware of being virtualized

• no need to adapt guest

• reduced performance

• up to 25%

• full virtualization of HW required (e.g., emulation via qemu)

• virtual machines not allowed to access physical components

• every physical component has to be virtualized and requires drivers in OS

12 Daniel Gruss

Full Virtualization

• OS not aware of being virtualized

• no need to adapt guest

• reduced performance

• up to 25%

• full virtualization of HW required (e.g., emulation via qemu)

• virtual machines not allowed to access physical components

• every physical component has to be virtualized and requires drivers in OS

12 Daniel Gruss

Some earlier systems: binary translation

• Guest no longer runs in kernel mode (Ring 0)

• parts that require kernel privileges won’t run

• hypervisor (VMM) changes binaries of guest-OS on the fly

• allows supporting any OS

• no need to change source

• high performance penalty

13 Daniel Gruss

Some earlier systems: binary translation

• Guest no longer runs in kernel mode (Ring 0)

• parts that require kernel privileges won’t run

• hypervisor (VMM) changes binaries of guest-OS on the fly

• allows supporting any OS

• no need to change source

• high performance penalty

13 Daniel Gruss

Some earlier systems: binary translation

• Guest no longer runs in kernel mode (Ring 0)

• parts that require kernel privileges won’t run

• hypervisor (VMM) changes binaries of guest-OS on the fly

• allows supporting any OS

• no need to change source

• high performance penalty

13 Daniel Gruss

Some earlier systems: binary translation

• Guest no longer runs in kernel mode (Ring 0)

• parts that require kernel privileges won’t run

• hypervisor (VMM) changes binaries of guest-OS on the fly

• allows supporting any OS

• no need to change source

• high performance penalty

13 Daniel Gruss

Some earlier systems: binary translation

• Guest no longer runs in kernel mode (Ring 0)

• parts that require kernel privileges won’t run

• hypervisor (VMM) changes binaries of guest-OS on the fly

• allows supporting any OS

• no need to change source

• high performance penalty

13 Daniel Gruss

Some earlier systems: binary translation

• Guest no longer runs in kernel mode (Ring 0)

• parts that require kernel privileges won’t run

• hypervisor (VMM) changes binaries of guest-OS on the fly

• allows supporting any OS

• no need to change source

• high performance penalty

13 Daniel Gruss

VMWare

• First full x86 virtualization

• hypervisor continuously reads program code before it is executed (pre-scan)

• looking for relevant commands

• change of system state

• commands depending on CPU state

• sets breakpoint and lets OS run

14 Daniel Gruss

VMWare

• First full x86 virtualization

• hypervisor continuously reads program code before it is executed (pre-scan)

• looking for relevant commands

• change of system state

• commands depending on CPU state

• sets breakpoint and lets OS run

14 Daniel Gruss

VMWare

• First full x86 virtualization

• hypervisor continuously reads program code before it is executed (pre-scan)

• looking for relevant commands

• change of system state

• commands depending on CPU state

• sets breakpoint and lets OS run

14 Daniel Gruss

VMWare

• First full x86 virtualization

• hypervisor continuously reads program code before it is executed (pre-scan)

• looking for relevant commands

• change of system state

• commands depending on CPU state

• sets breakpoint and lets OS run

14 Daniel Gruss

VMWare

• First full x86 virtualization

• hypervisor continuously reads program code before it is executed (pre-scan)

• looking for relevant commands

• change of system state

• commands depending on CPU state

• sets breakpoint and lets OS run

14 Daniel Gruss

VMWare

• First full x86 virtualization

• hypervisor continuously reads program code before it is executed (pre-scan)

• looking for relevant commands

• change of system state

• commands depending on CPU state

• sets breakpoint and lets OS run

14 Daniel Gruss

Problems virtualizing on IA-32

• Diverse problems were to be solved when virtualizing on IA-32:

• Ring Problems

• Address Space Compression

• Non-Faulting Access to Priv. State

• SYSENTER / SYSEXIT

• Interrupt Virtualization

• Hidden States

15 Daniel Gruss

Problems virtualizing on IA-32

• Diverse problems were to be solved when virtualizing on IA-32:

• Ring Problems

• Address Space Compression

• Non-Faulting Access to Priv. State

• SYSENTER / SYSEXIT

• Interrupt Virtualization

• Hidden States

15 Daniel Gruss

Problems virtualizing on IA-32

• Diverse problems were to be solved when virtualizing on IA-32:

• Ring Problems

• Address Space Compression

• Non-Faulting Access to Priv. State

• SYSENTER / SYSEXIT

• Interrupt Virtualization

• Hidden States

15 Daniel Gruss

Problems virtualizing on IA-32

• Diverse problems were to be solved when virtualizing on IA-32:

• Ring Problems

• Address Space Compression

• Non-Faulting Access to Priv. State

• SYSENTER / SYSEXIT

• Interrupt Virtualization

• Hidden States

15 Daniel Gruss

Problems virtualizing on IA-32

• Diverse problems were to be solved when virtualizing on IA-32:

• Ring Problems

• Address Space Compression

• Non-Faulting Access to Priv. State

• SYSENTER / SYSEXIT

• Interrupt Virtualization

• Hidden States

15 Daniel Gruss

Problems virtualizing on IA-32

• Diverse problems were to be solved when virtualizing on IA-32:

• Ring Problems

• Address Space Compression

• Non-Faulting Access to Priv. State

• SYSENTER / SYSEXIT

• Interrupt Virtualization

• Hidden States

15 Daniel Gruss

Problems virtualizing on IA-32

• Diverse problems were to be solved when virtualizing on IA-32:

• Ring Problems

• Address Space Compression

• Non-Faulting Access to Priv. State

• SYSENTER / SYSEXIT

• Interrupt Virtualization

• Hidden States

15 Daniel Gruss

Problems virtualizing on IA-32

• Diverse problems were to be solved when virtualizing on IA-32:

• Ring Problems

• Address Space Compression

• Non-Faulting Access to Priv. State

• SYSENTER / SYSEXIT

• Interrupt Virtualization

• Hidden States

15 Daniel Gruss

Problems virtualizing on IA-32

• Diverse problems were to be solved when virtualizing on IA-32:

• Ring Problems

• Address Space Compression

• Non-Faulting Access to Priv. State

• SYSENTER / SYSEXIT

• Interrupt Virtualization

• Hidden States

15 Daniel Gruss

Problems virtualizing on IA-32

• Diverse problems were to be solved when virtualizing on IA-32:

• Ring Problems

• Address Space Compression

• Non-Faulting Access to Priv. State

• SYSENTER / SYSEXIT

• Interrupt Virtualization

• Hidden States

15 Daniel Gruss

Ring Problem 1: which ring

• usually: application run in ring 3, kernel in ring 0

• guest may not run in ring 0

• ring de-privileging needed: guest must run in ring > 0

• most often 1 or 3

16 Daniel Gruss

Ring Problem 1: which ring

• usually: application run in ring 3, kernel in ring 0

• guest may not run in ring 0

• ring de-privileging needed: guest must run in ring > 0

• most often 1 or 3

16 Daniel Gruss

Ring Problem 1: which ring

• usually: application run in ring 3, kernel in ring 0

• guest may not run in ring 0

• ring de-privileging needed: guest must run in ring > 0

• most often 1 or 3

16 Daniel Gruss

Ring Problem 1: which ring

• usually: application run in ring 3, kernel in ring 0

• guest may not run in ring 0

• ring de-privileging needed: guest must run in ring > 0

• most often 1 or 3

16 Daniel Gruss

Ring Problem 2: aliasing

• guest has to run in a ring it has not been developed for

• certain instructions contain privilege level in result (e.g. PUSH CS)

• guest OS can find out ring it is running in

• may result in diverse problems

17 Daniel Gruss

Ring Problem 2: aliasing

• guest has to run in a ring it has not been developed for

• certain instructions contain privilege level in result (e.g. PUSH CS)

• guest OS can find out ring it is running in

• may result in diverse problems

17 Daniel Gruss

Ring Problem 2: aliasing

• guest has to run in a ring it has not been developed for

• certain instructions contain privilege level in result (e.g. PUSH CS)

• guest OS can find out ring it is running in

• may result in diverse problems

17 Daniel Gruss

Ring Problem 2: aliasing

• guest has to run in a ring it has not been developed for

• certain instructions contain privilege level in result (e.g. PUSH CS)

• guest OS can find out ring it is running in

• may result in diverse problems

17 Daniel Gruss

Address Space Compression

• Guest expects to have full address space available

• hypervisor requires part of address space

• control structures for switching between guest and hypervisor

• Access to these areas not allowed for guest. Invokes switch to hypervisor who has to

emulate these accesses

18 Daniel Gruss

Address Space Compression

• Guest expects to have full address space available

• hypervisor requires part of address space

• control structures for switching between guest and hypervisor

• Access to these areas not allowed for guest. Invokes switch to hypervisor who has to

emulate these accesses

18 Daniel Gruss

Address Space Compression

• Guest expects to have full address space available

• hypervisor requires part of address space

• control structures for switching between guest and hypervisor

• Access to these areas not allowed for guest. Invokes switch to hypervisor who has to

emulate these accesses

18 Daniel Gruss

Address Space Compression

• Guest expects to have full address space available

• hypervisor requires part of address space

• control structures for switching between guest and hypervisor

• Access to these areas not allowed for guest. Invokes switch to hypervisor who has to

emulate these accesses

18 Daniel Gruss

Non-Faulting Access to Priv. State

• unprivileged software may not access certain elements of the CPU state

• access by guest results in fault: hypervisor can emulate instructions

• IA-32 possesses instructions that do not induce a fault:

• Registers GDTR, IDTR, LDTR and TR are only modifiable in ring 0

• can be executed in any ring without fault (without function)

19 Daniel Gruss

Non-Faulting Access to Priv. State

• unprivileged software may not access certain elements of the CPU state

• access by guest results in fault: hypervisor can emulate instructions

• IA-32 possesses instructions that do not induce a fault:

• Registers GDTR, IDTR, LDTR and TR are only modifiable in ring 0

• can be executed in any ring without fault (without function)

19 Daniel Gruss

Non-Faulting Access to Priv. State

• unprivileged software may not access certain elements of the CPU state

• access by guest results in fault: hypervisor can emulate instructions

• IA-32 possesses instructions that do not induce a fault:

• Registers GDTR, IDTR, LDTR and TR are only modifiable in ring 0

• can be executed in any ring without fault (without function)

19 Daniel Gruss

Non-Faulting Access to Priv. State

• unprivileged software may not access certain elements of the CPU state

• access by guest results in fault: hypervisor can emulate instructions

• IA-32 possesses instructions that do not induce a fault:

• Registers GDTR, IDTR, LDTR and TR are only modifiable in ring 0

• can be executed in any ring without fault (without function)

19 Daniel Gruss

Non-Faulting Access to Priv. State

• unprivileged software may not access certain elements of the CPU state

• access by guest results in fault: hypervisor can emulate instructions

• IA-32 possesses instructions that do not induce a fault:

• Registers GDTR, IDTR, LDTR and TR are only modifiable in ring 0

• can be executed in any ring without fault (without function)

19 Daniel Gruss

SYSENTER / SYSEXIT

• special commands for fast syscalls

• SYSENTER always switches to ring 0

• SYSEXIT can only be executed in ring 0

• ring 1 thus is problematic

• SYSENTER switches to hypervisor → has to emulate

• SYSEXIT switches to hypervisor → has to emulate

20 Daniel Gruss

SYSENTER / SYSEXIT

• special commands for fast syscalls

• SYSENTER always switches to ring 0

• SYSEXIT can only be executed in ring 0

• ring 1 thus is problematic

• SYSENTER switches to hypervisor → has to emulate

• SYSEXIT switches to hypervisor → has to emulate

20 Daniel Gruss

SYSENTER / SYSEXIT

• special commands for fast syscalls

• SYSENTER always switches to ring 0

• SYSEXIT can only be executed in ring 0

• ring 1 thus is problematic

• SYSENTER switches to hypervisor → has to emulate

• SYSEXIT switches to hypervisor → has to emulate

20 Daniel Gruss

SYSENTER / SYSEXIT

• special commands for fast syscalls

• SYSENTER always switches to ring 0

• SYSEXIT can only be executed in ring 0

• ring 1 thus is problematic

• SYSENTER switches to hypervisor → has to emulate

• SYSEXIT switches to hypervisor → has to emulate

20 Daniel Gruss

SYSENTER / SYSEXIT

• special commands for fast syscalls

• SYSENTER always switches to ring 0

• SYSEXIT can only be executed in ring 0

• ring 1 thus is problematic

• SYSENTER switches to hypervisor → has to emulate

• SYSEXIT switches to hypervisor → has to emulate

20 Daniel Gruss

SYSENTER / SYSEXIT

• special commands for fast syscalls

• SYSENTER always switches to ring 0

• SYSEXIT can only be executed in ring 0

• ring 1 thus is problematic

• SYSENTER switches to hypervisor → has to emulate

• SYSEXIT switches to hypervisor → has to emulate

20 Daniel Gruss

Interrupt Virtualization

• interrupts can be masked (so they do not occur if not welcome)

