
1

Bettina Könighofer

January 24, 2020

Graz University of Technology

Institute for Applied Information

Processing and Communications

Temporal Logic +

CTL Model Checking

Model Checking SS24

Bettina Könighofer

April 29, 2024

A B

CX

A A B

C

2 Plan for Today

▪ Presentation of Homework and Recap of Temporal Logic

▪ Properties of CTL and LTL

▪ CTL Model Checking

Propositional Temporal Logic3

Path quantifiers: A, E

▪ A specifies that all paths starting from s have property 𝝋.

▪ E specifies that some paths starting from s have property 𝝋.

a,b

b,c c

a,b

b,c c

cca,b

𝝅𝟏 𝝅𝟐

Propositional Temporal Logic4

Temporal operators:

▪ Describe properties that hold along an infinite path 𝜋

Xp

Gp

Fp

pUq

pRq

pRq “p release q”:

pRq requires that q holds along 𝜋 up to and including the first

state where p holds. However, p is not required to hold eventually.

5 Linear Temporal Logic (LTL) - Syntax

LTL is the set of all state formulas.

State formulas:

▪ A𝑔 where 𝑔 is a path formula

Path formulas:

▪ 𝑝 ∈ 𝐴𝑃

▪ 𝑔1, 𝑔1𝑔2, 𝑔1𝑔2, 𝑿𝑔1, 𝑮𝑔1, 𝑭𝑔1, 𝑔1𝑼𝑔2, 𝑔1𝑹𝑔2

where 𝑔1 and 𝑔2 are path formulas.

6 Computational Tree Logic (CTL) - Syntax

CTL is the set of all state formulas, defined below

(by means of state formulas only):
▪ 𝑝 ∈ 𝐴𝑃

▪ 𝑓1, 𝑓1𝑓2, 𝑓1𝑓2

▪ 𝑨𝑿 𝑓1, 𝑨𝑮 𝑓1, 𝑨𝑭 𝑓1, 𝑨 (𝑓1𝑼 𝑓2), 𝑨 (𝑓1 𝑹 𝑓2)

▪ 𝑬𝑿 𝑓1, 𝑬𝑮 𝑓1, 𝑬𝑭 𝑓1, 𝑬 𝑓1𝑼 𝑓2 , 𝑬 (𝑓1 𝑹 𝑓2)

where 𝑓1 and 𝑓2 are state formulas

Illustration of CTL Semantics7

Illustration of CTL Semantics8

Illustration of CTL Semantics9

Illustration of CTL Semantics10

11 Homework

1. “At any time, one can select ten cups of coffee and

once selected, ten cups will always eventually be

served unless an error occurs.”

12 Homework

1. “At any time, one can select ten cups of coffee and

once selected, ten cups will always eventually be

served unless an error occurs.”

𝐴𝐺 (𝑡𝑒𝑛 → 𝐴𝐹 (𝑠𝑒𝑟𝑣𝑒𝑑 ∨ 𝑒𝑟𝑟𝑜𝑟))

13 Homework

2. “At any time, it is possible to eventually reach an

error.”

14 Homework

2. “At any time, it is possible to eventually reach an

error.”

𝜑 ≔ 𝐴𝐺 𝐸𝐹 𝑒𝑟𝑟𝑜𝑟

15 Homework

3. “Always, it will happen eventually that the coffee

machine remains turned off forever.”

16 Homework

3. “Always, it will happen eventually that the coffee

machine remains turned off forever.”

𝜑 ≔ 𝐴𝐹𝐺 𝑜𝑓𝑓

17 Homework

4. “All reachable states can result in 10 cups of coffee.”

18 Homework

4. “All reachable states can result in 10 cups of coffee.”

𝜑 ≔ 𝐴𝐺 𝐸𝐹 (𝑐𝑜𝑓𝑓𝑒𝑒)

19 Homework

5. It is never possible that the machine brews 5 cups of

coffee in the current time step, and serves 5 more cups

within the next 2 seconds.

20 Homework

5. It is never possible that the machine brews 5 cups of

coffee in the current time step, and serves 5 more cups

within the next 2 seconds.

