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Silicon PUF: An unique fingerprint of a chip
▪ PUF can be viewed as a unique fingerprint of a chip

▪ Comes from random process variations

▪ Various implementations and applications
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Variability is inherently presented in ICs
▪ Variability in transistors and interconnect

▪ In general undesired – except for PUFs

▪ Random dopant fluctuation

▪ Interconnect width is not always the same
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More opportunities brought by scaling
▪ Even more challenging to manufacture identical devices in scaled technologies

▪ Moore’s Law

▪ 40nm → 28nm →16nm → 7nm → ...

▪ More variability comes from:

▪ More processing steps

▪ Decreased size (e.g. 2nm difference → 5% in 40nm and 30% in 7nm) 

▪ New materials
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Source: imec
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Transistor design roadmap

More variability 

to be expected
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Two design methodologies
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Replacing secure non-volatile memory

▪ The root key is typically stored in secure NVMs:

▪ EEPROM/Flash

▪ Fuses/Anti-fuses

▪ Battery-backed SRAM

▪ Concerns:

▪ Physical attacks

▪ Resource constraints (cost)

▪ PUF – generates its own unique key
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SRAM PUF – a classic weak PUF
▪ 2D array of 1-bit memory cells

▪ Variability: mismatch between the cross-coupled inverters

▪ Volatile: data is cleared after power-off
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Transistor variations determines PUF bits

▪ Assume one of the transistors is much weaker than others

▪ Four extreme cases
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Variations do not always lead to desired results

▪ If the variation is insignificant for a particular cell
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▪ If the variation is not completely random



From process variation to a secret key
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Realizing an ideal authentication scheme
▪ Entity authentication based on challenge and response
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Arbiter PUF – based on timing differences
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Arbiter PUF is not an ideal strong PUF
▪ Linear additive structure: sum of delays

▪ Similar challenges → similar responses
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Responses can be easily predicted
▪ CRPs are highly correlated: low entropy

→ Prone to machine learning (ML) attacks
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[Hospodar, WIFS 2012]

[Ruhrmair, ACM CCS 2010]

Experimental results on 65 nm CMOS: 
only a few 1000 CRPs are sufficient to 

model the PUF with high accuracy



Make it less predictable by XORing
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▪ XOR: non-linear operation

▪ CRPs less correlated

▪ → More CRPs for training

▪ More resilient to machine 

learning attacks

▪ Can we infinitely increase 

the number of XORs to 

make ML attacks infeasible?

Assume flip 1 challenge bit → 5% probability to flip response bit

XOR by 3 ➔ ~14%



# of XORs is limited by noise
▪ Non-linear operation → Noise amplification
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BER: 6%

BER: 8%

BER: 4%

BER: ~16%

▪ Too many XORs → Too much noise

▪ Ends up behaving like RNGs

Is it possible to make an ideal strong PUF?
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Uniqueness

▪ Two   e   ca  y ma ufac ure  ch ps have   ffere   “f  gerpr   ”

▪ Each chip has its unique PUF response
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PUF response r1=

1010010010101001...

PUF response r2=

0110001010110100...

r1≠r2

Chip 1 Chip 2



Estimate uniqueness by inter-distance
▪ Hamming distance, HD(r1, r2)

▪ Fractional-HD = HD(r1, r2) / n (n = # bits)

▪ Ideal-case: binomial distribution with success probability 0.5

▪ Mean = n/2 (50%)

▪ Variance = n/4
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Min-entropy of a secret key

▪ E.g. 128-bit AES

▪ Key length = 128 bits

▪ Min-entropy = 128 bit

▪ Uniform distribution

▪ An attacker guesses the key first time right with probability: 2
-128
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Min-Entropy of a PUF

▪ Nearly impossible to determine exhaustively

▪ Min-entropy tests require about 1M bits

▪ Practically not feasible in a PUF, e.g., a 1024-bit SRAM PUF

▪ Can only get reasonably good estimation
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From PUF to Secret Key
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Reliability

▪ PUF responses are not exactly reproducible

▪ At different time

▪ In different environment
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#1: 10100100101010001...

#2: 10110100001010001...

#3: 10100110101010001...

PUF response r1=



Short-term reliability (data stability)

▪ PUF response changed temporarily caused by:

▪ Environment change (external)

▪ Internal fluctuation
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External:

- Temperature

- Supply voltage

- Humidity

- Radiation

- ...

Internal

- White noise

- Flicker noise

- Cross-talk

- Glitch

- ...

How to improve the short-term reliability?



Long-term reliability

▪ Nearly permanent change caused by aging

▪ Biased Temperature Instability (NBTI/PBTI)

▪ Hot-carrier Injection (HCI)

▪ Time-dependent dielectric breakdown (TDDB)

▪ Can be exploited to enhance the short-term reliability
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Charge capture and emission 

in the oxide interface

→ VT shift caused by charge trapping

Example: BTI
Vstress



Good reliability is crucial
▪ Error correction codes need to be stored → NVM needed

▪ Why not just store the key in NVM?
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Methods to make PUF bits stable

▪ Error correction 

▪ Standardized mathematic operations → Robust

▪ NVM is required

▪ Alternatives

▪ Temporary majority voting

▪ Dark-bit masking

▪ Burn-in enhancement
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Can achieve same robustness?



Reducing the effect of noise by averaging 

▪ Temporary majority voting (TMV):

▪ Measure response bits multiple (N) times and output the most occurring value

▪ Reducing the error rate
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Error rate 1% 5% 10% 20% 30% 40% 45% 49%

N=3 3e-4 7.3e-3 2.8% 10.4% 21.6% 35.2% 42.5% 48.5%

N=5 1e-5 1.2e-3 8.6e-3 5.8% 16.3% 31.7% 40.7% 48.1%

N=11 <1e-9 5.8e-6 3.0e-4 1.2% 7.8% 24.7% 36.7% 47.3%

N=101 0 0 0 <1e-11 1.3e-5 2.1% 15.6% 42.0%

Not efficient for very noisy bits

▪ Need large N to ensure low error rate

▪ Large N → Large latency and needs more storage elements

#1: 1010010010101...

#2: 1011011000101...

#3: 1010011011101...

TMV3: 1010011010101...



Discarding all the noisy bits
▪ Dark-bit masking

▪ I e   fy  o sy    s a   marke  as “ o  o  use”
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1024-bit PUF data Unstable bits

Masked

▪ Two main concerns

▪ How to identify unstable bits?

▪ Still needs NVM to store mask information? 

1022-bit 

stable PUF data



Exploit time dependent variability
▪ Burn-in enhancement

▪ Apply intentional stress to age specific devices

38

wor    e

 
  
   
e

 
 
     

e

  
  

  
  

weaknBTI

Becomes weaker with time

→ Less difference

wor    e

 
  
   
e

 
 
     

e

  
  

  
  

0 VDD0VDD
power-up program

weak

nBTI

Make it even weaker

→ More difference

Don’t keep the 

power-up pattern

▪ BTI: Bias temperature instability is a degradation phenomenon affecting MOS

▪ Concerns: long stress time & recovery of degradation



Summary

▪ Silicon PUFs are unique fingerprints for chips

▪ Benefits from process variation in silicon technology

▪ Secret key generation using weak PUFs

▪ SRAM PUF as a classic example

▪ Helper data algorithm is usually needed

▪ Entity authentication using strong PUFs

▪ Arbiter PUFs can be used but is not ideal

▪ Correlated CRPs are prone to ML attacks

▪ Uniqueness and reliability are the two key properties
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