• controlled by IF-flag in EFLAGS-Register

• Interrupts managed by VM though

• change of IF → fault to hypervisor

• OS do this quite often → performance problem

• forwarding of virtual interrupts must consider IF

21 Daniel Gruss

Interrupt Virtualization

• interrupts can be masked (so they do not occur if not welcome)

• controlled by IF-flag in EFLAGS-Register

• Interrupts managed by VM though

• change of IF → fault to hypervisor

• OS do this quite often → performance problem

• forwarding of virtual interrupts must consider IF

21 Daniel Gruss

Interrupt Virtualization

• interrupts can be masked (so they do not occur if not welcome)

• controlled by IF-flag in EFLAGS-Register

• Interrupts managed by VM though

• change of IF → fault to hypervisor

• OS do this quite often → performance problem

• forwarding of virtual interrupts must consider IF

21 Daniel Gruss

Interrupt Virtualization

• interrupts can be masked (so they do not occur if not welcome)

• controlled by IF-flag in EFLAGS-Register

• Interrupts managed by VM though

• change of IF → fault to hypervisor

• OS do this quite often → performance problem

• forwarding of virtual interrupts must consider IF

21 Daniel Gruss

Interrupt Virtualization

• interrupts can be masked (so they do not occur if not welcome)

• controlled by IF-flag in EFLAGS-Register

• Interrupts managed by VM though

• change of IF → fault to hypervisor

• OS do this quite often → performance problem

• forwarding of virtual interrupts must consider IF

21 Daniel Gruss

Interrupt Virtualization

• interrupts can be masked (so they do not occur if not welcome)

• controlled by IF-flag in EFLAGS-Register

• Interrupts managed by VM though

• change of IF → fault to hypervisor

• OS do this quite often → performance problem

• forwarding of virtual interrupts must consider IF

21 Daniel Gruss

hidden state information

• Not all state-information accessible via registers

• cannot be saved and restored when switching between VMs

22 Daniel Gruss

hidden state information

• Not all state-information accessible via registers

• cannot be saved and restored when switching between VMs

22 Daniel Gruss

hidden state information

• Not all state-information accessible via registers

• cannot be saved and restored when switching between VMs

22 Daniel Gruss

hidden state information

• Not all state-information accessible via registers

• cannot be saved and restored when switching between VMs

22 Daniel Gruss

hidden state information

• Not all state-information accessible via registers

• cannot be saved and restored when switching between VMs

22 Daniel Gruss

Intel Virtualization Architecture

• Two new operating modes:

• VMX root operation

• for hypervisor

• VMX non-root operation

• controlled by hypervisor

• supports VMs

• Both modes have ring 0-3

• guest can run in ring 0

• hypervisor said to be running in “ring -1”

23 Daniel Gruss

Intel Virtualization Architecture

• Two new operating modes:

• VMX root operation

• for hypervisor

• VMX non-root operation

• controlled by hypervisor

• supports VMs

• Both modes have ring 0-3

• guest can run in ring 0

• hypervisor said to be running in “ring -1”

23 Daniel Gruss

Intel Virtualization Architecture

• Two new operating modes:

• VMX root operation

• for hypervisor

• VMX non-root operation

• controlled by hypervisor

• supports VMs

• Both modes have ring 0-3

• guest can run in ring 0

• hypervisor said to be running in “ring -1”

23 Daniel Gruss

Intel Virtualization Architecture

• Two new operating modes:

• VMX root operation

• for hypervisor

• VMX non-root operation

• controlled by hypervisor

• supports VMs

• Both modes have ring 0-3

• guest can run in ring 0

• hypervisor said to be running in “ring -1”

23 Daniel Gruss

Intel Virtualization Architecture

• Two new operating modes:

• VMX root operation

• for hypervisor

• VMX non-root operation

• controlled by hypervisor

• supports VMs

• Both modes have ring 0-3

• guest can run in ring 0

• hypervisor said to be running in “ring -1”

23 Daniel Gruss

Intel Virtualization Architecture

• Two new operating modes:

• VMX root operation

• for hypervisor

• VMX non-root operation

• controlled by hypervisor

• supports VMs

• Both modes have ring 0-3

• guest can run in ring 0

• hypervisor said to be running in “ring -1”

23 Daniel Gruss

Intel Virtualization Architecture

• Two new operating modes:

• VMX root operation

• for hypervisor

• VMX non-root operation

• controlled by hypervisor

• supports VMs

• Both modes have ring 0-3

• guest can run in ring 0

• hypervisor said to be running in “ring -1”

23 Daniel Gruss

Intel Virtualization Architecture

• Two new operating modes:

• VMX root operation

• for hypervisor

• VMX non-root operation

• controlled by hypervisor

• supports VMs

• Both modes have ring 0-3

• guest can run in ring 0

• hypervisor said to be running in “ring -1”

23 Daniel Gruss

Intel Virtualization Architecture

• Two new operating modes:

• VMX root operation

• for hypervisor

• VMX non-root operation

• controlled by hypervisor

• supports VMs

• Both modes have ring 0-3

• guest can run in ring 0

• hypervisor said to be running in “ring -1”

23 Daniel Gruss

Rings on Intel

24 Daniel Gruss

VMM Operation

25 Daniel Gruss

VMM Transitions

26 Daniel Gruss

VT-x

• VM entry: root operation → non-root operation

• VM exit: non-root operation → root operation

• VMCS: Virtual Machine Control Structure

• Guest-state-area

• Host-state-area

• Entry/Exit loads/safes information using the proper area

27 Daniel Gruss

VT-x

• VM entry: root operation → non-root operation

• VM exit: non-root operation → root operation

• VMCS: Virtual Machine Control Structure

• Guest-state-area

• Host-state-area

• Entry/Exit loads/safes information using the proper area

27 Daniel Gruss

VT-x

• VM entry: root operation → non-root operation

• VM exit: non-root operation → root operation

• VMCS: Virtual Machine Control Structure

• Guest-state-area

• Host-state-area

• Entry/Exit loads/safes information using the proper area

27 Daniel Gruss

VT-x

• VM entry: root operation → non-root operation

• VM exit: non-root operation → root operation

• VMCS: Virtual Machine Control Structure

• Guest-state-area

• Host-state-area

• Entry/Exit loads/safes information using the proper area

27 Daniel Gruss

VT-x

• VM entry: root operation → non-root operation

• VM exit: non-root operation → root operation

• VMCS: Virtual Machine Control Structure

• Guest-state-area

• Host-state-area

• Entry/Exit loads/safes information using the proper area

27 Daniel Gruss

VT-x

• VM entry: root operation → non-root operation

• VM exit: non-root operation → root operation

• VMCS: Virtual Machine Control Structure

• Guest-state-area

• Host-state-area

• Entry/Exit loads/safes information using the proper area

27 Daniel Gruss

VMCS - Guest State Area

• Contains elements comprising the state of the virtual CPU of a VMCS

• VM-exit requires loading certain registers (like segment registers, CR3, IRTR...)

