
SCIENCE

PASSION

TECHNOLOGY

Cryptography on HW Platform
Modular Arithmetic Techniques

https://www.iaik.tugraz.at/ce

Sujoy Sinha Roy
sujoy.sinharoy@iaik.tugraz.at

Graz University of Technology

December, 2023

Roadmap

Integer arithmetic
techniques

Modular arithmetic
techniques

Basics of public-key
cryptography (PKC)

Algorithmic
techniques

Introduction &
FPGA basics

Assignment 1
Implementation

of PKC

2

Roadmap

Integer arithmetic
techniques

Modular arithmetic
techniques

Basics of public-key
cryptography (PKC)

Algorithmic
techniques

Introduction &
FPGA basics

Assignment 1
Implementation

of PKC

3

Reminder

Background on modular arithmetic

4

For any integer c, we want to compute the result of

c mod m

(we are interested in positive integers in cryptography)

The “modulo” or mod operation 5

For any integer c, we want to compute the result of

c mod m

(we are interested in positive integers in cryptography)

Procedure:

1. Divide c by m and obtain the quotient q

 q = ⌊c/m⌋

2. Compute the remainder r = c – q*m

3. Assign r = c mod m

The “modulo” or mod operation 6

Example 1:

23 mod 5 = ?

The “modulo” or mod operation 7

Example 2:

? mod 5 = 3

The “modulo” or mod operation 8

For modulus m, and two positive integers a and b, we say that
a is congruent to b modulo m if

m | (a – b)

The notation is

a ≡ b (mod m)

The binary relationship is called “congruence”.
It indicates that a and b have the same remainder modulo m.

Example: 23 ≡ 3 (mod 5), similarly 13 ≡ 3 (mod 5), and 13 ≡ 23 (mod 5).

Congruence: definition 9

Properties of congruence

The following relations hold

i. a ≡ a (mod m)

ii. a ≡ b (mod m) ⇒ b ≡ a (mod m)

iii. a ≡ b (mod m) and b ≡ c (mod m) ⇒ a ≡ c (mod m)

iv. a ≡ a’ (mod m) and b ≡ b’ (mod m)

 ⇒ a + b ≡ a’ + b’ (mod m) and

 a * b ≡ a’ * b’ (mod m)

10

The congruence class of a modulo m is the set of all integers that are
congruent to a modulo m.

Congruence class

[a]m = {b ∈ ℤ such that b ≡ a (mod m)}

Example:
 [3]5 = {…, -7, -2, 3, 8, 13, 18, 23, ….}

11

For more information on congruences, you may consider reading
chapter-2 of the book:

“A Computational Introduction to Number Theory and Algebra”, by
Victor Shoup. https://shoup.net/ntb/ntb-v2.pdf

12

https://shoup.net/ntb/ntb-v2.pdf

Consider the problem of computing modular multiplication.

The number of bits in t is 2x larger than in m.

Input: a, b ∈ [0, m-1]
Output: c = a * b mod m ∈ [0, m-1]
1: t = a * b ∈ [0, (m-1)2]
2: r = t mod m
3: return r

13

Consider the problem of computing modular multiplication.

The number of bits in t is 2x larger than in m.

How to compute the modular reduction of t?

Input: a, b ∈ [0, m-1]
Output: c = a * b mod m ∈ [0, m-1]
1: t = a * b ∈ [0, (m-1)2]
2: r = t mod m
3: return r

14

Consider the problem of computing modular multiplication.

The number of bits in t is 2x larger than in m.

Schoolbook method for calculating r:
1. Perform division q = ⌊t/m⌋
2. Calculate remainder r = t – q*m

Input: a, b ∈ [0, m-1]
Output: c = a * b mod m ∈ [0, m-1]
1: t = a * b ∈ [0, (m-1)2]
2: r = t mod m
3: return r

15

Schoolbook modular reduction is very inefficient

Division is very expensive to compute.

a=vector(100000);
b=vector(100000);
c=vector(100000);

for(i=1, 100000, a[i] = random(2^4096))
for(i=1, 100000, b[i] = random(2^2048))
for(i=1, 100000, c[i]=floor(a[i]/b[i]))

See how long this PARI/GP code takes for division (/) and multiplication (*).

16

Division is very expensive to compute.

Low-end microcontrollers do not have division instructions.