𝜑 ≔ 𝐴𝐺¬(5𝑐𝑢𝑝𝑠 ∧ 𝑋 5𝑐𝑢𝑝𝑠 ∧ 𝑋𝑋5𝑐𝑢𝑝𝑠)

21 Homework

6. The selected amount of coffee will be served within

6 seconds.

22 Homework

6. The selected amount of coffee will be served within

6 seconds.

𝜑 ≔ 𝐴𝐺(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 → (𝑋𝑠𝑒𝑟𝑣𝑒𝑑 ∨ ⋯∨ 𝑋𝑋𝑋𝑋𝑋𝑋𝑠𝑒𝑟𝑣𝑒𝑑))

23 Homework

1. 𝜑 ∶= 𝐴 ((𝐹 𝑠𝑒𝑟𝑣𝑒) 𝑈 (𝐺 ¬𝑜𝑛))

24 Homework

1. 𝜑 ∶= 𝐴 𝐹 𝑠𝑒𝑟𝑣𝑒 𝑈 𝐺 ¬𝑜𝑛

NO

25 Homework

2. 𝜑 ∶= AG(serve → (X¬on) ∨ (XX¬on) ∨ (XXX¬on))

26 Homework

2. 𝜑 ∶= AG(serve → (X¬on) ∨ (XX¬on) ∨ (XXX¬on))

NO

27 Homework

3. 𝜑 ∶= 𝐸𝐹 𝐹 𝑒𝑟𝑟𝑜𝑟 → 𝐸𝐹 10𝑐𝑢𝑝𝑠 ∧ 𝑠𝑒𝑟𝑣𝑒

28 Homework

3. 𝜑 ∶= 𝐸𝐹 𝐹 𝑒𝑟𝑟𝑜𝑟 → 𝐸𝐹 10𝑐𝑢𝑝𝑠 ∧ 𝑠𝑒𝑟𝑣𝑒

YES

29 Homework

4. 𝜑 ∶= 𝐴𝐹(𝑠𝑒𝑟𝑣𝑒) → (𝐸𝐹 𝐺𝐹(¬𝑜𝑛))

30 Homework

4. 𝜑 ∶= 𝐴𝐹(𝑠𝑒𝑟𝑣𝑒) → (𝐸𝐹 𝐺𝐹(¬𝑜𝑛))

YES

31 Plan for Today

▪ Presentation of Homework and Recap of Temporal Logic

▪ Properties of CTL and LTL

▪ LTL vs CTL

▪ Counterexamples

▪ Safety and Liveness Properties

▪ CTL Model Checking

32 LTL/CTL/CTL*

▪ Linear Temporal Logic (LTL) consists of state formulas of the

form A𝑔, where 𝑔 is a path formula, containing no path quantifiers.

▪ CTL consists of state formulas, where path quantifiers and

temporal operators appear in pairs: AG, AU, AX, AF, AR, EG, EU,

EX, EF, ER

LTL vs CTL33

▪ Exercise:

▪ Does the LTL formula 𝑨𝑭𝑮 𝒑 has an equivalent in CTL?

▪ 𝑨𝑭𝑮 𝒑 = “for all paths, eventually p always holds”

LTL vs CTL34

▪ Exercise:

▪ Does the LTL formula 𝑨𝑭𝑮 𝒑 has an equivalent in CTL?

▪ 𝑨𝑭𝑮 𝒑 = “for all paths, eventually p always holds”

▪ Solution: No

▪ But what about: AFAGp?

▪ AFAGp = “for all paths, there is a point from which all reachable

states satisfy p”

LTL vs CTL35

▪ Exercise:

▪ Does the LTL formula 𝑨𝑭𝑮 𝒑 has an equivalent in CTL?

▪ 𝑨𝑭𝑮 𝒑 = “for all paths, eventually p always holds”

▪ Solution: No

▪ But what about: AFAGp?

▪ AFAGp = “for all paths, there is a point from which all reachable

states satisfy p”

▪ Consider the given model:

▪ Does AFGp hold?

▪ Does AFAGp hold?

