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Reminder

Background on modular arithmetic
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For any integer c, we want to compute the result of

c mod m   

(we are interested in positive integers in cryptography)

The “modulo” or mod operation 5



For any integer c, we want to compute the result of

c mod m   

(we are interested in positive integers in cryptography)

Procedure:

1. Divide c by m and obtain the quotient q

                                                       q = ⌊c/m⌋

2. Compute the remainder r = c – q*m

3. Assign r = c mod m 

The “modulo” or mod operation 6



Example 1: 

23 mod 5 = ?
 

The “modulo” or mod operation 7



Example 2: 

? mod 5 = 3
 

The “modulo” or mod operation 8



For modulus m, and two positive integers a and b, we say that 
a is congruent to b modulo m if 

m | (a – b) 

The notation is 

a ≡ b (mod m)

The binary relationship is called “congruence”. 
It indicates that a and b have the same remainder modulo m. 

Example: 23 ≡ 3 (mod 5), similarly 13 ≡ 3 (mod 5), and 13 ≡ 23 (mod 5).

Congruence: definition 9



Properties of congruence

The following relations hold

i. a ≡ a (mod m)

ii. a ≡ b (mod m)         ⇒        b ≡ a (mod m)

iii. a ≡ b (mod m) and b ≡ c (mod m)    ⇒   a ≡ c (mod m)

iv. a ≡ a’ (mod m) and b ≡ b’ (mod m) 

        ⇒ a + b ≡ a’ + b’ (mod m) and 

             a * b ≡ a’ * b’ (mod m)
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The congruence class of a modulo m is the set of all integers that are 
congruent to a modulo m.  

Congruence class

[a]m  = {b ∈ ℤ such that b ≡ a (mod m)}

Example:
                          [3]5 = {…, -7, -2, 3, 8, 13, 18, 23, ….}

11



For more information on congruences, you may consider reading 
chapter-2 of the book: 

“A Computational Introduction to Number Theory and Algebra”, by 
Victor Shoup. https://shoup.net/ntb/ntb-v2.pdf 
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Consider the problem of computing modular multiplication.

The number of bits in t is 2x larger than in m.

Input: a, b ∈ [0, m-1]
Output: c = a * b mod m ∈ [0, m-1]
1: t = a * b  ∈ [0, (m-1)2]
2: r = t mod m
3: return r

13



Consider the problem of computing modular multiplication.

The number of bits in t is 2x larger than in m.

How to compute the modular reduction of t?

Input: a, b ∈ [0, m-1]
Output: c = a * b mod m ∈ [0, m-1]
1: t = a * b  ∈ [0, (m-1)2]
2: r = t mod m
3: return r

14



Consider the problem of computing modular multiplication.

The number of bits in t is 2x larger than in m.

Schoolbook method for calculating r: 
1. Perform division q = ⌊t/m⌋
2. Calculate remainder r = t – q*m

Input: a, b ∈ [0, m-1]
Output: c = a * b mod m ∈ [0, m-1]
1: t = a * b  ∈ [0, (m-1)2]
2: r = t mod m
3: return r

15



Schoolbook modular reduction is very inefficient

Division is very expensive to compute.

a=vector(100000);
b=vector(100000);
c=vector(100000);

for(i=1, 100000, a[i] = random(2^4096))
for(i=1, 100000, b[i] = random(2^2048))
for(i=1, 100000, c[i]=floor(a[i]/b[i]))

See how long this PARI/GP code takes for division (/) and multiplication (*).

16



Division is very expensive to compute.

Low-end microcontrollers do not have division instructions. 

Division is computed as repeated subtraction.
→ Extremely slow modular reduction

Schoolbook modular reduction is very inefficient 17



Efficient algorithms for modular reduction

In this course, we will study the following algorithms

• Barrett reduction

• Montgomery reduction

• Reduction for special modulus

18



Barrett reduction

P. Barrett, “Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a 
Standard Digital Signal Processor”. CRYPTO’ 86.
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Calculating remainder r: 
1. Perform division q = ⌊t/m⌋
2. Calculate remainder r = t – q*m

Barrett reduction

Barrett’s method optimizes reduction for fixed modulus m.

Main idea:   Replace division by cheaper multiplication.

Precompute 1/m and multiply t*(1/m).

20



Example:           Let m = 7069                (m is a 13-bit number)

5044*6312 mod m = ?

