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Cloud means Efficiency



How does the cloud bring efficiency?

Apply OS techniques - Example?

• Processes used to have access to all physical memory → that’s not efficient!

→ Virtualize memory → processes can share resources of one machine and utilize it better

• Processes need all the same pages → that’s not efficient!

→ Let them share memory, using COW, page deduplication, etc.

• Processes often cannot do anything but wait → that’s not efficient!

→ Let other processes run in between
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IaaS: VMs, Servers, Storage, Load Balancing, Network, ... PaaS: Runtime, Database, Web server, Dev Tools, ... SaaS: CRM, Email, virtual desktop, communication, games, ...



Different techniques - similar challenges

• Efficiency

• Isolation of tenants (security, reliability, availability)

• Abstraction of hardware
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What is Virtualization?

Virtualization allows to represent resources in a computer in a way they can be used easily

and without the need to know details of their properties
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Virtual Machines (VM)

• Decouple operating system from hardware

• “computer in computer” - implemented in software

• includes devices (network, keyboard, sound...)

• OS in VM “sees” its hardware, irrespective from the actual hardware in use

• OS does not know if HW is concurrently used by other VMS
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Why virtualization

• Cheaper hardware: one server for one task was common

• most of these servers: idle time 90%

• cost issue:

• support, maintenance

• power consumption (operation, cooling)

• space

• Virtualization allows consolidation

• multiple servers on one box
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Advantages

• Better hardware utilization

• Lower administration cost

• long-term operations of older applications

• lower down-times

• simple migration to more powerful hardware
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Disadvantages

• Performance cost: slower I/O operation

• single point of failure: requires better hardware reliability

• security gets more complex
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Virtualization: Trend 1990s → 2000s

• Virtualization no significant role in internet hosting

• often PaaS

• Web hosts (FTP access, HTTP website)

• Isolation on the OS level (tenants as users)

• no hardware support → expensive + many problems
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Modern Virtualization

• OS-level Virtualization

• Para-Virtualization

• Full Virtualization

• Hardware-Assisted Virtualization
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OS-level Virtualization

• integrated into kernel

• all application software intended to run in a virtual environment get strictly separated

virtual runtime environments (container, jail)

• no separate kernels - only process level virtualization

• can’t run other OSes - only for applications

• examples: OpenVZ, Docker, (s)chroot
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Para-Virtualization

• Cooperation with OS: OS is aware of virtualization

• needs to modify guest

• not usable for closed source OSes
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Full Virtualization

• OS not aware of being virtualized

• no need to adapt guest

• reduced performance

• up to 25%

• full virtualization of HW required (e.g., emulation via qemu)

• virtual machines not allowed to access physical components

• every physical component has to be virtualized and requires drivers in OS
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Some earlier systems: binary translation

• Guest no longer runs in kernel mode (Ring 0)

• parts that require kernel privileges won’t run

• hypervisor (VMM) changes binaries of guest-OS on the fly

• allows supporting any OS

• no need to change source

• high performance penalty
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VMWare

• First full x86 virtualization

• hypervisor continuously reads program code before it is executed (pre-scan)

• looking for relevant commands

• change of system state

• commands depending on CPU state

• sets breakpoint and lets OS run
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Problems virtualizing on IA-32

• Diverse problems were to be solved when virtualizing on IA-32:

• Ring Problems

• Address Space Compression

• Non-Faulting Access to Priv. State

• SYSENTER / SYSEXIT

• Interrupt Virtualization

• Hidden States
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Ring Problem 1: which ring

• usually: application run in ring 3, kernel in ring 0

• guest may not run in ring 0

• ring de-privileging needed: guest must run in ring > 0

• most often 1 or 3
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Ring Problem 2: aliasing

• guest has to run in a ring it has not been developed for

• certain instructions contain privilege level in result (e.g. PUSH CS)

• guest OS can find out ring it is running in

• may result in diverse problems
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Address Space Compression

• Guest expects to have full address space available

• hypervisor requires part of address space

• control structures for switching between guest and hypervisor

• Access to these areas not allowed for guest. Invokes switch to hypervisor who has to

emulate these accesses
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Non-Faulting Access to Priv. State

• unprivileged software may not access certain elements of the CPU state

• access by guest results in fault: hypervisor can emulate instructions

• IA-32 possesses instructions that do not induce a fault:

• Registers GDTR, IDTR, LDTR and TR are only modifiable in ring 0

• can be executed in any ring without fault (without function)
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SYSENTER / SYSEXIT