Division is computed as repeated subtraction.
→ Extremely slow modular reduction

Schoolbook modular reduction is very inefficient 17

Efficient algorithms for modular reduction

In this course, we will study the following algorithms

• Barrett reduction

• Montgomery reduction

• Reduction for special modulus

18

Barrett reduction

P. Barrett, “Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a
Standard Digital Signal Processor”. CRYPTO’ 86.

19

Calculating remainder r:
1. Perform division q = ⌊t/m⌋
2. Calculate remainder r = t – q*m

Barrett reduction

Barrett’s method optimizes reduction for fixed modulus m.

Main idea: Replace division by cheaper multiplication.

Precompute 1/m and multiply t*(1/m).

20

Example: Let m = 7069 (m is a 13-bit number)

5044*6312 mod m = ?

Precomputed (1/m) =0.00014146272457207525816947234 …

t = 5044*6312 = 31837728

t/m = t*(1/m) = 31837728 * 0.00014146272457207525816947234 …
 ≈ 4503.8517470646484 …

q = ⌊t/m⌋ = 4503

r = t - q*m = 31837728 - 4503*7069 = 6021

Matches with PARI/GP

21

Example: Let m = 7069 (m is a 13-bit number)

5044*6312 mod m = ?

Precomputed (1/m) =0.00014146272457207525816947234 …

t = 5044*6312 = 31837728

t/m = t*(1/m) = 31837728 * 0.00014146272457207525816947234 …
 ≈ 4503.8517470646484 …

q = ⌊t/m⌋ = 4503

r = t - q*m = 31837728 - 4503*7069 = 6021

What precision do we need for
correctly computing quotient?

22

Example: Let m = 7069 (m is a 13-bit number)

5044*6312 mod m = ?

Precomputed (1/m) =0.00014146272457207525816947234 …

t = 5044*6312 = 31837728

t/m = t*(1/m) = 31837728 * 0.00014146272457207525816947234 …
 ≈ 4503.8517470646484 …

q = ⌊t/m⌋ = 4503

r = t - q*m = 31837728 - 4503*7069 = 6021

Barrett’s method takes 2k bits after
the (.) where k is the length of m.

23

Modulus m = 7069 is 13 bits long. Hence k = 13.

Barrett reduction 24

Modulus m = 7069 is 13 bits long. Hence k = 13.

Barrett reduction

1/m = 0.00014146272457207525816947234 …10

 = 0.0000000000001001010001010101100111 …2

 ≈ 0.000000000000100101000101012 (Truncate after 2k=26 bits)
 = 0.000141456723213195810

25

Modulus m = 7069 is 13 bits long. Hence k = 13.

Barrett reduction

1/m = 0.00014146272457207525816947234 …10

 = 0.0000000000001001010001010101100111 …2

 ≈ 0.000000000000100101000101012 (Truncate after 2k=26 bits)
 = 0.000141456723213195810

Next, we can do like before

t*(1/m) ≈ 31837728 * 0.0001414567232131958
 = 4503.66067743301389114240

q = ⌊t/m⌋ = 4503

r = t - q*m = 31837728 - 4503*7069 = 6021

26

Modulus m = 7069 is 13 bits long. Hence k = 13.

Barrett reduction

1/m = 0.00014146272457207525816947234 …10

 = 0.0000000000001001010001010101100111 …2

 ≈ 0.000000000000100101000101012 (Truncate after 2k=26 bits)
 = 0.000141456723213195810

Next, we can do like before

t*(1/m) ≈ 31837728 * 0.0001414567232131958
 = 4503.66067743301389114240

q = ⌊t/m⌋ = 4503

r = t - q*m = 31837728 - 4503*7069 = 6021

Can we replace this
real multiplication by
integer multiplication?

27

Modulus m = 7069 is 13 bits long. Hence k = 13.

Barrett reduction

Replaces the real number by a 2k shifted value of 1/m, which is integer.

µ = 0.000000000000100101000101012 << 26 (left shift is multiplication by 226)
 = 100101000101012
 = 949310

1/m = 0.00014146272457207525816947234 …10

 = 0.0000000000001001010001010101100111 …2

 ≈ 0.000000000000100101000101012 (Truncate after 2k=26 bits)
 = 0.000141456723213195810

28

Modulus m = 7069 is 13 bits long. Hence k = 13.

Barrett reduction

q' = (t*µ) >> 2k = (31837728*9493) >> 26 (Truncate 2k=26 least bits)
 = 450310

Replaces the real number by a 2k shifted value of 1/m, which is integer.

µ = 0.000000000000100101000101012 << 26 (left shift is multiplication by 226)
 = 100101000101012
 = 949310

1/m = 0.00014146272457207525816947234 …10

 = 0.0000000000001001010001010101100111 …2

 ≈ 0.000000000000100101000101012 (Truncate after 2k=26 bits)
 = 0.000141456723213195810

29

Modulus m = 7069 is 13 bits long. Hence k = 13.