• GSA contains fields for these registers

• GSA contains fields for other information not readable via registers

• e.g. interruptability state

28 Daniel Gruss

VMCS - Guest State Area

• Contains elements comprising the state of the virtual CPU of a VMCS

• VM-exit requires loading certain registers (like segment registers, CR3, IRTR...)

• GSA contains fields for these registers

• GSA contains fields for other information not readable via registers

• e.g. interruptability state

28 Daniel Gruss

VMCS - Guest State Area

• Contains elements comprising the state of the virtual CPU of a VMCS

• VM-exit requires loading certain registers (like segment registers, CR3, IRTR...)

• GSA contains fields for these registers

• GSA contains fields for other information not readable via registers

• e.g. interruptability state

28 Daniel Gruss

VMCS - Guest State Area

• Contains elements comprising the state of the virtual CPU of a VMCS

• VM-exit requires loading certain registers (like segment registers, CR3, IRTR...)

• GSA contains fields for these registers

• GSA contains fields for other information not readable via registers

• e.g. interruptability state

28 Daniel Gruss

VMCS - Guest State Area

• Contains elements comprising the state of the virtual CPU of a VMCS

• VM-exit requires loading certain registers (like segment registers, CR3, IRTR...)

• GSA contains fields for these registers

• GSA contains fields for other information not readable via registers

• e.g. interruptability state

28 Daniel Gruss

VMCS

• Addressed using physical addresses

• not part of guest address space

• hypervisor may run in different address space as guest (CR3 part of state)

• VM-exits leave detailed information on reason for exit in VMCS

• exit reason

• exit qualification

29 Daniel Gruss

VMCS

• Addressed using physical addresses

• not part of guest address space

• hypervisor may run in different address space as guest (CR3 part of state)

• VM-exits leave detailed information on reason for exit in VMCS

• exit reason

• exit qualification

29 Daniel Gruss

VMCS

• Addressed using physical addresses

• not part of guest address space

• hypervisor may run in different address space as guest (CR3 part of state)

• VM-exits leave detailed information on reason for exit in VMCS

• exit reason

• exit qualification

29 Daniel Gruss

VMCS

• Addressed using physical addresses

• not part of guest address space

• hypervisor may run in different address space as guest (CR3 part of state)

• VM-exits leave detailed information on reason for exit in VMCS

• exit reason

• exit qualification

29 Daniel Gruss

VMCS

• Addressed using physical addresses

• not part of guest address space

• hypervisor may run in different address space as guest (CR3 part of state)

• VM-exits leave detailed information on reason for exit in VMCS

• exit reason

• exit qualification

29 Daniel Gruss

VMCS

• Addressed using physical addresses

• not part of guest address space

• hypervisor may run in different address space as guest (CR3 part of state)

• VM-exits leave detailed information on reason for exit in VMCS

• exit reason

• exit qualification

29 Daniel Gruss

VMCS

• Example: MOV CR

• Exit reason: “control register access”

• Exit qualification:

• which CR

• direction (Rx→CR or CR→Rx)

• register used

30 Daniel Gruss

VMCS

• Example: MOV CR

• Exit reason: “control register access”

• Exit qualification:

• which CR

• direction (Rx→CR or CR→Rx)

• register used

30 Daniel Gruss

VMCS

• Example: MOV CR

• Exit reason: “control register access”

• Exit qualification:

• which CR

• direction (Rx→CR or CR→Rx)

• register used

30 Daniel Gruss

VMCS

• Example: MOV CR

• Exit reason: “control register access”

• Exit qualification:

• which CR

• direction (Rx→CR or CR→Rx)

• register used

30 Daniel Gruss

VMCS

• Example: MOV CR

• Exit reason: “control register access”

• Exit qualification:

• which CR

• direction (Rx→CR or CR→Rx)

• register used

30 Daniel Gruss

VMCS

• Example: MOV CR

• Exit reason: “control register access”

• Exit qualification:

• which CR

• direction (Rx→CR or CR→Rx)

• register used

30 Daniel Gruss

Virtualization: Trend 2000s → 2010s

The next step (≈ 2005):

• Virtualization Hardware Extensions for Intel and AMD

→ substantially lower overheads for VMs

→ better isolation

→ IaaS VMs become widely used

31 Daniel Gruss

Virtualization: Trend 2000s → 2010s

The next step (≈ 2005):

• Virtualization Hardware Extensions for Intel and AMD

→ substantially lower overheads for VMs

→ better isolation

→ IaaS VMs become widely used

31 Daniel Gruss

Virtualization: Trend 2000s → 2010s

The next step (≈ 2005):

• Virtualization Hardware Extensions for Intel and AMD

→ substantially lower overheads for VMs

→ better isolation

→ IaaS VMs become widely used

31 Daniel Gruss

Virtualization: Trend 2000s → 2010s

The next step (≈ 2005):

• Virtualization Hardware Extensions for Intel and AMD

→ substantially lower overheads for VMs

→ better isolation

→ IaaS VMs become widely used

31 Daniel Gruss

Hardware Exentions: Intel VT

• Support for interrupt-virtualization

• VM-exit with every external interrupt (cannot be masked by guest)

• VM-exit when guest-OS ready to accept interrupts (EFLAGS.IF==1)

• Support for CR0 and CR4-virtualization

• VM-exit with any change of these registers

• can be set on which bits this shall happen

32 Daniel Gruss

Hardware Exentions: Intel VT

• Support for interrupt-virtualization

• VM-exit with every external interrupt (cannot be masked by guest)

• VM-exit when guest-OS ready to accept interrupts (EFLAGS.IF==1)

• Support for CR0 and CR4-virtualization

• VM-exit with any change of these registers

• can be set on which bits this shall happen

32 Daniel Gruss

Hardware Exentions: Intel VT

• Support for interrupt-virtualization

• VM-exit with every external interrupt (cannot be masked by guest)

• VM-exit when guest-OS ready to accept interrupts (EFLAGS.IF==1)