• special commands for fast syscalls

• SYSENTER always switches to ring 0

• SYSEXIT can only be executed in ring 0

• ring 1 thus is problematic

• SYSENTER switches to hypervisor → has to emulate

• SYSEXIT switches to hypervisor → has to emulate
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• cannot be saved and restored when switching between VMs
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Intel Virtualization Architecture

• Two new operating modes:

• VMX root operation

• for hypervisor

• VMX non-root operation

• controlled by hypervisor

• supports VMs

• Both modes have ring 0-3

• guest can run in ring 0

• hypervisor said to be running in “ring -1”

23 Daniel Gruss



Intel Virtualization Architecture

• Two new operating modes:

• VMX root operation

• for hypervisor

• VMX non-root operation

• controlled by hypervisor

• supports VMs

• Both modes have ring 0-3

• guest can run in ring 0

• hypervisor said to be running in “ring -1”

23 Daniel Gruss



Intel Virtualization Architecture

• Two new operating modes:

• VMX root operation

• for hypervisor

• VMX non-root operation

• controlled by hypervisor

• supports VMs

• Both modes have ring 0-3

• guest can run in ring 0

• hypervisor said to be running in “ring -1”

23 Daniel Gruss



Intel Virtualization Architecture

• Two new operating modes:

• VMX root operation

• for hypervisor

• VMX non-root operation

• controlled by hypervisor

• supports VMs

• Both modes have ring 0-3

• guest can run in ring 0

• hypervisor said to be running in “ring -1”

23 Daniel Gruss



Intel Virtualization Architecture

• Two new operating modes:

• VMX root operation

• for hypervisor

• VMX non-root operation

• controlled by hypervisor

• supports VMs

• Both modes have ring 0-3

• guest can run in ring 0

• hypervisor said to be running in “ring -1”

23 Daniel Gruss



Intel Virtualization Architecture

• Two new operating modes:

• VMX root operation

• for hypervisor

• VMX non-root operation

• controlled by hypervisor

• supports VMs

• Both modes have ring 0-3

• guest can run in ring 0

• hypervisor said to be running in “ring -1”

23 Daniel Gruss



Intel Virtualization Architecture

• Two new operating modes:

• VMX root operation

• for hypervisor

• VMX non-root operation

• controlled by hypervisor

• supports VMs

• Both modes have ring 0-3

• guest can run in ring 0

• hypervisor said to be running in “ring -1”

23 Daniel Gruss



Intel Virtualization Architecture

• Two new operating modes:

• VMX root operation

• for hypervisor

• VMX non-root operation

• controlled by hypervisor

• supports VMs

• Both modes have ring 0-3

• guest can run in ring 0

• hypervisor said to be running in “ring -1”

23 Daniel Gruss



Intel Virtualization Architecture

• Two new operating modes:

• VMX root operation

• for hypervisor

• VMX non-root operation

• controlled by hypervisor

• supports VMs

• Both modes have ring 0-3

• guest can run in ring 0

• hypervisor said to be running in “ring -1”

23 Daniel Gruss



Rings on Intel
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VMM Operation
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VMM Transitions
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VT-x

• VM entry: root operation → non-root operation

• VM exit: non-root operation → root operation

• VMCS: Virtual Machine Control Structure

• Guest-state-area

• Host-state-area

• Entry/Exit loads/safes information using the proper area
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VMCS - Guest State Area

• Contains elements comprising the state of the virtual CPU of a VMCS

• VM-exit requires loading certain registers (like segment registers, CR3, IRTR...)

• GSA contains fields for these registers

• GSA contains fields for other information not readable via registers

• e.g. interruptability state
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VMCS

• Addressed using physical addresses

• not part of guest address space

• hypervisor may run in different address space as guest (CR3 part of state)

• VM-exits leave detailed information on reason for exit in VMCS

• exit reason

• exit qualification
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VMCS

• Example: MOV CR

• Exit reason: “control register access”

• Exit qualification:

• which CR

• direction (Rx→CR or CR→Rx)

• register used
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Virtualization: Trend 2000s → 2010s

The next step (≈ 2005):

• Virtualization Hardware Extensions for Intel and AMD

→ substantially lower overheads for VMs

→ better isolation

→ IaaS VMs become widely used
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Hardware Exentions: Intel VT

• Support for interrupt-virtualization

• VM-exit with every external interrupt (cannot be masked by guest)

• VM-exit when guest-OS ready to accept interrupts (EFLAGS.IF==1)

• Support for CR0 and CR4-virtualization

• VM-exit with any change of these registers

• can be set on which bits this shall happen
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Solves our problems

• Address Space Compression

• change of address space with any switch guest/hypervisor

• guest owns full virtual address space

• Ring Problems, SYSENTER/SYSEXIT

• Guest can now run in ring 0
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• Non-faulting Access to Privileged State

• access raise fault into hypervisor

• Hidden State

• Saved into VMCS
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Hypervisor and Virtual Memory

• Hypervisor uses virtual memory

• guest OS uses virtual memory

• hardware supports page tables

• how does this work?