Precomputed (1/m) =0.00014146272457207525816947234 …

t = 5044*6312 = 31837728

t/m = t*(1/m) = 31837728 * 0.00014146272457207525816947234 …
                          ≈ 4503.8517470646484 …

q = ⌊t/m⌋ = 4503

r = t - q*m = 31837728 - 4503*7069 = 6021

Matches with PARI/GP 

21



Example:           Let m = 7069                (m is a 13-bit number)

5044*6312 mod m = ?

Precomputed (1/m) =0.00014146272457207525816947234 …

t = 5044*6312 = 31837728

t/m = t*(1/m) = 31837728 * 0.00014146272457207525816947234 …
                          ≈ 4503.8517470646484 …

q = ⌊t/m⌋ = 4503

r = t - q*m = 31837728 - 4503*7069 = 6021

What precision do we need for 
correctly computing quotient?
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Example:           Let m = 7069                (m is a 13-bit number)

5044*6312 mod m = ?

Precomputed (1/m) =0.00014146272457207525816947234 …

t = 5044*6312 = 31837728

t/m = t*(1/m) = 31837728 * 0.00014146272457207525816947234 …
                          ≈ 4503.8517470646484 …

q = ⌊t/m⌋ = 4503

r = t - q*m = 31837728 - 4503*7069 = 6021

Barrett’s method takes 2k bits after 
the (.) where k is the length of m.
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Modulus m = 7069 is 13 bits long. Hence k = 13.  

Barrett reduction 24



Modulus m = 7069 is 13 bits long. Hence k = 13.  

Barrett reduction

1/m = 0.00014146272457207525816947234 …10

             = 0.0000000000001001010001010101100111 …2

         ≈ 0.000000000000100101000101012                (Truncate after 2k=26 bits)
         = 0.000141456723213195810
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Modulus m = 7069 is 13 bits long. Hence k = 13.  

Barrett reduction

1/m = 0.00014146272457207525816947234 …10

             = 0.0000000000001001010001010101100111 …2

         ≈ 0.000000000000100101000101012                (Truncate after 2k=26 bits)
         = 0.000141456723213195810

Next, we can do like before

t*(1/m) ≈ 31837728 * 0.0001414567232131958
               = 4503.66067743301389114240

q = ⌊t/m⌋ = 4503

r = t - q*m = 31837728 - 4503*7069 = 6021
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Modulus m = 7069 is 13 bits long. Hence k = 13.  

Barrett reduction

1/m = 0.00014146272457207525816947234 …10

             = 0.0000000000001001010001010101100111 …2

         ≈ 0.000000000000100101000101012                (Truncate after 2k=26 bits)
         = 0.000141456723213195810

Next, we can do like before

t*(1/m) ≈ 31837728 * 0.0001414567232131958
               = 4503.66067743301389114240

q = ⌊t/m⌋ = 4503

r = t - q*m = 31837728 - 4503*7069 = 6021

Can we replace this 
real multiplication by 
integer multiplication?

27



Modulus m = 7069 is 13 bits long. Hence k = 13.  

Barrett reduction

Replaces the real number by a 2k shifted value of 1/m, which is integer.

µ = 0.000000000000100101000101012 << 26           (left shift is multiplication by 226)
    = 100101000101012 
   = 949310

1/m = 0.00014146272457207525816947234 …10

             = 0.0000000000001001010001010101100111 …2

         ≈ 0.000000000000100101000101012                (Truncate after 2k=26 bits)
         = 0.000141456723213195810

28



Modulus m = 7069 is 13 bits long. Hence k = 13.  

Barrett reduction

q' = (t*µ) >> 2k = (31837728*9493) >> 26           (Truncate 2k=26 least bits)       
   =  450310

Replaces the real number by a 2k shifted value of 1/m, which is integer.

µ = 0.000000000000100101000101012 << 26           (left shift is multiplication by 226)
    = 100101000101012 
   = 949310

1/m = 0.00014146272457207525816947234 …10

             = 0.0000000000001001010001010101100111 …2

         ≈ 0.000000000000100101000101012                (Truncate after 2k=26 bits)
         = 0.000141456723213195810
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Modulus m = 7069 is 13 bits long. Hence k = 13.  

