Cryptography on HW Platform Modular Arithmetic Techniques

December, 2023

Sujoy Sinha Roy

sujoy.sinharoy@iaik.tugraz.at
Graz University of Technology

Roadmap

 FPGA basics	Modular arithmetic techniques	Algorithmic techniques
Integer arithmetic techniques	Basics of public-key cryptography (PKC)	Assignment 1 Implementation of PKC

Roadmap

 FPGA basics	Modular arithmetic techniques	Algorithmic techniques
Integer arithmetic techniques	Basics of public-key cryptography (PKC)	Assignment 1 Implementation of PKC

Reminder

Background on modular arithmetic

The "modulo" or mod operation
For any integer c, we want to compute the result of

$$
c \bmod m
$$

(we are interested in positive integers in cryptography)

For any integer c, we want to compute the result of

$c \bmod m$

(we are interested in positive integers in cryptography)
Procedure:

1. Divide c by m and obtain the quotient q

$$
q=\lfloor c / m\rfloor
$$

2. Compute the remainder $r=c-q^{*} m$
3. Assign $r=c \bmod m$

The "modulo" or mod operation

Example 1:

$$
23 \bmod 5=?
$$

The "modulo" or mod operation

Example 2:
$? \bmod 5=3$

Congruence: definition

For modulus m, and two positive integers a and b, we say that
a is congruent to b modulo m if

$$
m \mid(a-b)
$$

The notation is

$$
a \equiv b(\bmod m)
$$

The binary relationship is called "congruence". It indicates that a and b have the same remainder modulo m.

Example: $23 \equiv 3(\bmod 5)$, similarly $13 \equiv 3(\bmod 5)$, and $13 \equiv 23(\bmod 5)$.

Properties of congruence

The following relations hold
i. $\quad a \equiv a(\bmod m)$
ii. $\quad a \equiv b(\bmod m) \quad \Rightarrow \quad b \equiv a(\bmod m)$
iii. $\quad a \equiv b(\bmod m)$ and $b \equiv c(\bmod m) \Rightarrow a \equiv c(\bmod m)$
iv. $\quad a \equiv a^{\prime}(\bmod m)$ and $b \equiv b^{\prime}(\bmod m)$
$\Rightarrow a+b \equiv a^{\prime}+b^{\prime}(\bmod m)$ and $a^{*} b \equiv a^{*} b^{\prime}(\bmod m)$

Congruence class

The congruence class of a modulo m is the set of all integers that are congruent to a modulo m.

$$
[a]_{m}=\{b \in \mathbb{Z} \text { such that } b \equiv a(\bmod m)\}
$$

Example:

$$
[3]_{5}=\{\ldots,-7,-2,3,8,13,18,23, \ldots .\}
$$

For more information on congruences, you may consider reading chapter-2 of the book:
"A Computational Introduction to Number Theory and Algebra", by Victor Shoup. https://shoup.net/ntb/ntb-v2.pdf

Consider the problem of computing modular multiplication.

```
Input: }a,b\in[0,m-1
Output: c=a * b mod m}\in[0,m-1
```



```
2: r=t mod m
3: return r
```

The number of bits in t is $2 x$ larger than in m.

Consider the problem of computing modular multiplication.

```
Input: }a,b\in[0,m-1
Output: c=a* b mod m\in[0,m-1]
```



```
2: r=t mod m
3: return r
```

The number of bits in t is $2 x$ larger than in m.

How to compute the modular reduction of t ?

Consider the problem of computing modular multiplication.

```
Input: \(a, b \in[0, m-1]\)
Output: \(c=a\) * \(b \bmod m \in[0, m-1]\)
1: \(t=a^{*} b \in\left[0,(m-1)^{2}\right]\)
2: \(r=t \bmod m\)
```

3: return r

The number of bits in t is $2 x$ larger than in m.
Schoolbook method for calculating r :

1. Perform division $q=\lfloor t / m\rfloor$
2. Calculate remainder $r=t-q^{*} m$

Schoolbook modular reduction is very inefficient

Division is very expensive to compute.

See how long this PARI/GP code takes for division (/) and multiplication (*).

```
a=vector(100000);
b=vector(100000);
c=vector(100000);
for(i=1, 100000, a[i] = random(2^4096))
for(i=1, 100000, b[i] = random(2^2048))
for(i=1, 100000, c[i]=floor(a[i]/b[i]))
```


Schoolbook modular reduction is very inefficient

Division is very expensive to compute.

