

Postprocessing of Raw TRNG Bits

Sujoy Sinha Roy sujoy.sinharoy@iaik.tugraz.at

Raw random numbers produced in this way are generally not IID, i.e., independent and identically distributed.

- Bits are biased
- and contain correlation

Could we mitigate or remove statistical defects in raw random data?

Postprocessing (conditioning) of Raw Random Bits

'Postprocessing' is an application of a deterministic algorithm to remove or mitigate statistical defects from TRNG-produced raw random data (which contains defects).

- Increases randomness per bit by performing data compression.
- Some entropy is always lost due to data compression
- It doesn't produce any 'new' randomness

Postprocessing (conditioning) of Raw Random Bits

'Postprocessing' is an application of a deterministic algorithm to remove or mitigate statistical defects from TRNG-produced raw random data (which contains defects).

- Increases randomness per bit by performing data compression.
- Some entropy is always lost due to data compression
- It doesn't produce any 'new' randomness

There are two ways of postprocessing raw random bits:

- 1. Arithmetic postprocessing \rightarrow do not rely on cryptographic primitives
- 2. Cryptographic postprocessing \rightarrow rely on cryptographic primitives

Arithmetic postprocessing: Parity filter or XOR processing (1)

- Raw random bits are split into blocks of length $n_{\rm f}$ bits and
- Then the bits within each chunk are XORed

with
$$n_f = 2$$

Arithmetic postprocessing: Parity filter or XOR processing (2)

- Raw random bits are split into blocks of length n_f bits and
- Then the bits within each chunk are XORed

with $n_f = 2$

Data compression factor is n_{f} .

If the raw data has a bias ϵ_{raw} then the postprocessed data has a bias: $\epsilon = 2^{n_f - 1} \epsilon_{raw}^{n_f}$

Arithmetic postprocessing: Von Neuman Processing (1)

This method removes bias completely.

Steps:

- 1. Partition the input bit string into 2-bit blocks.
- 2. Discard all '00' and '11' blocks.
- 3. If a block is '01' then the output bit is 1; If a block is '10' then the output bit is 0.

Arithmetic postprocessing: Von Neuman Processing (2)

This method removes bias completely.

Steps:

- 1. Partition the input bit string into 2-bit blocks.
- 2. Discard all '00' and '11' blocks.
- 3. If a block is '01' then the output bit is 1; If a block is '10' then the output bit is 0.

Output is produced at a variable rate. If input has a throughput T_{in} then the average throughput of output is $T_{in} \cdot p_1 \cdot (1 - p_1)$.

Arithmetic postprocessing: Resilient Function [SMS07]

Definition [SMS07]: An (n, m, t)-resilient function is a function

$$F(x_1, x_2, ..., x_n) = (y_1, y_2, ..., y_m)$$

from Z_2^n to Z_2^m enjoying the property that for any *t* coordinates $i_1, ..., i_t$, for any constants $a_1, ..., a_t$ from Z_2 and any element *y* of the codomain

Pr(
$$F(x) = y | x_{i1} = a_1, ..., x_{it} = a_t$$
) = 1/2^{*m*}.

[SMS07] B. Sunar, W.J. Martin, and D.R. Stinson. "A Provably Secure True Random Number Generator with Built-In Tolerance to Active Attacks". IEEE Trans. on Comp., Vol. 56, No. 1, 2007.

Arithmetic postprocessing: Resilient Function [SMS07]

Knowledge of any $\leq t$ coordinates of input doesn't give any advantage in predicting output.

Arithmetic postprocessing: Resilient Function [SMS07]

Arithmetic postprocessing: Example of a Resilient Function

[SMS07] used a linear error correcting code C = [n, m, d] to implement a [n, m, d-1] resilient function.

Arithmetic postprocessing: Example of a Resilient Function

[SMS07] used a linear error correcting code C = [n, m, d] to implement a [n, m, d-1] resilient function.

$$f(x) = x \cdot \left(\begin{array}{c} G \end{array} \right)^T$$

[SPV06] used a cyclic code for compact implementation on hardware platforms.

$$G = \begin{pmatrix} g_0 & 0 & \dots & 0 \\ g_1 & g_0 & & 0 \\ \vdots & \vdots & \ddots & \\ g_{n-m-1} & g_{n-m-2} & \dots & g_0 \\ 0 & g_{n-m-1} & \dots & g_1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & g_{n-m-1} \end{pmatrix}^T$$

[SPV06] D. Schellekens, B. Preneel, I. Verbauwhede. "FPGA Vendor Agnostic True Random Number Generator". IEEE FPL 2006.

Summary: Postprocessing (conditioning) of Raw Random Bits

'Postprocessing' is an application of a deterministic algorithm to removes or mitigates statistical defects from TRNG-produced raw random data (which contains defects).

- Increases randomness per bit by performing data compression.
- Some entropy is always lost due to data compression
- It doesn't produce any 'new' randomness

There are two ways of postprocessing raw random bits:

- 1. Arithmetic postprocessing \rightarrow do not rely on cryptographic primitives
- 2. Cryptographic postprocessing \rightarrow rely on cryptographic primitives

Cryptographic postprocessing

A cryptographic postprocessing uses a cryptographic primitive to process the raw random bits and then produce uniformly distributed random bits.

NIST recommended keyed algorithms for cryptographic postprocessing:

- 1. HMAC with any standardized hash function
- 2. CMAC with AES block cipher
- 3. CBC-MAC with AES block cipher

NIST recommended **un-keyed** algorithms for cryptographic postprocessing:

- 1. Any standardized hash function
- 2. Hash_df with any standardized hash function
- 3. Block_Cipher_df with AES block cipher

(Note: df stands for derivative function)

Cryptographic postprocessing: Example using CBC-MAC

Partition raw random bits into 128-bit blocks and use each block as a message-block.

E is AES-128. The number of blocks \ge 2.

Cryptographic postprocessing

Detailed technical information available on the NIST special publication SP 800-90A

NIST Special Publication 800-90A Revision 1 Recommendation for Random Number Generation Using Deterministic Random Bit Generators Elaine Barker John Kelsey

References

[SMS07] B. Sunar, W.J. Martin, and D.R. Stinson. "A Provably Secure True Random Number Generator with Built-In Tolerance to Active Attacks". IEEE Trans. on Comp., Vol. 56, No. 1, 2007.

[Yang18] B. Yang, "True Random Number Generators for FPGAs," PhD thesis, KU Leuven, 154 pages, 2018. https://www.esat.kuleuven.be/cosic/publications/thesis-307.pdf

[Rozic16] V. Rozic, "Circuit-Level Optimizations for Cryptography," PhD thesis, KU Leuven, 220 pages, 2016. https://www.esat.kuleuven.be/cosic/publications/thesis-286.pdf

[SPV06] D. Schellekens, B. Preneel, I. Verbauwhede. "FPGA Vendor Agnostic True Random Number Generator". IEEE FPL 2006. DOI: 10.1109/FPL.2006.311206