Barrett reduction

q’ = (t*µ) >> 2k = (31837728*9493) >> 26 (Truncate 2k=26 least bits)
 = 450310

Replaces the real number by a 2k shifted value of 1/m, which is integer.

µ = 0.000000000000100101000101012 << 26 (left shift is multiplication by 226)
 = 100101000101012
 = 949310

1/m = 0.00014146272457207525816947234 …10

 = 0.0000000000001001010001010101100111 …2

 ≈ 0.000000000000100101000101012 (Truncate after 2k=26 bits)
 = 0.000141456723213195810

r = t – q’*m = 31837728 - 4503*7069 = 6021

30

Barrett reduction: conditional subtraction

Schoolbook method for t=a*b
1. Quotient q = ⌊t/m⌋
2. Remainder r = t – q*m

Barrett method for t=a*b
1. Precomputes approximate µ = ⌊22k/m⌋
2. Approximate quotient q’ = ⌊(t*µ) /22k⌋
3. Remainder r = t – q’*m

31

Schoolbook method for t=a*b
1. Quotient q = ⌊t/m⌋
2. Remainder r = t – q*m

Barrett method for t=a*b
1. Precomputes approximate µ = ⌊22k/m⌋
2. Approximate quotient q’ = ⌊(t*µ) /22k⌋
3. Remainder r = t – q’*m

In the approximation process, we truncate 1/m at 2k-th bit after (.)
→ This causes approximation error.

Because of this error, there are two possibilities:
q’ = q or q’ = q-1

Barrett reduction: conditional subtraction 32

Schoolbook method for t=a*b
1. Quotient q = ⌊t/m⌋
2. Remainder r = t – q*m

Barrett method for t=a*b
1. Precomputes approximate µ = ⌊22k/m⌋
2. Approximate quotient q’ = ⌊(t*µ) /22k⌋
3. Remainder r = t – q’*m

In the approximation process, we truncate 1/m at 2k-th bit after (.)
→ This causes approximation error.

Because of this error, there are two possibilities:
q’ = q or q’ = q-1

If q’ = q-1 happens, then r will be in [m, 2m).
→ One additional subtraction of m from r will be needed.

Barrett reduction: conditional subtraction 33

Barrett reduction: conditional subtraction (proof)

For µ = ⌊22k/m⌋, we have the relation

22k/m – 1 < µ < 22k/m

Hence,
t/m – t/22k ≤ t*µ/22k ≤ t/m

Because t/22k < 1, we write
t/m – 1 < t*µ/22k ≤ t/m

Now consider the floor ⌊(t*µ) /22k⌋. There are two possibilities:
• ⌊(t*µ) /22k⌋ > t/m – 1 [e.g., floor(7.1) > 6.7]
• ⌊(t*µ) /22k⌋ < t/m – 1 [e.g., floor(6.9) > 6.7]

Hence,
t/m – 2 < ⌊t*µ/22k⌋ ≤ t/m

34

Barrett reduction: conditional subtraction (proof)

… continuing
t/m – 2 < ⌊t*µ/22k⌋ ≤ t/m

or
t/m – 2 < q’ ≤ t/m

Hence,
t – 2m < q’*m ≤ t

Or
0 ≤ t – q’*m < 2m

Barrett method for t=a*b
1. Precomputes approximate µ = ⌊22k/m⌋
2. Approximate quotient q’ = ⌊(t*µ) /22k⌋
3. Remainder r = t – q’*m

Hence, r is in [0, 2m].
⇒ Conditional subtraction r – m.

35

Complete Barrett reduction algorithm

Input: t = a*b ∈ [0, (m-1)2], 2k-1 < m < 2k, µ = ⌊22k/m⌋
Output: c = t (mod m)
1: q’ = ⌊(t*µ) /22k⌋
2: r = t – q’*m
4: if (r ≥ m) then c = r – m else c = r
5: return c

Modulus m is fixed and µ is precomputed.

36

Complete Barrett reduction algorithm

Try Barrett algorithm in Sage.
https://sagecell.sagemath.org/

m = 19

k = 5

mu= floor(2^(2*k)/m)

t = 120

r = t - ((t*mu) >> 2*k)*m

c = r-m if(r >= m) else r

print("t mod m:", t%m)

print("BR(t,m):", c)

37

https://sagecell.sagemath.org/

Efficient algorithms for modular reduction

In this course, we will study the following algorithms

• Barrett reduction

• Montgomery reduction

• Reduction for special modulus

38

Montgomery reduction

P. Montgomery, "Modular Multiplication Without Trial Division". Mathematics of Computation, 1985.

Replaces expensive division by cheaper shift operation.