▪ Exercise:

▪ Does the LTL formula 𝑨𝑭𝑮 𝒑 has an equivalent in CTL?

▪ 𝑨𝑭𝑮 𝒑 = “for all paths, eventually p always holds”

▪ Solution: No

▪ But what about: AFAGp?

▪ AFAGp = “for all paths, there is a point from which all reachable

states satisfy p”

▪ Consider the given model:

▪ AFGp holds

▪ All paths satisfy FGp

▪ 𝑠0, 𝑠0, 𝑠0, …

▪ 𝑠0, 𝑠0, … 𝑠0, 𝑠1, 𝑠2, 𝑠2, 𝑠2, … .

LTL vs CTL36

LTL vs CTL37

▪ Exercise:

▪ Does the LTL formula 𝑨𝑭𝑮 𝒑 has an equivalent in CTL?

▪ 𝑨𝑭𝑮 𝒑 = “for all paths, eventually p always holds”

▪ Solution: No

▪ But what about: AFAGp?

▪ AFAGp = “for all paths, there is a point from which all reachable

states satisfy p”

▪ Consider the given model:

▪ AFGp holds

▪ AFAGp does not hold

▪ 𝑠0, 𝑠0, 𝑠0, … does not satisfy FAGp

LTL vs CTL38

▪ Exercise:

▪ Does the LTL formula 𝑨𝑭𝑮 𝒑 has an equivalent in CTL?

▪ 𝑨𝑭𝑮 𝒑 = “for all paths, eventually p always holds”

▪ Solution: No

▪ What about AFEG p?

Hint:

LTL vs CTL39

▪ Exercise:

▪ Does the LTL formula 𝑨𝑭𝑮 𝒑 has an equivalent in

CTL?

▪ Solution: No

▪ What about AFEG p?

LTL vs CTL40

▪ Exercise:

▪ Does the LTL formula 𝑨𝑭𝑮 𝒑 has an equivalent in

CTL?

▪ Solution: No

▪ What about AFEG p?

LTL vs CTL41

▪ Exercise:

▪ Does AG(EF p) has an LTL equivalent?

LTL vs CTL42

▪ Exercise:

▪ Does AG(EF p) has an LTL equivalent?

▪ AG(EF p) = “From … ”

LTL vs CTL43

▪ Exercise:

▪ Does AG(EF p) has an LTL equivalent?

▪ AG(EF p) = “From all reachable states, it is possible to

reach a state that satisfies p”

LTL vs CTL44

▪ Exercise:

▪ Does AG(EF p) has an LTL equivalent?

▪ AG(EF p) = “From all reachable states, it is possible to

reach a state that satisfies p”

▪ What about AGF p = “In all paths, p holds infinitely often”?

▪ Does AG(EFp) hold?

▪ Does AGFp hold?
Hint:

LTL vs CTL45

▪ Exercise:

▪ Does AG(EF p) has an LTL equivalent?

▪ AG(EF p) = “From all reachable states, it is possible to

reach a state that satisfies p”

▪ What about AGF p = “In all paths, p holds infinitely often”

▪ AG(EFp) holds

▪ All reachable states (s0, 𝑠1) satisfy EFp
Hint:

LTL vs CTL46

▪ Exercise:

▪ Does AG(EF p) has an LTL equivalent?

▪ AG(EF p) = “From all reachable states, it is possible to

reach a state that satisfies p”

▪ What about AGF p = “In all paths, p holds infinitely often”

▪ AG(EFp) holds

▪ All reachable states (s0, 𝑠1) satisfy EFp

▪ AGFp does not hold

▪ s0, s0, s0… does not satisfy GFp

Hint:

LTL vs CTL47

48 Plan for Today

▪ Presentation of Homework and Recap of Temporal Logic

▪ Properties of CTL and LTL

▪ LTL vs CTL

▪ Counterexamples

▪ Safety and Liveness Properties

▪ CTL Model Checking

Counterexamples

▪ Given 𝑀 and 𝜑 s.t. 𝑀 ⊭ 𝜑.

A counterexample is trace 𝜋 of 𝑀 violating 𝜑.