• shadow page tables

• hardware support
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Virtual Memory
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All problems in computer science can be solved by another level of indirection.

But that usually will create another problem.

David Wheeler
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Paging
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Known from theory and practice
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and in 64 bit...
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Combined Paging
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Shadow Page Table
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Page Tables
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Shadow Page Table

• merges both page tables into one that the HW uses

• when guest changes own page table

• Hypervisor has to catch access

• update shadow page table
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Shadow Page Table

• when HW changes shadow page table

• update guest PT

• expensive!

• page faults caught by hypervisor

• must run through guest PTs

• must emulate accessed and modified bits for guest
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EPT
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Nested PT (NPT, AMD) / Extended PT (EPT, Intel)

“guest page walk”
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Guest page walk

• lots of memory accesses....

• but how many exactly?
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And Combined
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... and combined ...

max. number of memory accesses per address translation

• 5 on guest level

• each induces 5 on host level

• makes 25!
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Guest Page Walk
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Performance

• depending on application: 3.9-4.6 times slower

• but: TLB
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Intel Features

• EPT only used if VM active

• Translations tagged in TLB with EPT base pointer

• differentiate TLB-entries of different VMs

• TLB-flush per guest possible

• VPID: virtual processor ID

• unique value for each VM

• translations tagged in TLB using VPID
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Setting up a hypervisor

1. Enable VMX via CR4

2. Allocate a VMXON region and use the VMXON instruction

3. Allocate an MSR Bitmap region (we don’t want a trap for all MSRs)

4. Use VMCLEAR instruction

5. Execute VMPTRLD to make a VMCS the “current VMCS”

6. Allocate a VMCS region and set up the VMCS (using VMWRITEs)

7. Use the VMLAUNCH
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What if we can’t do something in the Guest?

Similar problem as with Userspace-Kernelspace Isolation:

1. user needs help for some operations (e.g., HW interaction)

→ can use a syscall!

2. What about VMs?

3. Same concept different level:

→ Hypercalls!

via the vmcall instruction
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Virtualization: Trend 2010s → 2022+

Optimization

• Full virtualization often not needed

• Serverless / Edge Computing (it’s still a form of cloud computing)

• Virtualization is not for free → why not skip it and just use OS level isolation?

• Context switches between processes are expensive → why not skip process isolation and

just use language-level isolation?
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This course: hardware-assisted virtualization

Cloud Operating Systems → Hardware-assisted virtualization
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CloudOS: the third time

• Seminar-style

• You code

• You plan

• You present
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Team

Fabian Rauscher, Jonas Juffinger, Daniel Gruss
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Grading Scale

• 100 P. = 100%

• 87.5 P. → 1

• 75 P. → 2

• 62.5 P. → 3

• 50 P. → 4
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Teams

• 15 participants → 4 teams with each 3-4 participants (default)

• 5 ECTS = 500h with 125h per team member

• Team of 3? Same effort but +5 points

• Team of 2? Same effort but +10 points

→ send us your registration until Monday March 11
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Deadlines

• Deadlines: Friday 23:59

• Grace Period: 48 hours but no support
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Timeline & Deadlines

• 22.3. Structure Setup

Estimated Team Effort: 125h, Points: 5P.

• 26.4. Executing Guest Code + Video Output

Estimated Team Effort: 125h, Points: 15P. → AG1

• 3.5. Interrupt + Emulate PIC + Public Feature Bidding

Estimated Team Effort: 100h, Points: 5P.

• 24.5. Boot Guest SWEB Shell + Virtualize Disk + Private Feature Bidding

Estimated Team Effort: 75h, Points: 35P. → AG2

• 31.5. Feature PoC in Booted Guest SWEB

Estimated Team Effort: 75h, Points: 10P.

• 14.6. Feature Implementation Done + Final Presentation and Demo in Booted Guest

SWEB

Estimated Team Effort: 75h, Points: 30P. → AG3

• 14.6. Successful Live Presentation at 21:00, Bonus Points: 5P.
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