39

Montgomery reduction procedure

Let, modulus m is a k-bit odd and R = 2k

and m’ = (-m)-1 mod R

Takes an input t in the range [0, R*m-1] and
computes s in the range [0, 2m-1]

s =
𝑡 + 𝑡∗𝑚′mod 𝑅 ∗𝑚

𝑅

s is in the range [0, 2m].
After a conditional subtraction of m from s (when m < s < 2m), we get
s = t*R−1 mod m

40

Why does this work?

41

Our 2k bit integer t xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

42

Our 2k bit integer t xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx0000000000000

Least k bits are zeros

Wish t is like this?

43

Our 2k bit integer t xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx0000000000000

Least k bits are zeros

Wish t is like this?

We divide by R=2k (right shift by k bits) to obtain

00000000000000xxxxxxxxxxxxxxx Becomes k bit integer

44

Our 2k bit integer t xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx0000000000000

Least k bits are zeros

Wish t is like this?

We divide by R=2k (right shift by k bits) to obtain

Becomes k bit integer

Division by R is equivalent to multiplication by R-1 mod m

→ We get the desired result t*R-1 mod m

00000000000000xxxxxxxxxxxxxxx

45

Our 2k bit integer t xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

In real world these k bits may not be all 0s

Can we transform t into t’ such that, t ≡ t’ (mod m) and

xxxxxxxxxxxxxxxx0000000000000

Least k bits are zeros

t’ = ?

46

Our 2k bit integer t xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

In real world these k bits may not be all 0s

Can we transform t into t’ such that, t ≡ t’ (mod m) and

xxxxxxxxxxxxxxxx0000000000000

Least k bits are zeros

t’ = ?

tH tL

Let, t = tH 2K + tL

47

Our 2k bit integer t xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

In real world these k bits may not be all 0s

Can we transform t into t’ such that, t ≡ t’ (mod m) and

xxxxxxxxxxxxxxxx0000000000000

Least k bits are zeros

t’ = ?

tH tL

Let, t = tH 2K + tL

We add m*q to t such that, t’ = tH 2K + tL + m*q ≡ 0 (mod 2k)

Note that with t’ = tH 2K + tL + m*q we have t’ ≡ t (mod m)

48

Our 2k bit integer t xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

In real world these k bits may not be all 0s

Can we transform t into t’ such that, t ≡ t’ (mod m) and

xxxxxxxxxxxxxxxx0000000000000

Least k bits are zeros

t’ = ?

tH tL

Let, t = tH 2K + tL

We add m*q to t such that, t’ = tH 2K + tL + m*q ≡ 0 (mod 2k)
⇒ q = tL*(-m-1) mod 2k

 = tL*m’ mod 2k

49

Our 2k bit integer t xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

In real world these k bits may not be all 0s

Can we transform t into t’ such that, t ≡ t’ (mod m) and

xxxxxxxxxxxxxxxx0000000000000

Least k bits are zeros

t’ = ?

tH tL

Let, t = tH 2K + tL

We add m*q to t such that, t’ = tH 2K + tL + m*q ≡ 0 (mod 2k)
⇒ q = tL*(-m-1) mod 2k

 = tL*m’ mod 2k Our t’ = t + m*q.

50

Montgomery reduction: conditional subtraction

Modulus m is a k-bit odd, R = 2k and m’ = (-m)-1 mod R

For an input t in the range [0, R*m-1] compute the following:

• q = (t mod R) * m’ mod R

• t’ = t + q*m

• s = t’/R

k bits, in range [0, R-1]

2k + 1 bits, in range [0, 2Rm)

k + 1 bits and < 2m

51

Montgomery reduction: conditional subtraction

Modulus m is a k-bit odd, R = 2k and m’ = (-m)-1 mod R

For an input t in the range [0, R*m-1] compute the following:

• q = (t mod R) * m’ mod R

• t’ = t + q*m

• s = t’/R

• If (s >= m) then output s - m

else output s

k bits, in range [0, R-1]

2k + 1 bits, in range [0, 2Rm)

k + 1 bits and < 2m

52

Complete Montgomery reduction algorithm

Try Barrett algorithm in Sage.
https://sagecell.sagemath.org/

m = 19

k = 5

R = 2^(2*k)

mp= -m^(-1) % R #m’

t = 120

s = (t + (t*mp % R)*m)/R

c = s-m if(s >= m) else s

print("t mod m:", t%m)

print("MR(t,m):", c)

print("c*R mod q:", c*R % m)

53

https://sagecell.sagemath.org/

In#1 In#2 t=a*b Output Adjustment

a b a*b s = a*b*R-1 (mod m) s*R (mod m)

a*R b a*b*R s = a*b*R*R-1 (mod m) Not required

a b*R a*b*R s = a*b*R*R-1 (mod m) Not required

a*R b*R a*b*R s = a*b*R2*R-1 (mod m) s*R-1 (mod m)

Montgomery reduction: input and output forms

To obtain a*b mod m, removing the R factor is needed.