Low-end microcontrollers do not have division instructions.

Division is computed as repeated subtraction.
\rightarrow Extremely slow modular reduction

Efficient algorithms for modular reduction

In this course, we will study the following algorithms

- Barrett reduction
- Montgomery reduction
- Reduction for special modulus

Barrett reduction

IMPLEMENTING THE
RIVEST SHAMIR AND ADLEMAN
PUBLIC KEY ENCRYPTION ALGORITHM
ON A

STANDARD DIGITAL SIGNAL PROCESSOR
P. Barrett, "Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor". CRYPTO' 86.

Barrett reduction

Barrett's method optimizes reduction for fixed modulus m.
Main idea: Replace division by cheaper multiplication.
Precompute $1 / \mathrm{m}$ and multiply $\mathrm{t}^{*}(1 / \mathrm{m})$.

Calculating remainder r :

1. Perform division $q=\lfloor t / m\rfloor$
2. Calculate remainder $r=t-q^{*} m$

Example: Let $m=7069 \quad$ (m is a 13-bit number) 5044*6312 $\bmod m=$?

Precomputed $(1 / m)=0.00014146272457207525816947234$...
$t=5044 * 6312=31837728$
$t / m=t^{*}(1 / m)=31837728 * 0.00014146272457207525816947234 \ldots$ $\approx 4503.8517470646484$...
$q=\lfloor t / m\rfloor=4503$
$r=t-q^{*} m=31837728-4503 * 7069=6021$
Matches with PARI/GP

```
(09:25) gp > 5044*6312%7069
623 = 6021
(09:25) gp >
```

Example: Let $m=7069 \quad$ (m is a 13-bit number)
$5044 * 6312 \bmod m=$?

$$
\left.\left.\begin{array}{l}
\text { Precomputed }(1 / \mathrm{m})=0.000141462722^{2} \\
\begin{array}{rl}
t=5044 * 6312=31837728
\end{array} \\
\begin{array}{rl}
t / m=t^{*}(1 / m) & =31837728 * 0.00014146272457207525816947234 \ldots \\
\text { correctly computing quotient? }
\end{array} \\
\approx 4503.8517470646484 \ldots
\end{array}\right\} \begin{array}{rl}
q=\lfloor t / m\rfloor=4503
\end{array}\right] \begin{aligned}
& r=t-q^{*} m=31837728-4503 * 7069=6021
\end{aligned}
$$

Example: Let $m=7069 \quad$ (m is a 13-bit number)
$5044 * 6312 \bmod m=$?

Precomputed $(1 / m)=0.00014146272457207525816947234$...
$t=5044 * 6312=31837728$
$t / m=t^{*}(1 / m)=31837728 * 0.00014146272457207525816947234 \ldots$ $\approx 4503.8517470646484$...
$q=\lfloor t / m\rfloor=4503$
Barrett's method takes $2 k$ bits after the (.) where k is the length of m.
$r=t-q^{*} m=31837728-4503 * 7069=6$

Barrett reduction

Modulus $m=7069$ is 13 bits long. Hence $k=13$.

Barrett reduction

Modulus $m=7069$ is 13 bits long. Hence $k=13$.
$1 / m=0.00014146272457207525816947234 \ldots 10$
$=0.0000000000001001010001010101100111$...2
$\approx 0.00000000000010010100010101_{2} \quad$ (Truncate after $2 k=26$ bits)
$=0.0001414567232131958_{10}$

Barrett reduction

Modulus $m=7069$ is 13 bits long. Hence $k=13$.

```
1/m = 0.00014146272457207525816947234 ...10
    = 0.0000000000001001010001010101100111 ...2
\approx0.000000000000100101000101012
(Truncate after 2k=26 bits)
= 0.000141456723213195810
```

Next, we can do like before

$$
\begin{aligned}
t^{*}(1 / m) & \approx 31837728 * 0.0001414567232131958 \\
& =4503.66067743301389114240
\end{aligned}
$$

$$
q=\lfloor t / m\rfloor=4503
$$

$$
r=t-q^{*} m=31837728-4503 * 7069=6021
$$

Barrett reduction

Modulus $m=7069$ is 13 bits long. Hence $k=13$.

```
1/m=0.00014146272457207525816947234 ...10
    = 0.0000000000001001010001010101100111 ...2
    ~0.000000000000100101000101012
    =0.000141456723213195810
```