▪ Counterexample generation is a central feature of MC

▪ Used for debugging

▪ Should have finite representation

▪ Easy-to-understand by human

49

Examples of Counterexamples50

Examples of Counterexamples51

Examples of Counterexamples52

Examples of Counterexamples53

Examples of Counterexamples54

▪ How does a counterexample for AFp look like?

Examples of Counterexamples55

▪ Exercise:

▪ How do we get a finite representation for the CE?

Examples of Counterexamples56

▪ Exercise:

▪ How do we get a finite representation for the CE?

Examples of Counterexamples57

58 Plan for Today

▪ Presentation of Homework and Recap of Temporal Logic

▪ Properties of CTL and LTL

▪ LTL vs CTL

▪ Counterexamples

▪ Safety and Liveness Properties

▪ CTL Model Checking

Safety and Liveness Properties59

Informally,

▪ Safety properties guarantee that

“something bad will never happen”

▪ Typical example: 𝐴𝐺¬𝑝

Safety and Liveness Properties60

Informally,

▪ Safety properties guarantee that

“something bad will never happen”

▪ Typical example: 𝐴𝐺¬𝑝

▪ Liveness properties guarantee that

“something good will happen eventually”

▪ Typical examples: 𝐴𝐹 𝑝, 𝐴(𝑝𝑈𝑞)

Safety and Liveness Properties61

Informally,

▪ Safety properties guarantee that

“something bad will never happen”

▪ Typical example: 𝐴𝐺¬𝑝

▪ Exercise:

▪ How does a counterexample for a safety property look like?

Safety and Liveness Properties62

Informally,

▪ Safety properties guarantee that

“something bad will never happen”

▪ Typical example: 𝐴𝐺¬𝑝

▪ Exercise:

▪ How does a counterexample for a safety property look like?

▪ A counterexample for a safety property is a

finite (loop-free) path

Safety and Liveness Properties63

Informally,

▪ Liveness properties guarantee that

“something good will happen eventually”

▪ Typical examples: 𝐴𝐹 𝑝

▪ Exercise:

▪ How does a counterexample for a liveness property look like?

Safety and Liveness Properties64

Informally,

▪ Liveness properties guarantee that

“something good will happen eventually”

▪ Typical examples: 𝐴𝐹 𝑝

▪ Exercise:

▪ How does a counterexample for a liveness property look like?

▪ A counterexample is an infinite trace showing that this good

thing NEVER happened

65 Plan for Today

▪ Presentation of Homework and Recap of Temporal Logic

▪ Properties of CTL and LTL

▪ LTL vs CTL

▪ Counterexamples

▪ Safety and Liveness Properties

▪ CTL Model Checking

▪ MC Problem Definition

▪ Illustrative Example for CTL Model Checking

▪ Algorithm for CTL MC

The Model Checking Problem66

▪ Given a Kripke structure 𝑀 and a CTL formula 𝑓

▪ Model Checking Problem:

▪ 𝑀 ⊨ 𝑓, i.e., 𝑀 is a model for 𝑓

The Model Checking Problem67

▪ Given a Kripke structure 𝑀 and a CTL formula 𝑓

▪ Model Checking Problem:

▪ 𝑀 ⊨ 𝑓, i.e., 𝑀 is a model for 𝑓

▪ Alternative Definition

▪ Compute ⟦f⟧M = 𝑠 ∈ 𝑆 𝑀, 𝑠 ⊨ 𝑓} i.e., all states satisfying 𝑓

▪ Check 𝑆0 ⊆ ⟦f⟧M to conclude that 𝑀 ⊨ 𝑓

Illustrative Example: Mutual Exclusion68

Illustrative Example: Mutual Exclusion69

▪ Two processes with a joint semaphor signal sem

▪ Each process Pi has a variable vi describing its state:

▪ vi = N Non-critical

▪ vi = T Trying

▪ vi = C Critical

Illustrative Example: Mutual Exclusion70

▪ Each process runs the following program:

Pi :: while (true) {

if (vi == N) vi = T;

else if (vi == T && sem) { vi = C; sem = 0; }

else if (vi == C) {vi = N; sem = 1; }

}

Atomic

action

Illustrative Example: Mutual Exclusion71

v1=N, v2=N, sem

Illustrative Example: Mutual Exclusion72

v1=N, v2=N, sem

v1=T, v2=N, sem v1=N, v2=T, sem

Illustrative Example: Mutual Exclusion73

v1=N, v2=N, sem

v1=T, v2=N, sem v1=N, v2=T, sem

v1=C, v2=N, sem v1=N, v2=C, semv1=T, v2=T, sem

Illustrative Example: Mutual Exclusion74

v1=N, v2=N, sem

v1=T, v2=N, sem v1=N, v2=T, sem

v1=C, v2=N, sem v1=N, v2=C, semv1=T, v2=T, sem

v1=C, v2=T, sem v1=T, v2=C, sem

Illustrative Example: Mutual Exclusion75

v1=N, v2=N, sem

v1=T, v2=N, sem v1=N, v2=T, sem

v1=C, v2=N, sem v1=N, v2=C, semv1=T, v2=T, sem

v1=C, v2=T, sem v1=T, v2=C, sem

Illustrative Example: Mutual Exclusion76

v1=N, v2=N, sem

v1=T, v2=N, sem v1=N, v2=T, sem

v1=C, v2=N, sem v1=N, v2=C, semv1=T, v2=T, sem

v1=C, v2=T, sem v1=T, v2=C, sem

▪ We define atomic propositions: 𝐴𝑃 = {𝐶1, 𝐶2, 𝑇1, 𝑇2)

▪ A state is labeled with 𝑇𝑖 if 𝑣𝑖 = 𝑇

▪ A state is labeled with 𝐶𝑖 if 𝑣𝑖 = 𝐶

Illustrative Example: Mutual Exclusion77

▪ We define atomic propositions: 𝐴𝑃 = {𝐶1, 𝐶2, 𝑇1, 𝑇2)

▪ A state is labeled with 𝑇𝑖 if 𝑣𝑖 = 𝑇

▪ A state is labeled with 𝐶𝑖 if 𝑣𝑖 = 𝐶

C1,T2

T1

C1
T1,T2

T1,C2

C2

T2

Illustrative Example: Mutual Exclusion78

▪ Does it hold that M ⊨ f?

▪ Property 1: 𝑓 ∶= 𝑨𝑮(𝐶1𝐶2)

▪ Compute ⟦f⟧M = { s S | M,s ⊨ f } and check S0 ⟦f⟧M

C1,T2

T1

C1
T1,T2

T1,C2

C2

T2

Illustrative Example: Mutual Exclusion79

▪ Does it hold that M ⊨ f?

▪ Property 1: 𝑓 ∶= 𝑨𝑮(𝐶1𝐶2)

▪ Si≡ reachable states from an initial state after i steps

C1,T2

T1

C1
T1,T2

T1,C2

C2

T2

Illustrative Example: Mutual Exclusion80

▪ Does it hold that M ⊨ f?

▪ Property 1: 𝑓 ∶= 𝑨𝑮(𝐶1𝐶2)

▪ Si≡ reachable states from an initial state after i steps

C1,T2

T1

C1
T1,T2

T1,C2

C2

T2

S0

Illustrative Example: Mutual Exclusion81

▪ Does it hold that M ⊨ f?

▪ Property 1: 𝑓 ∶= 𝑨𝑮(𝐶1𝐶2)

▪ Si≡ reachable states from an initial state after i steps

C1,T2

T1

C1
T1,T2

T1,C2

C2

T2 S1

Illustrative Example: Mutual Exclusion82

▪ Does it hold that M ⊨ f?

▪ Property 1: 𝑓 ∶= 𝑨𝑮(𝐶1𝐶2)

▪ Si≡ reachable states from an initial state after i steps

C1,T2

T1

C1
T1,T2

T1,C2

C2

T2

S2

Illustrative Example: Mutual Exclusion83

▪ Does it hold that M ⊨ f?