• Support for CR0 and CR4-virtualization

• VM-exit with any change of these registers

• can be set on which bits this shall happen

32 Daniel Gruss

Hardware Exentions: Intel VT

• Support for interrupt-virtualization

• VM-exit with every external interrupt (cannot be masked by guest)

• VM-exit when guest-OS ready to accept interrupts (EFLAGS.IF==1)

• Support for CR0 and CR4-virtualization

• VM-exit with any change of these registers

• can be set on which bits this shall happen

32 Daniel Gruss

Hardware Exentions: Intel VT

• Support for interrupt-virtualization

• VM-exit with every external interrupt (cannot be masked by guest)

• VM-exit when guest-OS ready to accept interrupts (EFLAGS.IF==1)

• Support for CR0 and CR4-virtualization

• VM-exit with any change of these registers

• can be set on which bits this shall happen

32 Daniel Gruss

Hardware Exentions: Intel VT

• Support for interrupt-virtualization

• VM-exit with every external interrupt (cannot be masked by guest)

• VM-exit when guest-OS ready to accept interrupts (EFLAGS.IF==1)

• Support for CR0 and CR4-virtualization

• VM-exit with any change of these registers

• can be set on which bits this shall happen

32 Daniel Gruss

Solves our problems

• Address Space Compression

• change of address space with any switch guest/hypervisor

• guest owns full virtual address space

• Ring Problems, SYSENTER/SYSEXIT

• Guest can now run in ring 0

33 Daniel Gruss

Solves our problems

• Address Space Compression

• change of address space with any switch guest/hypervisor

• guest owns full virtual address space

• Ring Problems, SYSENTER/SYSEXIT

• Guest can now run in ring 0

33 Daniel Gruss

Solves our problems

• Address Space Compression

• change of address space with any switch guest/hypervisor

• guest owns full virtual address space

• Ring Problems, SYSENTER/SYSEXIT

• Guest can now run in ring 0

33 Daniel Gruss

Solves our problems

• Address Space Compression

• change of address space with any switch guest/hypervisor

• guest owns full virtual address space

• Ring Problems, SYSENTER/SYSEXIT

• Guest can now run in ring 0

33 Daniel Gruss

Solves our problems

• Address Space Compression

• change of address space with any switch guest/hypervisor

• guest owns full virtual address space

• Ring Problems, SYSENTER/SYSEXIT

• Guest can now run in ring 0

33 Daniel Gruss

Solves our problems

• Non-faulting Access to Privileged State

• access raise fault into hypervisor

• Hidden State

• Saved into VMCS

34 Daniel Gruss

Solves our problems

• Non-faulting Access to Privileged State

• access raise fault into hypervisor

• Hidden State

• Saved into VMCS

34 Daniel Gruss

Solves our problems

• Non-faulting Access to Privileged State

• access raise fault into hypervisor

• Hidden State

• Saved into VMCS

34 Daniel Gruss

Solves our problems

• Non-faulting Access to Privileged State

• access raise fault into hypervisor

• Hidden State

• Saved into VMCS

34 Daniel Gruss

Hypervisor and Virtual Memory

• Hypervisor uses virtual memory

• guest OS uses virtual memory

• hardware supports page tables

• how does this work?

• shadow page tables

• hardware support

35 Daniel Gruss

Hypervisor and Virtual Memory

• Hypervisor uses virtual memory

• guest OS uses virtual memory

• hardware supports page tables

• how does this work?

• shadow page tables

• hardware support

35 Daniel Gruss

Hypervisor and Virtual Memory

• Hypervisor uses virtual memory

• guest OS uses virtual memory

• hardware supports page tables

• how does this work?

• shadow page tables

• hardware support

35 Daniel Gruss

Hypervisor and Virtual Memory

• Hypervisor uses virtual memory

• guest OS uses virtual memory

• hardware supports page tables

• how does this work?

• shadow page tables

• hardware support

35 Daniel Gruss

Hypervisor and Virtual Memory

• Hypervisor uses virtual memory

• guest OS uses virtual memory

• hardware supports page tables

• how does this work?

• shadow page tables

• hardware support

35 Daniel Gruss

Hypervisor and Virtual Memory

• Hypervisor uses virtual memory

• guest OS uses virtual memory

• hardware supports page tables

• how does this work?

• shadow page tables

• hardware support

35 Daniel Gruss

Virtual Memory

36 Daniel Gruss

All problems in computer science can be solved by another level of indirection.

But that usually will create another problem.

David Wheeler

37 Daniel Gruss

All problems in computer science can be solved by another level of indirection.

But that usually will create another problem.

David Wheeler

37 Daniel Gruss

Paging

38 Daniel Gruss

Known from theory and practice

39 Daniel Gruss

and in 64 bit...

40 Daniel Gruss

Combined Paging

41 Daniel Gruss

Shadow Page Table

42 Daniel Gruss

Page Tables

43 Daniel Gruss

Shadow Page Table

44 Daniel Gruss

Shadow Page Table

• merges both page tables into one that the HW uses

• when guest changes own page table

• Hypervisor has to catch access

• update shadow page table

45 Daniel Gruss

Shadow Page Table

• merges both page tables into one that the HW uses

• when guest changes own page table

• Hypervisor has to catch access

• update shadow page table

45 Daniel Gruss

Shadow Page Table

• merges both page tables into one that the HW uses

• when guest changes own page table

• Hypervisor has to catch access

• update shadow page table

45 Daniel Gruss

Shadow Page Table

• merges both page tables into one that the HW uses

• when guest changes own page table

• Hypervisor has to catch access

• update shadow page table

45 Daniel Gruss

Shadow Page Table

• when HW changes shadow page table

• update guest PT

• expensive!

• page faults caught by hypervisor

• must run through guest PTs

• must emulate accessed and modified bits for guest

46 Daniel Gruss

Shadow Page Table

• when HW changes shadow page table

• update guest PT

• expensive!

• page faults caught by hypervisor

• must run through guest PTs

• must emulate accessed and modified bits for guest

46 Daniel Gruss

Shadow Page Table

• when HW changes shadow page table

• update guest PT

• expensive!

• page faults caught by hypervisor

• must run through guest PTs

• must emulate accessed and modified bits for guest

46 Daniel Gruss

Shadow Page Table

• when HW changes shadow page table

• update guest PT

• expensive!

• page faults caught by hypervisor

• must run through guest PTs

• must emulate accessed and modified bits for guest

46 Daniel Gruss

Shadow Page Table

• when HW changes shadow page table

• update guest PT

• expensive!