Barrett reduction

q’ = (t*µ) >> 2k = (31837728*9493) >> 26           (Truncate 2k=26 least bits)       
   =  450310

Replaces the real number by a 2k shifted value of 1/m, which is integer.

µ = 0.000000000000100101000101012 << 26           (left shift is multiplication by 226)
    = 100101000101012 
   = 949310

1/m = 0.00014146272457207525816947234 …10

             = 0.0000000000001001010001010101100111 …2

         ≈ 0.000000000000100101000101012                (Truncate after 2k=26 bits)
         = 0.000141456723213195810

r = t – q’*m = 31837728 - 4503*7069 = 6021

30



Barrett reduction: conditional subtraction

Schoolbook method for t=a*b
1. Quotient q = ⌊t/m⌋
2. Remainder r = t – q*m

Barrett method for t=a*b 
1. Precomputes approximate µ = ⌊22k/m⌋
2. Approximate quotient q’ = ⌊(t*µ) /22k⌋ 
3. Remainder r = t – q’*m

31



Schoolbook method for t=a*b
1. Quotient q = ⌊t/m⌋
2. Remainder r = t – q*m

Barrett method for t=a*b 
1. Precomputes approximate µ = ⌊22k/m⌋
2. Approximate quotient q’ = ⌊(t*µ) /22k⌋ 
3. Remainder r = t – q’*m

In the approximation process, we truncate 1/m at 2k-th bit after (.)
→ This causes approximation error.

Because of this error, there are two possibilities: 
q’ = q   or  q’ = q-1 

Barrett reduction: conditional subtraction 32



Schoolbook method for t=a*b
1. Quotient q = ⌊t/m⌋
2. Remainder r = t – q*m

Barrett method for t=a*b 
1. Precomputes approximate µ = ⌊22k/m⌋
2. Approximate quotient q’ = ⌊(t*µ) /22k⌋ 
3. Remainder r = t – q’*m

In the approximation process, we truncate 1/m at 2k-th bit after (.)
→ This causes approximation error.

Because of this error, there are two possibilities: 
q’ = q   or  q’ = q-1 

If q’ = q-1 happens, then r will be in [m, 2m).
→ One additional subtraction of m from r will be needed. 

Barrett reduction: conditional subtraction 33



Barrett reduction: conditional subtraction (proof)

For µ = ⌊22k/m⌋, we have the relation

22k/m – 1 < µ < 22k/m

Hence,
t/m – t/22k ≤  t*µ/22k ≤ t/m

Because t/22k  < 1, we write
t/m – 1 <  t*µ/22k ≤ t/m

Now consider the floor ⌊(t*µ) /22k⌋. There are two possibilities:
• ⌊(t*µ) /22k⌋ > t/m – 1                      [e.g., floor(7.1) > 6.7]
• ⌊(t*µ) /22k⌋ < t/m – 1                      [e.g., floor(6.9) > 6.7]

Hence,
t/m – 2 < ⌊t*µ/22k⌋ ≤ t/m

34



Barrett reduction: conditional subtraction (proof)

… continuing
t/m – 2 < ⌊t*µ/22k⌋ ≤ t/m

or
t/m – 2 < q’ ≤ t/m

Hence,
t – 2m < q’*m ≤ t

Or
0 ≤ t – q’*m < 2m

Barrett method for t=a*b 
1. Precomputes approximate µ = ⌊22k/m⌋
2. Approximate quotient q’ = ⌊(t*µ) /22k⌋ 
3. Remainder r = t – q’*m

Hence, r is in [0, 2m].
⇒ Conditional subtraction r – m.    

35



Complete Barrett reduction algorithm

Input: t = a*b ∈ [0, (m-1)2], 2k-1 < m < 2k, µ = ⌊22k/m⌋ 
Output: c = t (mod m)
1: q’ = ⌊(t*µ) /22k⌋
2: r = t – q’*m
4: if (r ≥ m) then c = r – m else c = r
5: return c

Modulus m is fixed and µ is precomputed. 

36



Complete Barrett reduction algorithm

Try Barrett algorithm in Sage.
https://sagecell.sagemath.org/

m = 19

k = 5

mu= floor(2^(2*k)/m)

t = 120

r = t - ((t*mu) >> 2*k)*m

c = r-m if(r >= m) else r

print("t mod m:", t%m)

print("BR(t,m):", c)

37
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Efficient algorithms for modular reduction

In this course, we will study the following algorithms

• Barrett reduction

• Montgomery reduction

• Reduction for special modulus

38



Montgomery reduction

P. Montgomery, "Modular Multiplication Without Trial Division". Mathematics of Computation, 1985.

Replaces expensive division by cheaper shift operation.