▪ Property 1: 𝑓 ∶= 𝑨𝑮(𝐶1𝐶2)

▪ Si≡ reachable states from an initial state after i steps

C1,T2

T1

C1
T1,T2

T1,C2

C2

T2

S3

Illustrative Example: Mutual Exclusion84

▪ Does it hold that M ⊨ f?

▪ Property 1: 𝑓 ∶= 𝑨𝑮(𝐶1𝐶2)

C1,T2

T1

C1
T1,T2

T1,C2

C2

T2

M ⊨ AG (C1C2)

Illustrative Example: Mutual Exclusion85

▪ Does it hold that M ⊨ f?

▪ Property 2: 𝑓 ∶= 𝑨𝑮(𝑇1𝑇2)

C1,T2

T1

C1
T1,T2

T1,C2

C2

T2

Illustrative Example: Mutual Exclusion86

▪ Does it hold that M ⊨ f?

▪ Property 2: 𝑓 ∶= 𝑨𝑮(𝑇1𝑇2)

▪ Si≡ reachable states from an initial state after i steps

C1,T2

T1

C1
T1,T2

T1,C2

C2

T2

S0

Illustrative Example: Mutual Exclusion87

▪ Does it hold that M ⊨ f?

▪ Property 2: 𝑓 ∶= 𝑨𝑮(𝑇1𝑇2)

▪ Si≡ reachable states from an initial state after i steps

C1,T2

T1

C1
T1,T2

T1,C2

C2

T2 S1

Illustrative Example: Mutual Exclusion88

▪ Does it hold that M ⊨ f?

▪ Property 2: 𝑓 ∶= 𝑨𝑮(𝑇1𝑇2)

C1,T2

T1

C1
T1,T2

T1,C2

C2

T2

S3

M ⊭ AG (T1T2)

Illustrative Example: Mutual Exclusion89

▪ Does it hold that M ⊨ f?

▪ Property 2: 𝑓 ∶= 𝑨𝑮(𝑇1𝑇2)

▪ Model checker returns a counterexample

C1,T2

T1

C1
T1,T2

T1,C2

C2

T2

S3

M ⊭ AG (T1T2)

Illustrative Example: Mutual Exclusion90

▪ Does it hold that M ⊨ f?

▪ Property 3: 𝑓 ∶= 𝑨𝑮 ((𝑇1 → 𝑭 𝐶1) (𝑇2 → 𝑭 𝐶2))

▪ In case M ⊭ f, compute a counterexample

C1,T2

T1

C1
T1,T2

T1,C2

C2

T2

Illustrative Example: Mutual Exclusion91

▪ Does it hold that M ⊨ f?

▪ Property 3: 𝑓 ∶= 𝑨𝑮 ((𝑇1 → 𝑭 𝐶1) (𝑇2 → 𝑭 𝐶2))

▪ In case M ⊭ f, compute a counterexample

C1,T2

T1

C1
T1,T2

T1,C2

C2

T2

M ⊭ AG ((T1 → F C1) (T2 → F C2))

Illustrative Example: Mutual Exclusion92

▪ Does it hold that M ⊨ f?

▪ Property 4: 𝑓 ∶= 𝑨𝑮 𝑬𝑭 (𝑁1 ∧ 𝑁2 ∧ 𝑆0)

▪ How would you express Property 4 in natural language?

▪ In case M ⊭ f, compute a counterexample

T1,T2 ,S0

T1,C2,S1

N1,C2,S1

N1,T2,S0

N1,N2,S0

T1,N2,S0

C1,N2,S1

C1,T2,S1

▪ Does it hold that M ⊨ f?

▪ Property 4: f := AG EF (N1 N2 S0)

▪ “No matter where you are

there is always a way

to get to the initial state (restart)”

Illustrative Example: Mutual Exclusion93

T1,T2 ,S0

T1,C2,S1

N1,C2,S1

N1,T2,S0

N1,N2,S0

T1,N2,S0

C1,N2,S1

C1,T2,S1

M ⊨ AG EF (N1 N2 S0)