Next, we can do like before

$$
\begin{aligned}
t^{*}(1 / m) & \approx 31837728 * 0.0001414567232131958 \\
& =4503.66067743301389114240
\end{aligned}
$$

$$
q=\lfloor t / m\rfloor=4503
$$

Can we replace this real multiplication by integer multiplication?

$$
r=t-q^{*} m=31837728-4503 * 7069=6021
$$

Barrett reduction

Modulus $m=7069$ is 13 bits long. Hence $k=13$.

```
1/m=0.00014146272457207525816947234 \ldots..10
    = 0.0000000000001001010001010101100111 ...2
    \approx 0.000000000000100101000101012
    (Truncate after 2k=26 bits)
    =0.000141456723213195810
```

Replaces the real number by a $2 k$ shifted value of $1 / m$, which is integer.
$\mu=0.00000000000010010100010101_{2} \ll 26$ (left shift is multiplication by 2^{26})

```
    = 100101000101012
    = 9493 10
```


Barrett reduction

Modulus $m=7069$ is 13 bits long. Hence $k=13$.

```
1/m = 0.00014146272457207525816947234 ...10
    = 0.0000000000001001010001010101100111 ...2
    \approx0.000000000000100101000101012
    = 0.000141456723213195810
```

Replaces the real number by a $2 k$ shifted value of $1 / m$, which is integer.
$\mu=0.00000000000010010100010101_{2} \ll 26$ $=10010100010101_{2}$
$=9493{ }_{10}$
$q^{\prime}=\left(t^{*} \mu\right) \gg 2 k=\left(31837728^{*} 9493\right) \gg 26$
$=4503_{10}$
(left shift is multiplication by 2^{26})
(Truncate $2 k=26$ least bits)

Barrett reduction

Modulus $m=7069$ is 13 bits long. Hence $k=13$.

```
1/m = 0.00014146272457207525816947234 ...10
    = 0.0000000000001001010001010101100111 ...2
    \approx0.000000000000100101000101012
    =0.000141456723213195810
```

Replaces the real number by a $2 k$ shifted value of $1 / m$, which is integer.
$\mu=0.00000000000010010100010101_{2} \ll 26$ $=10010100010101_{2}$
$=9493{ }_{10}$
$q^{\prime}=\left(\mathrm{t}^{*} \mu\right) \gg 2 k=(31837728 * 9493) \gg 26$
$=4503_{10}$
$r=t-q^{*} m=31837728-4503 * 7069=6021$
(left shift is multiplication by 2^{26})
(Truncate $2 k=26$ least bits)

Barrett reduction: conditional subtraction

Schoolbook method for $t=a^{*} b$

1. Quotient $q=\lfloor t / m\rfloor$
2. Remainder $r=t-q^{*} m$

Barrett method for $t=a^{*} b$

1. Precomputes approximate $\mu=\left\lfloor 2^{2 \mathrm{k}} / \mathrm{m}\right\rfloor$
2. Approximate quotient $q^{\prime}=\left\lfloor\left(t^{*} \mu\right) / 2^{2 k}\right\rfloor$
3. Remainder $r=t-q^{*} m$

Barrett reduction: conditional subtraction

Schoolbook method for $t=a^{*} b$

1. Quotient $q=\lfloor t / m\rfloor$
2. Remainder $r=t-q^{*} m$

Barrett method for $t=a^{*} b$

1. Precomputes approximate $\mu=\left\lfloor 2^{2 \mathrm{k}} / \mathrm{m}\right\rfloor$
2. Approximate quotient $q^{\prime}=\left\lfloor\left(t^{*} \mu\right) / 2^{2 k}\right\rfloor$
3. Remainder $r=t-q^{*} m$

In the approximation process, we truncate $1 / m$ at $2 k$-th bit after (.)
\rightarrow This causes approximation error.
Because of this error, there are two possibilities:

$$
q^{\prime}=q \text { or } q^{\prime}=q-1
$$

Barrett reduction: conditional subtraction

Schoolbook method for $t=a^{*} b$

1. Quotient $q=\lfloor t / m\rfloor$
2. Remainder $r=t-q^{*} m$

Barrett method for $t=a^{*} b$

1. Precomputes approximate $\mu=\left\lfloor 2^{2 \mathrm{k}} / \mathrm{m}\right\rfloor$
2. Approximate quotient $q^{\prime}=\left\lfloor\left(t^{*} \mu\right) / 2^{2 k}\right\rfloor$
3. Remainder $r=t-q^{*} m$