39



Montgomery reduction procedure

Let, modulus m is a k-bit odd and R = 2k 

and m’ = (-m)-1 mod R

Takes an input t in the range [0, R*m-1] and 
computes s in the range [0, 2m-1]

s =
𝑡 + 𝑡∗𝑚′mod 𝑅 ∗𝑚 

𝑅

s is in the range [0, 2m]. 
After a conditional subtraction of m from s (when m < s < 2m), we get 
s = t*R−1 mod m

40



Why does this work?

41



Our 2k bit integer t xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

42



Our 2k bit integer t xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx0000000000000

Least k bits are zeros

Wish t is like this?

43



Our 2k bit integer t xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx0000000000000

Least k bits are zeros

Wish t is like this?

We divide by R=2k  (right shift by k bits) to obtain 

00000000000000xxxxxxxxxxxxxxx Becomes k bit integer 

44



Our 2k bit integer t xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx0000000000000

Least k bits are zeros

Wish t is like this?

We divide by R=2k  (right shift by k bits) to obtain 

Becomes k bit integer 

Division by R is equivalent to multiplication by R-1 mod m

→ We get the desired result  t*R-1 mod m

00000000000000xxxxxxxxxxxxxxx

45



Our 2k bit integer t xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

In real world these k bits may not be all 0s

Can we transform t into t’ such that, t ≡ t’ (mod m) and 

xxxxxxxxxxxxxxxx0000000000000

Least k bits are zeros

t’ = ?

46



Our 2k bit integer t xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

In real world these k bits may not be all 0s

Can we transform t into t’ such that, t ≡ t’ (mod m) and 

xxxxxxxxxxxxxxxx0000000000000

Least k bits are zeros

t’ = ?

tH tL

Let, t = tH 2K + tL 

47



Our 2k bit integer t xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

In real world these k bits may not be all 0s

Can we transform t into t’ such that, t ≡ t’ (mod m) and 

xxxxxxxxxxxxxxxx0000000000000

Least k bits are zeros

t’ = ?

tH tL

Let, t = tH 2K + tL 

We add m*q to t such that,        t’ = tH 2K + tL + m*q ≡ 0 (mod 2k)

Note that with t’ = tH 2K + tL + m*q we have t’ ≡ t (mod m) 

48



Our 2k bit integer t xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

In real world these k bits may not be all 0s

Can we transform t into t’ such that, t ≡ t’ (mod m) and 

xxxxxxxxxxxxxxxx0000000000000

Least k bits are zeros

t’ = ?

tH tL

Let, t = tH 2K + tL 

We add m*q to t such that,        t’ = tH 2K + tL + m*q ≡ 0 (mod 2k)
⇒ q = tL*(-m-1) mod 2k

        = tL*m’ mod 2k 

49



Our 2k bit integer t xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

In real world these k bits may not be all 0s

Can we transform t into t’ such that, t ≡ t’ (mod m) and 

xxxxxxxxxxxxxxxx0000000000000

Least k bits are zeros

t’ = ?

tH tL

Let, t = tH 2K + tL 

We add m*q to t such that,        t’ = tH 2K + tL + m*q ≡ 0 (mod 2k)
⇒ q = tL*(-m-1) mod 2k

        = tL*m’ mod 2k Our t’ = t + m*q.

50



Montgomery reduction: conditional subtraction

Modulus m is a k-bit odd, R = 2k and m’ = (-m)-1 mod R

For an input t in the range [0, R*m-1] compute the following:

• q = (t mod R) * m’ mod R             

• t’ = t + q*m

• s = t’/R

k bits, in range [0, R-1]  

2k + 1 bits, in range [0, 2Rm)

k + 1 bits and < 2m

51



Montgomery reduction: conditional subtraction

Modulus m is a k-bit odd, R = 2k and m’ = (-m)-1 mod R

For an input t in the range [0, R*m-1] compute the following:

• q = (t mod R) * m’ mod R             

• t’ = t + q*m

• s = t’/R

• If (s >= m) then output s - m 

else output s  

k bits, in range [0, R-1]  