• page faults caught by hypervisor

• must run through guest PTs

• must emulate accessed and modified bits for guest

46 Daniel Gruss

Shadow Page Table

• when HW changes shadow page table

• update guest PT

• expensive!

• page faults caught by hypervisor

• must run through guest PTs

• must emulate accessed and modified bits for guest

46 Daniel Gruss

EPT

47 Daniel Gruss

Nested PT (NPT, AMD) / Extended PT (EPT, Intel)

“guest page walk”

48 Daniel Gruss

Guest page walk

• lots of memory accesses....

• but how many exactly?

49 Daniel Gruss

Guest page walk

• lots of memory accesses....

• but how many exactly?

49 Daniel Gruss

third for the host

50 Daniel Gruss

third for the host

50 Daniel Gruss

third for the host

50 Daniel Gruss

third for the host

50 Daniel Gruss

third for the host

50 Daniel Gruss

third for the host

50 Daniel Gruss

And Combined

51 Daniel Gruss

... and combined ...

max. number of memory accesses per address translation

• 5 on guest level

• each induces 5 on host level

• makes 25!

52 Daniel Gruss

... and combined ...

max. number of memory accesses per address translation

• 5 on guest level

• each induces 5 on host level

• makes 25!

52 Daniel Gruss

... and combined ...

max. number of memory accesses per address translation

• 5 on guest level

• each induces 5 on host level

• makes 25!

52 Daniel Gruss

Guest Page Walk

53 Daniel Gruss

Performance

• depending on application: 3.9-4.6 times slower

• but: TLB

54 Daniel Gruss

Performance

• depending on application: 3.9-4.6 times slower

• but: TLB

54 Daniel Gruss

Intel Features

• EPT only used if VM active

• Translations tagged in TLB with EPT base pointer

• differentiate TLB-entries of different VMs

• TLB-flush per guest possible

• VPID: virtual processor ID

• unique value for each VM

• translations tagged in TLB using VPID

55 Daniel Gruss

Intel Features

• EPT only used if VM active

• Translations tagged in TLB with EPT base pointer

• differentiate TLB-entries of different VMs

• TLB-flush per guest possible

• VPID: virtual processor ID

• unique value for each VM

• translations tagged in TLB using VPID

55 Daniel Gruss

Intel Features

• EPT only used if VM active

• Translations tagged in TLB with EPT base pointer

• differentiate TLB-entries of different VMs

• TLB-flush per guest possible

• VPID: virtual processor ID

• unique value for each VM

• translations tagged in TLB using VPID

55 Daniel Gruss

Intel Features

• EPT only used if VM active

• Translations tagged in TLB with EPT base pointer

• differentiate TLB-entries of different VMs

• TLB-flush per guest possible

• VPID: virtual processor ID

• unique value for each VM

• translations tagged in TLB using VPID

55 Daniel Gruss

Intel Features

• EPT only used if VM active

• Translations tagged in TLB with EPT base pointer

• differentiate TLB-entries of different VMs

• TLB-flush per guest possible

• VPID: virtual processor ID

• unique value for each VM

• translations tagged in TLB using VPID

55 Daniel Gruss

Intel Features

• EPT only used if VM active

• Translations tagged in TLB with EPT base pointer

• differentiate TLB-entries of different VMs

• TLB-flush per guest possible

• VPID: virtual processor ID

• unique value for each VM

• translations tagged in TLB using VPID

55 Daniel Gruss

Intel Features

• EPT only used if VM active

• Translations tagged in TLB with EPT base pointer

• differentiate TLB-entries of different VMs

• TLB-flush per guest possible

• VPID: virtual processor ID

• unique value for each VM

• translations tagged in TLB using VPID

55 Daniel Gruss

Setting up a hypervisor

1. Enable VMX via CR4

2. Allocate a VMXON region and use the VMXON instruction

3. Allocate an MSR Bitmap region (we don’t want a trap for all MSRs)

4. Use VMCLEAR instruction

5. Execute VMPTRLD to make a VMCS the “current VMCS”

6. Allocate a VMCS region and set up the VMCS (using VMWRITEs)

7. Use the VMLAUNCH

56 Daniel Gruss

Setting up a hypervisor

1. Enable VMX via CR4

2. Allocate a VMXON region and use the VMXON instruction

3. Allocate an MSR Bitmap region (we don’t want a trap for all MSRs)

4. Use VMCLEAR instruction

5. Execute VMPTRLD to make a VMCS the “current VMCS”

6. Allocate a VMCS region and set up the VMCS (using VMWRITEs)

7. Use the VMLAUNCH

56 Daniel Gruss

Setting up a hypervisor

1. Enable VMX via CR4

2. Allocate a VMXON region and use the VMXON instruction

3. Allocate an MSR Bitmap region (we don’t want a trap for all MSRs)

4. Use VMCLEAR instruction

5. Execute VMPTRLD to make a VMCS the “current VMCS”

6. Allocate a VMCS region and set up the VMCS (using VMWRITEs)

7. Use the VMLAUNCH

56 Daniel Gruss

Setting up a hypervisor

1. Enable VMX via CR4

2. Allocate a VMXON region and use the VMXON instruction

3. Allocate an MSR Bitmap region (we don’t want a trap for all MSRs)

4. Use VMCLEAR instruction

5. Execute VMPTRLD to make a VMCS the “current VMCS”

6. Allocate a VMCS region and set up the VMCS (using VMWRITEs)

7. Use the VMLAUNCH

56 Daniel Gruss

Setting up a hypervisor

1. Enable VMX via CR4

2. Allocate a VMXON region and use the VMXON instruction

3. Allocate an MSR Bitmap region (we don’t want a trap for all MSRs)

4. Use VMCLEAR instruction

5. Execute VMPTRLD to make a VMCS the “current VMCS”

6. Allocate a VMCS region and set up the VMCS (using VMWRITEs)

7. Use the VMLAUNCH

56 Daniel Gruss

Setting up a hypervisor

1. Enable VMX via CR4

2. Allocate a VMXON region and use the VMXON instruction

3. Allocate an MSR Bitmap region (we don’t want a trap for all MSRs)

4. Use VMCLEAR instruction

5. Execute VMPTRLD to make a VMCS the “current VMCS”

6. Allocate a VMCS region and set up the VMCS (using VMWRITEs)

7. Use the VMLAUNCH

56 Daniel Gruss

Setting up a hypervisor

1. Enable VMX via CR4

2. Allocate a VMXON region and use the VMXON instruction

3. Allocate an MSR Bitmap region (we don’t want a trap for all MSRs)

4. Use VMCLEAR instruction

5. Execute VMPTRLD to make a VMCS the “current VMCS”

6. Allocate a VMCS region and set up the VMCS (using VMWRITEs)

7. Use the VMLAUNCH

56 Daniel Gruss

What if we can’t do something in the Guest?