In the approximation process, we truncate $1 / m$ at $2 k$-th bit after (.)
\rightarrow This causes approximation error.
Because of this error, there are two possibilities:

$$
q^{\prime}=q \text { or } q^{\prime}=q-1
$$

If $q^{\prime}=q-1$ happens, then r will be in $[m, 2 m$).
\rightarrow One additional subtraction of m from r will be needed.

Barrett reduction: conditional subtraction (proof)

For $\mu=\left\lfloor 2^{2 \mathrm{k}} / m\right\rfloor$, we have the relation

$$
2^{2 \mathrm{k}} / m-1<\mu<2^{2 \mathrm{k}} / m
$$

Hence,

$$
t / m-t / 2^{2 k} \leq t^{*} \mu / 2^{2 k} \leq t / m
$$

Because $t / 2^{2 k}<1$, we write

$$
t / m-1<t^{*} \mu / 2^{2 k} \leq t / m
$$

Now consider the floor $\left\lfloor\left(t^{*} \mu\right) / 2^{2 k}\right\rfloor$. There are two possibilities:

- $\left[\left(t^{*} \mu\right) / 2^{2 k}\right]>t / m-1$
[e.g., floor(7.1) > 6.7]
- $\left\lfloor\left(t^{*} \mu\right) / 2^{2 k}\right\rfloor<t / m-1$
[e.g., floor(6.9) > 6.7]
Hence,

$$
t / m-2<\left\lfloor t^{*} \mu / 2^{2 k}\right\rfloor \leq t / m
$$

Barrett reduction: conditional subtraction (proof)

... continuing

$$
t / m-2<\left\lfloor t^{*} \mu / 2^{2 k}\right\rfloor \leq t / m
$$

or

$$
t / m-2<q^{\prime} \leq t / m
$$

Hence,

$$
t-2 m<q^{* *} m \leq t
$$

Or

$$
0 \leq t-q^{*} m<2 m
$$

Barrett method for $t=a^{*} b$

1. Precomputes approximate $\mu=\left\lfloor 2^{2 \mathrm{k}} / \mathrm{m}\right\rfloor$

Hence, r is in $[0,2 m]$.
2. Approximate quotient $q^{\prime}=\left\lfloor\left(t^{*} \mu\right) / 2^{2 k}\right\rfloor$
3. Remainder $r=t-q^{*} m$

Complete Barrett reduction algorithm

$$
\begin{aligned}
& \text { Input: } t=a^{*} b \in\left[0,(m-1)^{2}\right], 2^{k-1}<m<2^{k}, \mu=\left\lfloor 2^{2 \mathrm{k}} / m\right\rfloor \\
& \text { Output: } c=t(\bmod m) \\
& \text { 1: } q^{\prime}=\left\lfloor\left(t^{*} \mu\right) / 2^{2 k}\right\rfloor \\
& \text { 2: } r=t-q^{\prime *} m \\
& \text { 4: if }(r \geq m) \text { then } c=r-m \text { else } c=r \\
& \text { 5: return } c
\end{aligned}
$$

Modulus m is fixed and μ is precomputed.

Complete Barrett reduction algorithm

Try Barrett algorithm in Sage.
https://sagecell.sagemath.org/

$$
\begin{aligned}
& m=19 \\
& k=5 \\
& m u=f l o o r\left(2^{\wedge}(2 * k) / m\right) \\
& t=120 \\
& r=t-((t * m u) \gg 2 * k) * m \\
& c=r-m \operatorname{if}(r>=m) \text { else } \\
& \text { mrint("t modm:", tom) } \\
& \text { print("BR }(t, m): ", c)
\end{aligned}
$$

Efficient algorithms for modular reduction

In this course, we will study the following algorithms

- Barrett reduction
- Montgomery reduction
- Reduction for special modulus

Montgomery reduction

Replaces expensive division by cheaper shift operation.