2k + 1 bits, in range [0, 2Rm)

k + 1 bits and < 2m

52



Complete Montgomery reduction algorithm

Try Barrett algorithm in Sage.
https://sagecell.sagemath.org/

m = 19

k = 5

R = 2^(2*k)

mp= -m^(-1) % R        #m’

t = 120

s = (t + (t*mp % R)*m)/R

c = s-m if(s >= m) else s

print("t mod m:", t%m)

print("MR(t,m):", c)

print("c*R mod q:", c*R % m)

53
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In#1 In#2 t=a*b Output Adjustment

a b a*b s = a*b*R-1 (mod m) s*R (mod m)

a*R b a*b*R s = a*b*R*R-1 (mod m) Not required

a b*R a*b*R s = a*b*R*R-1 (mod m) Not required

a*R b*R a*b*R s = a*b*R2*R-1 (mod m) s*R-1 (mod m)

Montgomery reduction: input and output forms

To obtain a*b mod m, removing the R factor is needed.

54



Montgomery reduction: when to use?

Consider computing a5 mod m.
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Montgomery reduction: when to use?

Consider computing a5 mod m.

Usual way of computing, 
e.g., with Barret reduction.

T = a*a mod m
T = T*a mod m
T = T*a mod m
T = T*a mod m
   = a5 mod m

56



Montgomery reduction: when to use?

Consider computing a5 mod m.

Usual way of computing, 
e.g., with Barret reduction.

T = a*a mod m
T = T*a mod m
T = T*a mod m
T = T*a mod m
   = a5 mod m

If we use Montgomery naively

T = Mont(a*a, m)  
T = T*R mod m
T = Mont(T*a, m) 
T = T*R mod m
…
T = Mont(a*a, m)
   = a5R-1 mod m
T = T*R mod m

57



Montgomery

Multiplier()

a mod m
abR-1 mod m

b mod m

58



Montgomery

Multiplier()

aR mod m
abR mod m

bR mod m

Inputs and outputs all have R factor. 
→ Gives us a closed representation called “Montgomery form” 

59



Montgomery

Multiplier()

aR mod m
a2bR mod m

Inputs and outputs all have R factor. 
→ Gives us a closed representation called “Montgomery form” 

abR mod m

60



Montgomery

Multiplier()

aR mod m
a3bR mod m

Inputs and outputs all have R factor. 
→ Gives us a closed representation called “Montgomery form” 

a2bR mod m

61



Montgomery reduction: when to use?

Consider computing a5 mod m.

Correct method of using Montgomery

b = a*R mod m.
T = MontMultiplier(b, b)
T = MontMultiplier(T, b)
T = MontMultiplier(T, b)
T = MontMultiplier(T, b)
   = a5R mod m

Result = T*R-1 mod m  

#Convert to Montgomery form

#Convert to normal form
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Efficient algorithms for modular reduction

In this course, we will study the following algorithms

• Barrett reduction

• Montgomery reduction

• Reduction for special modulus

63



Modular deduction for special modulus

• Some cryptographic primitives use moduli with sparse representation:
E.g., ECC uses m = 2192 – 264 – 1
E.g., Some ZKP/FHE applications use m = 264 – 232 + 1

• Mersenne primes: m = 2k – 1 with k a prime.
 E.g., m = 231 – 1,
                m = 261 – 1 is currently the largest known Mersenne prime.

• Pseudo Mersenne primes (Solinas primes):  m = 2k – c with small c.

Can modular reduction be made fast utilizing sparse structure of m?

64



Example: modular reduction for m = 2k – c
⇒

m ≡ 0 (mod m)

Modular deduction for special modulus 65



Example: modular reduction for m = 2k – c
⇒

m ≡ 0 (mod m)
2k – c ≡ 0 (mod m)

Modular deduction for special modulus 66



Example: modular reduction for m = 2k – c
⇒

m ≡ 0 (mod m)
2k – c ≡ 0 (mod m)
2k ≡ c (mod m)

Modular deduction for special modulus 67



Example: modular reduction for m = 2k – c
⇒

m ≡ 0 (mod m)
2k – c ≡ 0 (mod m)
2k ≡ c (mod m)

Perform A (mod m) for 2k-bit A

A = A1 · 2k + A0 mod m
A = A1 · c + A0    mod m   using 2k ≡ c (mod m)

...

Modular deduction for special modulus 68
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