54

Montgomery reduction: when to use?

Consider computing a5 mod m.

55

Montgomery reduction: when to use?

Consider computing a5 mod m.

Usual way of computing,
e.g., with Barret reduction.

T = a*a mod m
T = T*a mod m
T = T*a mod m
T = T*a mod m
 = a5 mod m

56

Montgomery reduction: when to use?

Consider computing a5 mod m.

Usual way of computing,
e.g., with Barret reduction.

T = a*a mod m
T = T*a mod m
T = T*a mod m
T = T*a mod m
 = a5 mod m

If we use Montgomery naively

T = Mont(a*a, m)
T = T*R mod m
T = Mont(T*a, m)
T = T*R mod m
…
T = Mont(a*a, m)
 = a5R-1 mod m
T = T*R mod m

57

Montgomery

Multiplier()

a mod m
abR-1 mod m

b mod m

58

Montgomery

Multiplier()

aR mod m
abR mod m

bR mod m

Inputs and outputs all have R factor.
→ Gives us a closed representation called “Montgomery form”

59

Montgomery

Multiplier()

aR mod m
a2bR mod m

Inputs and outputs all have R factor.
→ Gives us a closed representation called “Montgomery form”

abR mod m

60

Montgomery

Multiplier()

aR mod m
a3bR mod m

Inputs and outputs all have R factor.
→ Gives us a closed representation called “Montgomery form”

a2bR mod m

61

Montgomery reduction: when to use?

Consider computing a5 mod m.

Correct method of using Montgomery

b = a*R mod m.
T = MontMultiplier(b, b)
T = MontMultiplier(T, b)
T = MontMultiplier(T, b)
T = MontMultiplier(T, b)
 = a5R mod m

Result = T*R-1 mod m

#Convert to Montgomery form

#Convert to normal form

62

Efficient algorithms for modular reduction

In this course, we will study the following algorithms

• Barrett reduction

• Montgomery reduction

• Reduction for special modulus

63

Modular deduction for special modulus

• Some cryptographic primitives use moduli with sparse representation:
E.g., ECC uses m = 2192 – 264 – 1
E.g., Some ZKP/FHE applications use m = 264 – 232 + 1

• Mersenne primes: m = 2k – 1 with k a prime.
 E.g., m = 231 – 1,
 m = 261 – 1 is currently the largest known Mersenne prime.

• Pseudo Mersenne primes (Solinas primes): m = 2k – c with small c.

Can modular reduction be made fast utilizing sparse structure of m?

64

Example: modular reduction for m = 2k – c
⇒

m ≡ 0 (mod m)

Modular deduction for special modulus 65

Example: modular reduction for m = 2k – c
⇒

m ≡ 0 (mod m)
2k – c ≡ 0 (mod m)

Modular deduction for special modulus 66

Example: modular reduction for m = 2k – c
⇒

m ≡ 0 (mod m)
2k – c ≡ 0 (mod m)
2k ≡ c (mod m)

Modular deduction for special modulus 67

Example: modular reduction for m = 2k – c
⇒

m ≡ 0 (mod m)
2k – c ≡ 0 (mod m)
2k ≡ c (mod m)

Perform A (mod m) for 2k-bit A

A = A1 · 2k + A0 mod m
A = A1 · c + A0 mod m using 2k ≡ c (mod m)

...

Modular deduction for special modulus 68

References

V. Shoup, "A Computational Introduction to Number Theory and Algebra”.
https://shoup.net/ntb/ntb-v2.pdf

P. Barrett, “Implementing the Rivest Shamir and Adleman Public Key Encryption
Algorithm on a Standard Digital Signal Processor”. CRYPTO’ 86.

P. Montgomery, "Modular Multiplication Without Trial Division". Mathematics of
Computation, 1985.

D. Hankerson, S. Vanstone, A. Menezes, "Guide to Elliptic Curve Cryptography".

	Slide 1: Cryptography on HW Platform Modular Arithmetic Techniques
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