MATHEMATICS OF COMPUTATION
VOLUME 44, NUMBER 170
APRII. 1985. PACiES 519-521

Modular Multiplication Without Trial Division

By Peter L. Montgomery

> Abstract. Let $N>1$. We present a method for multiplying two integers (called N-residues) modulo N while avoiding division by $N . N$-residues are represented in a nonstandard way, so this method is useful only if several computations are done modulo one N. The addition and subtraction algorithms are unchanged.
P. Montgomery, "Modular Multiplication Without Trial Division". Mathematics of Computation, 1985.

Montgomery reduction procedure

Let, modulus m is a k-bit odd and $R=2^{k}$
and $\mathrm{m}^{\prime}=(-\mathrm{m})^{-1} \bmod R$

Takes an input t in the range [$0, R^{*} m-1$] and computes s in the range [$0,2 m-1$]

$$
s=\frac{t+\left(t * m^{\prime} \bmod R\right) * m}{R}
$$

s is in the range $[0,2 m]$.
After a conditional subtraction of m from s (when $m<s<2 m$), we get $s=t^{*} R^{-1} \bmod m$

Why does this work?

Our $2 k$ bit integer t
 ```XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX```

Wish t is like this?

```
xxxxxxxxxxxxxxxx0000000000000
```

Least k bits are zeros

Wish t is like this?

```
xxxxxxxxxxxxxxxx0000000000000
```

Least k bits are zeros
We divide by $R=2^{k}$ (right shift by k bits) to obtain

Wish t is like this?

```
xxxxxxxxxxxxxxxx0000000000000
```

Least k bits are zeros
We divide by $R=2^{k}$ (right shift by k bits) to obtain

Division by R is equivalent to multiplication by $R^{-1} \bmod m$
\rightarrow We get the desired result $t^{*} R^{-1} \bmod m$

In real world these k bits may not be all Os

Can we transform t into t^{\prime} such that, $t \equiv t^{\prime}(\bmod m)$ and

$$
t^{\prime}=\xrightarrow[\text { Least } k \text { bits are zeros }]{\stackrel{\text { xxxxxxxxxxxxxxx0000000000000 }}{\longrightarrow}}
$$

In real world these k bits may not be all Os

Can we transform t into t^{\prime} such that, $t \equiv t^{\prime}(\bmod m)$ and

$$
t^{\prime}=\xrightarrow[\text { Least } k \text { bits are zeros }]{\stackrel{\text { xxxxxxxxxxxxxxx0000000000000 }}{\longrightarrow}}
$$

Let, $t=t_{\mathrm{H}} 2^{\mathrm{K}}+t_{\mathrm{L}}$

In real world these k bits may not be all $0 s$

Can we transform t into t^{\prime} such that, $t \equiv t^{\prime}(\bmod m)$ and

$$
\begin{aligned}
& t^{\prime}=\quad x x x x x x x x x x x x x x x x x 0000000000000 \\
& \text { Least } k \text { bits are zeros }
\end{aligned}
$$

Let, $t=t_{\mathrm{H}} 2^{\mathrm{K}}+t_{\mathrm{L}}$
We add $m^{*} q$ to t such that, $\quad t^{\prime}=t_{H} 2^{k}+t_{L}+m^{*} q \equiv 0\left(\bmod 2^{k}\right)$
Note that with $t^{\prime}=t_{\mathrm{H}} 2^{\mathrm{K}}+t_{\mathrm{L}}+m^{*} q$ we have $t^{\prime} \equiv t(\bmod m)$

In real world these k bits may not be all $0 s$

Can we transform t into t^{\prime} such that, $t \equiv t^{\prime}(\bmod m)$ and

$$
t^{\prime}=\xrightarrow[\text { Least } k \text { bits are zeros }]{\text { xxxxxxxxxxxxxxxx000000000000 }}
$$

Let, $t=t_{\mathrm{H}} 2^{\mathrm{K}}+t_{\mathrm{L}}$
We add $m^{*} q$ to t such that, $\quad t^{\prime}=t_{\mathrm{H}} 2^{\mathrm{K}}+t_{\mathrm{L}}+m^{*} q \equiv 0\left(\bmod 2^{k}\right)$
$\Rightarrow q=t_{\mathrm{L}}{ }^{*}\left(-m^{-1}\right) \bmod 2^{\mathrm{k}}$
$=t_{\mathrm{L}}{ }^{*} m^{\prime} \bmod 2^{\mathrm{k}}$

In real world these k bits may not be all $0 s$

Can we transform t into t^{\prime} such that, $t \equiv t^{\prime}(\bmod m)$ and

$$
t^{\prime}=\xrightarrow[\text { Least } k \text { bits are zeros }]{\text { xxxxxxxxxxxxxxxx0000000000000 }}
$$

Let, $t=t_{\mathrm{H}} 2^{\mathrm{K}}+t_{\mathrm{L}}$
We add $m^{*} q$ to t such that,
$t^{\prime}=t_{\mathrm{H}} 2^{\mathrm{K}}+t_{\mathrm{L}}+m^{*} q \equiv 0\left(\bmod 2^{k}\right)$
$\Rightarrow q=t_{\mathrm{L}}{ }^{*}\left(-m^{-1}\right) \bmod 2^{\mathrm{k}}$
$=t_{\mathrm{L}}{ }^{*} m^{\prime} \bmod 2^{\mathrm{k}}$
Our $t^{\prime}=t+m^{*} q$.

Montgomery reduction: conditional subtraction

Modulus m is a k-bit odd, $R=2^{\mathrm{k}}$ and $m^{\prime}=(-m)^{-1} \bmod R$

For an input t in the range $\left[0, R^{*} m-1\right]$ compute the following:

- $q=(t \bmod R)^{*} m^{\prime} \bmod R \longrightarrow k$ bits, in range $[0, R-1]$
- $t^{\prime}=t+q^{*} m \longrightarrow 2 k+1$ bits, in range $[0,2 R m)$
- $s=t^{\prime} / R \longrightarrow k+1$ bits and $<2 \mathrm{~m}$

Montgomery reduction: conditional subtraction

Modulus m is a k-bit odd, $R=2^{\mathrm{k}}$ and $m^{\prime}=(-m)^{-1} \bmod R$

For an input t in the range $\left[0, R^{*} m-1\right]$ compute the following:

- $q=(t \bmod R)^{*} m^{\prime} \bmod R \longrightarrow k$ bits, in range $[0, R-1]$
- $t^{\prime}=t+q^{*} m \longrightarrow 2 k+1$ bits, in range $[0,2 R m)$
- $s=t^{\prime} / R \longrightarrow k+1$ bits and $<2 \mathrm{~m}$
- If $(s>=m)$ then output $s-m$
else outputs

Complete Montgomery reduction algorithm

Try Barrett algorithm in Sage.
https://sagecell.sagemath.org/