Similar problem as with Userspace-Kernelspace Isolation:

1. user needs help for some operations (e.g., HW interaction)

→ can use a syscall!

2. What about VMs?

3. Same concept different level:

→ Hypercalls!

via the vmcall instruction

57 Daniel Gruss

What if we can’t do something in the Guest?

Similar problem as with Userspace-Kernelspace Isolation:

1. user needs help for some operations (e.g., HW interaction)

→ can use a syscall!

2. What about VMs?

3. Same concept different level:

→ Hypercalls!

via the vmcall instruction

57 Daniel Gruss

What if we can’t do something in the Guest?

Similar problem as with Userspace-Kernelspace Isolation:

1. user needs help for some operations (e.g., HW interaction)

→ can use a syscall!

2. What about VMs?

3. Same concept different level:

→ Hypercalls!

via the vmcall instruction

57 Daniel Gruss

What if we can’t do something in the Guest?

Similar problem as with Userspace-Kernelspace Isolation:

1. user needs help for some operations (e.g., HW interaction)

→ can use a syscall!

2. What about VMs?

3. Same concept different level:

→ Hypercalls!

via the vmcall instruction

57 Daniel Gruss

What if we can’t do something in the Guest?

Similar problem as with Userspace-Kernelspace Isolation:

1. user needs help for some operations (e.g., HW interaction)

→ can use a syscall!

2. What about VMs?

3. Same concept different level:

→ Hypercalls!

via the vmcall instruction

57 Daniel Gruss

What if we can’t do something in the Guest?

Similar problem as with Userspace-Kernelspace Isolation:

1. user needs help for some operations (e.g., HW interaction)

→ can use a syscall!

2. What about VMs?

3. Same concept different level:

→ Hypercalls!

via the vmcall instruction

57 Daniel Gruss

What if we can’t do something in the Guest?

Similar problem as with Userspace-Kernelspace Isolation:

1. user needs help for some operations (e.g., HW interaction)

→ can use a syscall!

2. What about VMs?

3. Same concept different level:

→ Hypercalls! via the vmcall instruction

57 Daniel Gruss

Virtualization: Trend 2010s → 2022+

Optimization

• Full virtualization often not needed

• Serverless / Edge Computing (it’s still a form of cloud computing)

• Virtualization is not for free → why not skip it and just use OS level isolation?

• Context switches between processes are expensive → why not skip process isolation and

just use language-level isolation?

58 Daniel Gruss

Virtualization: Trend 2010s → 2022+

Optimization

• Full virtualization often not needed

• Serverless / Edge Computing (it’s still a form of cloud computing)

• Virtualization is not for free → why not skip it and just use OS level isolation?

• Context switches between processes are expensive → why not skip process isolation and

just use language-level isolation?

58 Daniel Gruss

Virtualization: Trend 2010s → 2022+

Optimization

• Full virtualization often not needed

• Serverless / Edge Computing (it’s still a form of cloud computing)

• Virtualization is not for free → why not skip it and just use OS level isolation?

• Context switches between processes are expensive → why not skip process isolation and

just use language-level isolation?

58 Daniel Gruss

Virtualization: Trend 2010s → 2022+

Optimization

• Full virtualization often not needed

• Serverless / Edge Computing (it’s still a form of cloud computing)

• Virtualization is not for free → why not skip it and just use OS level isolation?

• Context switches between processes are expensive → why not skip process isolation and

just use language-level isolation?

58 Daniel Gruss

This course: hardware-assisted virtualization

Cloud Operating Systems → Hardware-assisted virtualization

59 Daniel Gruss

CloudOS: the third time

• Seminar-style

• You code

• You plan

• You present

60 Daniel Gruss

CloudOS: the third time

• Seminar-style

• You code

• You plan

• You present

60 Daniel Gruss

CloudOS: the third time

• Seminar-style

• You code

• You plan

• You present

60 Daniel Gruss

CloudOS: the third time

• Seminar-style

• You code

• You plan

• You present

60 Daniel Gruss

Team

Fabian Rauscher, Jonas Juffinger, Daniel Gruss

61 Daniel Gruss

Grading Scale

• 100 P. = 100%

• 87.5 P. → 1

• 75 P. → 2

• 62.5 P. → 3

• 50 P. → 4

62 Daniel Gruss

Grading Scale

• 100 P. = 100%

• 87.5 P. → 1

• 75 P. → 2

• 62.5 P. → 3

• 50 P. → 4

62 Daniel Gruss

Grading Scale

• 100 P. = 100%

• 87.5 P. → 1

• 75 P. → 2

• 62.5 P. → 3

• 50 P. → 4

62 Daniel Gruss

Grading Scale

• 100 P. = 100%

• 87.5 P. → 1

• 75 P. → 2

• 62.5 P. → 3

• 50 P. → 4

62 Daniel Gruss

Grading Scale

• 100 P. = 100%

• 87.5 P. → 1

• 75 P. → 2

• 62.5 P. → 3

• 50 P. → 4

62 Daniel Gruss

Teams

• 15 participants → 4 teams with each 3-4 participants (default)

• 5 ECTS = 500h with 125h per team member

• Team of 3? Same effort but +5 points

• Team of 2? Same effort but +10 points

→ send us your registration until Monday March 11

63 Daniel Gruss

Teams

• 15 participants → 4 teams with each 3-4 participants (default)

• 5 ECTS = 500h with 125h per team member

• Team of 3? Same effort but +5 points

• Team of 2? Same effort but +10 points

→ send us your registration until Monday March 11

63 Daniel Gruss

Teams

• 15 participants → 4 teams with each 3-4 participants (default)

• 5 ECTS = 500h with 125h per team member

• Team of 3? Same effort but +5 points

• Team of 2? Same effort but +10 points

→ send us your registration until Monday March 11

63 Daniel Gruss

Teams

• 15 participants → 4 teams with each 3-4 participants (default)

• 5 ECTS = 500h with 125h per team member

• Team of 3? Same effort but +5 points

• Team of 2? Same effort but +10 points

→ send us your registration until Monday March 11

63 Daniel Gruss

Teams

• 15 participants → 4 teams with each 3-4 participants (default)

• 5 ECTS = 500h with 125h per team member

• Team of 3? Same effort but +5 points

• Team of 2? Same effort but +10 points

→ send us your registration until Monday March 11

63 Daniel Gruss

Deadlines

• Deadlines: Friday 23:59

• Grace Period: 48 hours but no support

64 Daniel Gruss

Deadlines

• Deadlines: Friday 23:59

• Grace Period: 48 hours but no support

64 Daniel Gruss

Timeline & Deadlines

• 22.3. Structure Setup

Estimated Team Effort: 125h, Points: 5P.

• 26.4. Executing Guest Code + Video Output

Estimated Team Effort: 125h, Points: 15P. → AG1

• 3.5. Interrupt + Emulate PIC + Public Feature Bidding

Estimated Team Effort: 100h, Points: 5P.

• 24.5. Boot Guest SWEB Shell + Virtualize Disk + Private Feature Bidding

Estimated Team Effort: 75h, Points: 35P. → AG2

• 31.5. Feature PoC in Booted Guest SWEB

Estimated Team Effort: 75h, Points: 10P.

• 14.6. Feature Implementation Done + Final Presentation and Demo in Booted Guest

SWEB

Estimated Team Effort: 75h, Points: 30P. → AG3

• 14.6. Successful Live Presentation at 21:00, Bonus Points: 5P.

65 Daniel Gruss

Timeline & Deadlines

• 22.3. Structure Setup

Estimated Team Effort: 125h, Points: 5P.

• 26.4. Executing Guest Code + Video Output

Estimated Team Effort: 125h, Points: 15P. → AG1

• 3.5. Interrupt + Emulate PIC + Public Feature Bidding

Estimated Team Effort: 100h, Points: 5P.

• 24.5. Boot Guest SWEB Shell + Virtualize Disk + Private Feature Bidding

Estimated Team Effort: 75h, Points: 35P. → AG2

• 31.5. Feature PoC in Booted Guest SWEB

Estimated Team Effort: 75h, Points: 10P.

• 14.6. Feature Implementation Done + Final Presentation and Demo in Booted Guest

SWEB

Estimated Team Effort: 75h, Points: 30P. → AG3

• 14.6. Successful Live Presentation at 21:00, Bonus Points: 5P.

65 Daniel Gruss

Timeline & Deadlines

• 22.3. Structure Setup

Estimated Team Effort: 125h, Points: 5P.

• 26.4. Executing Guest Code + Video Output

Estimated Team Effort: 125h, Points: 15P. → AG1

• 3.5. Interrupt + Emulate PIC + Public Feature Bidding

Estimated Team Effort: 100h, Points: 5P.

• 24.5. Boot Guest SWEB Shell + Virtualize Disk + Private Feature Bidding

Estimated Team Effort: 75h, Points: 35P. → AG2

• 31.5. Feature PoC in Booted Guest SWEB

Estimated Team Effort: 75h, Points: 10P.

• 14.6. Feature Implementation Done + Final Presentation and Demo in Booted Guest

SWEB

Estimated Team Effort: 75h, Points: 30P. → AG3

• 14.6. Successful Live Presentation at 21:00, Bonus Points: 5P.

65 Daniel Gruss

Timeline & Deadlines

• 22.3. Structure Setup

Estimated Team Effort: 125h, Points: 5P.

• 26.4. Executing Guest Code + Video Output

Estimated Team Effort: 125h, Points: 15P. → AG1

• 3.5. Interrupt + Emulate PIC + Public Feature Bidding

Estimated Team Effort: 100h, Points: 5P.

• 24.5. Boot Guest SWEB Shell + Virtualize Disk + Private Feature Bidding

Estimated Team Effort: 75h, Points: 35P. → AG2

• 31.5. Feature PoC in Booted Guest SWEB

Estimated Team Effort: 75h, Points: 10P.

• 14.6. Feature Implementation Done + Final Presentation and Demo in Booted Guest

SWEB

Estimated Team Effort: 75h, Points: 30P. → AG3

• 14.6. Successful Live Presentation at 21:00, Bonus Points: 5P.

65 Daniel Gruss

Timeline & Deadlines

• 22.3. Structure Setup

Estimated Team Effort: 125h, Points: 5P.

• 26.4. Executing Guest Code + Video Output

Estimated Team Effort: 125h, Points: 15P. → AG1

• 3.5. Interrupt + Emulate PIC + Public Feature Bidding

Estimated Team Effort: 100h, Points: 5P.

• 24.5. Boot Guest SWEB Shell + Virtualize Disk + Private Feature Bidding

Estimated Team Effort: 75h, Points: 35P. → AG2

• 31.5. Feature PoC in Booted Guest SWEB

Estimated Team Effort: 75h, Points: 10P.

• 14.6. Feature Implementation Done + Final Presentation and Demo in Booted Guest

SWEB

Estimated Team Effort: 75h, Points: 30P. → AG3

• 14.6. Successful Live Presentation at 21:00, Bonus Points: 5P.

65 Daniel Gruss

Timeline & Deadlines

• 22.3. Structure Setup

Estimated Team Effort: 125h, Points: 5P.

• 26.4. Executing Guest Code + Video Output

Estimated Team Effort: 125h, Points: 15P. → AG1

• 3.5. Interrupt + Emulate PIC + Public Feature Bidding

Estimated Team Effort: 100h, Points: 5P.

• 24.5. Boot Guest SWEB Shell + Virtualize Disk + Private Feature Bidding

Estimated Team Effort: 75h, Points: 35P. → AG2

• 31.5. Feature PoC in Booted Guest SWEB

Estimated Team Effort: 75h, Points: 10P.

• 14.6. Feature Implementation Done + Final Presentation and Demo in Booted Guest

SWEB

Estimated Team Effort: 75h, Points: 30P. → AG3

• 14.6. Successful Live Presentation at 21:00, Bonus Points: 5P.

65 Daniel Gruss

Timeline & Deadlines

• 22.3. Structure Setup

Estimated Team Effort: 125h, Points: 5P.

• 26.4. Executing Guest Code + Video Output

Estimated Team Effort: 125h, Points: 15P. → AG1

• 3.5. Interrupt + Emulate PIC + Public Feature Bidding

Estimated Team Effort: 100h, Points: 5P.

• 24.5. Boot Guest SWEB Shell + Virtualize Disk + Private Feature Bidding

Estimated Team Effort: 75h, Points: 35P. → AG2

• 31.5. Feature PoC in Booted Guest SWEB

Estimated Team Effort: 75h, Points: 10P.

• 14.6. Feature Implementation Done + Final Presentation and Demo in Booted Guest

SWEB

Estimated Team Effort: 75h, Points: 30P. → AG3

• 14.6. Successful Live Presentation at 21:00, Bonus Points: 5P.

65 Daniel Gruss