```
m = 19
k = 5
R= 2^(2*k)
mp= -m^(-1) % R #m'
t = 120
s = (t + (t*mp % R)*m)/R
c = s-m if(s >= m) else s
print("t mod m:", t%m)
print("MR(t,m):", c)
print("c*R mod q:", c*R % m)
```


Montgomery reduction: input and output forms

In\#1	$\operatorname{In} \# \mathbf{2}$	$\boldsymbol{t}=\boldsymbol{a}^{*} \boldsymbol{b}$	Output	Adjustment
a	b	$a^{*} b$	$s=a^{*} b^{*} R^{-1}(\bmod m)$	$s^{*} R(\bmod m)$
$a^{*} R$	b	$a^{*} b^{*} R$	$s=a^{*} b^{*} R^{*} R^{-1}(\bmod m)$	Not required
a	$b^{*} R$	$a^{*} b^{*} R$	$s=a^{*} b^{*} R^{*} R^{-1}(\bmod m)$	Not required
$a^{*} R$	$b^{*} R$	$a^{*} b^{*} R$	$s=a^{*} b^{*} R^{2} R^{-1}(\bmod m)$	$s^{*} R^{-1}(\bmod m)$

To obtain $a^{*} b$ mod m, removing the R factor is needed.

Montgomery reduction: when to use?

Consider computing a^{5} mod m .

Montgomery reduction: when to use?

Consider computing $a^{5} \bmod \mathrm{~m}$.

Usual way of computing, e.g., with Barret reduction.
$\mathrm{T}=a^{*} a \bmod m$
$\mathrm{T}=\mathrm{T}^{*} a \bmod m$
$\mathrm{T}=\mathrm{T}^{*} a \bmod m$
$\mathrm{T}=\mathrm{T}^{*} a \bmod m$
$=a^{5} \bmod \mathrm{~m}$

Montgomery reduction: when to use?

Consider computing a^{5} mod m .
Usual way of computing,

$$
\begin{aligned}
\mathrm{T} & =a^{*} a \bmod m \\
\mathrm{~T} & =\mathrm{T}^{*} a \bmod m \\
\mathrm{~T} & =\mathrm{T}^{*} a \bmod m \\
\mathrm{~T} & =\mathrm{T}^{*} a \bmod m \\
& =a^{5} \mathrm{modm}
\end{aligned}
$$ e.g., with Barret reduction.

```
If we use Montgomery naively
T = Mont(a*a,m)
T = T*R mod m
T = Mont(T*a,m)
T=T*R mod m
T = Mont(a*a,m)
    = a
T = T*R mod m
```


$a R \bmod m \longrightarrow$ Montgomery \longrightarrow Multiplier $(\longrightarrow) \longrightarrow a b R \bmod m$
$b R \bmod m \longrightarrow$

Inputs and outputs all have R factor.
\rightarrow Gives us a closed representation called "Montgomery form"

Inputs and outputs all have R factor.
\rightarrow Gives us a closed representation called "Montgomery form"

$a R \bmod m$

Inputs and outputs all have R factor.
\rightarrow Gives us a closed representation called "Montgomery form"

Montgomery reduction: when to use?

Consider computing a^{5} mod m .

```
Correct method of using Montgomery
b=a*R mod m.
T = MontMultiplier(b,b)
T = MontMultiplier(T, b)
T = MontMultiplier(T, b)
T = MontMultiplier(T, b)
    = a}\mp@subsup{a}{}{5}R\operatorname{mod}
Result = T* R}\mp@subsup{}{}{-1}\operatorname{mod}

\section*{Efficient algorithms for modular reduction}

In this course, we will study the following algorithms
- Barrett reduction
- Montgomery reduction
- Reduction for special modulus

\section*{Modular deduction for special modulus}
- Some cryptographic primitives use moduli with sparse representation:
E.g., ECC uses \(m=2^{192}-2^{64}-1\)
E.g., Some ZKP/FHE applications use \(m=2^{64}-2^{32}+1\)
- Mersenne primes: \(m=2^{k}-1\) with \(k\) a prime.
E.g., \(m=2^{31}-1\), \(m=2^{61}-1\) is currently the largest known Mersenne prime.
- Pseudo Mersenne primes (Solinas primes): \(m=2^{k}-c\) with small \(c\).

\section*{Modular deduction for special modulus}

Example: modular reduction for \(m=2^{k}-c\)
\(\Rightarrow\)
\[
m \equiv 0(\bmod m)
\]

\section*{Modular deduction for special modulus}

Example: modular reduction for \(m=2^{k}-c\)
\(\Rightarrow\)
\[
\begin{aligned}
& m \equiv 0(\bmod m) \\
& 2^{k}-c \equiv 0(\bmod m)
\end{aligned}
\]

\section*{Modular deduction for special modulus}

Example: modular reduction for \(m=2^{k}-c\)
\(\Rightarrow\)
\[
\begin{aligned}
& m \equiv 0(\bmod m) \\
& 2^{k}-c \equiv 0(\bmod m) \\
& 2^{k} \equiv c(\bmod m)
\end{aligned}
\]

\section*{Modular deduction for special modulus}

Example: modular reduction for \(m=2^{k}-c\)
\(\Rightarrow\)
\[
\begin{aligned}
& m \equiv 0(\bmod m) \\
& 2^{k}-c \equiv 0(\bmod m) \\
& 2^{k} \equiv c(\bmod m)
\end{aligned}
\]

Perform \(A(\bmod m)\) for \(2 k\)-bit \(A\)
\[
\begin{aligned}
& A=A_{1} \cdot 2^{k}+A_{0} \bmod m \\
& A=A_{1} \cdot c+A_{0} \bmod m \text { using } 2^{k} \equiv c(\bmod m)
\end{aligned}
\]

\section*{References}
V. Shoup, "A Computational Introduction to Number Theory and Algebra". https://shoup.net/ntb/ntb-v2.pdf
P. Barrett, "Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor". CRYPTO' 86.
P. Montgomery, "Modular Multiplication Without Trial Division". Mathematics of Computation, 1985.
D. Hankerson, S. Vanstone, A. Menezes, "Guide to Elliptic Curve Cryptography".```