94 Plan for Today

▪ Presentation of Homework and Recap of Temporal Logic

▪ Properties of CTL and LTL

▪ LTL vs CTL

▪ Counterexamples

▪ Safety and Liveness Properties

▪ CTL Model Checking

▪ MC Problem Definition

▪ Illustrative Example for CTL Model Checking

▪ Algorithm for CTL MC

CTL Model Checking Algorithm95

Receives

▪ Given a Kripke structure 𝑀 and a CTL formula 𝑓

MC Returns:

▪ Whether 𝑀 ⊨ 𝑓, i.e., 𝑀 is a model for 𝑓

CTL Model Checking Algorithm96

Receives

▪ Given a Kripke structure 𝑀 and a CTL formula 𝑓

MC Returns:

▪ Whether 𝑀 ⊨ 𝑓, i.e., 𝑀 is a model for 𝑓

Or (Alternative Definition):

▪ ⟦𝑓⟧𝑀 = 𝑠 ∈ 𝑆 𝑀, 𝑠 ⊨ 𝑓} i.e., all states satisfying 𝑓

▪ 𝑀 is omitted from ⟦𝑓⟧𝑀 when clear from the context

CTL Model Checking 𝑀 ⊨ 𝑓97

Iterative algorithm:

Compute ⟦𝑔⟧𝑀 for every subformula 𝑔 of 𝑓

CTL Model Checking 𝑀 ⊨ 𝑓98

Iterative algorithm:

Compute ⟦𝑔⟧𝑀 for every subformula 𝑔 of 𝑓

▪ Work iteratively on subformulas of 𝑓

▪ from simpler to complex subformulas

CTL Model Checking 𝑀 ⊨ 𝑓99

Iterative algorithm:

Compute ⟦𝑔⟧𝑀 for every subformula 𝑔 of 𝑓

▪ Work iteratively on subformulas of 𝑓

▪ from simpler to complex subformulas

▪ For checking AG(request → AF grant)

CTL Model Checking 𝑀 ⊨ 𝑓100

Iterative algorithm:

Compute ⟦𝑔⟧𝑀 for every subformula 𝑔 of 𝑓

▪ Work iteratively on subformulas of 𝑓

▪ from simpler to complex subformulas

▪ For checking AG(request → AF grant)

▪ Check grant, request

CTL Model Checking 𝑀 ⊨ 𝑓101

Iterative algorithm:

Compute ⟦𝑔⟧𝑀 for every subformula 𝑔 of 𝑓

▪ Work iteratively on subformulas of 𝑓

▪ from simpler to complex subformulas

▪ For checking AG(request → AF grant)

▪ Check grant, request

▪ Then check AF grant

CTL Model Checking 𝑀 ⊨ 𝑓102

Iterative algorithm:

Compute ⟦𝑔⟧𝑀 for every subformula 𝑔 of 𝑓

▪ Work iteratively on subformulas of 𝑓

▪ from simpler to complex subformulas

▪ For checking AG(request → AF grant)

▪ Check grant, request

▪ Then check AF grant

▪ Next check request → AF grant

CTL Model Checking 𝑀 ⊨ 𝑓103

Iterative algorithm:

Compute ⟦𝑔⟧𝑀 for every subformula 𝑔 of 𝑓

▪ Work iteratively on subformulas of 𝑓

▪ from simpler to complex subformulas

▪ For checking AG(request → AF grant)

▪ Check grant, request

▪ Then check AF grant

▪ Next check request → AF grant

▪ Finally check AG(request → AF grant)

CTL Model Checking 𝑀 ⊨ 𝑓104

▪ For each 𝑠, computes label(𝑠), which is

the set of subformulas of 𝑓 that are true in 𝑠

CTL Model Checking 𝑀 ⊨ 𝑓105

▪ For each 𝑠, computes label(𝑠), which is

the set of subformulas of 𝑓 that are true in 𝑠

For every subformula 𝑔 of 𝑓:

▪ The algorithm adds 𝑔 to label(𝑠) for every state 𝑠 that satisfies 𝑔

▪ 𝑔 label(𝑠) 𝑀, 𝑠 ⊨ 𝑔

CTL Model Checking 𝑀 ⊨ 𝑓106

▪ For each 𝑠, computes label(𝑠), which is

the set of subformulas of 𝑓 that are true in 𝑠

For every subformula 𝑔 of 𝑓:

▪ The algorithm adds 𝑔 to label(𝑠) for every state 𝑠 that satisfies 𝑔

▪ 𝑔 label(𝑠) 𝑀, 𝑠 ⊨ 𝑔

𝑀 ⊨ 𝑓 if and only if 𝑓 label(𝑠) for all initial states 𝑠 ∈ 𝑆0 of 𝑀

Minimal set of operators for CTL107

▪ All CTL formulas can be transformed to use only the operators:

▪ , , EX, EU, EG

▪ MC algorithm needs to handle AP (atomic propositions) and

, , EX, EU, EG

Procedure for labeling the states:

▪ For 𝑝 ∈ 𝐴𝑃

▪ 𝑝 ∈ label(𝑠) if and only if 𝑝 ∈ L(𝑠)

Model Checking AP,¬,∨- Formulas108

Defined by 𝑀

Model Checking AP,¬,∨- Formulas109

Procedure for labeling the states:

▪ For 𝑝 ∈ 𝐴𝑃

▪ 𝑝 ∈ label(𝑠) if and only if 𝑝 ∈ L(𝑠)

▪ For subformulas 𝑓1 and 𝑓2 that have already been checked

(added to label(𝑠), when needed)

Model Checking AP,¬,∨- Formulas110

Procedure for labeling the states:

▪ For 𝑝 ∈ 𝐴𝑃

▪ 𝑝 ∈ label(𝑠) if and only if 𝑝 ∈ L(𝑠)

▪ For subformulas 𝑓1 and 𝑓2 that have already been checked

(added to label(𝑠), when needed)

▪ 𝑓1 add to label(𝑠) if and only if 𝑓1 𝑙𝑎𝑏𝑒𝑙 𝑠

Model Checking AP,¬,∨- Formulas111

Procedure for labeling the states:

▪ For 𝑝 ∈ 𝐴𝑃

▪ 𝑝 ∈ label(𝑠) if and only if 𝑝 ∈ L(𝑠)

▪ For subformulas 𝑓1 and 𝑓2 that have already been checked

(added to label(𝑠), when needed)

▪ 𝑓1 add to label(𝑠) if and only if 𝑓1 𝑙𝑎𝑏𝑒𝑙 𝑠

▪ 𝑓1𝑓2 add to label(𝑠) if and only if

𝑓1 𝑙𝑎𝑏𝑒𝑙𝑠(𝑠) or 𝑓2 𝑙𝑎𝑏𝑒𝑙(𝑠)

Model Checking AP,¬,∨- Formulas112

Procedure for labeling the states:

▪ For 𝑝 ∈ 𝐴𝑃

▪ 𝑝 ∈ 𝑙𝑎𝑏𝑒𝑙(𝑠) if and only if 𝑝 ∈ L(𝑠)

▪ For subformulas 𝑓1 and 𝑓2 that have already been checked

(added to label(𝑠), when needed)

▪ 𝑓1 add to 𝑙𝑎𝑏𝑒𝑙(𝑠) if and only if 𝑓1 𝑙𝑎𝑏𝑒𝑙 𝑠

▪ 𝑓1𝑓2 add to 𝑙𝑎𝑏𝑒𝑙(𝑠)) if and only if

𝑓1 𝑙𝑎𝑏𝑒𝑙(𝑠) or 𝑓2 𝑙𝑎𝑏𝑒𝑙(𝑠)

▪ Give the procedures for labeling states satisfying E𝑋𝑓1

Model Checking AP,¬,∨- Formulas113

Procedure for labeling the states:

▪ For 𝑝 ∈ 𝐴𝑃

▪ 𝑝 ∈ 𝑙𝑎𝑏𝑒𝑙(𝑠) if and only if 𝑝 ∈ L(𝑠)

▪ For subformulas 𝑓1 and 𝑓2 that have already been checked

(added to label(𝑠), when needed)

▪ 𝑓1 add to 𝑙𝑎𝑏𝑒𝑙(𝑠) if and only if 𝑓1 𝑙𝑎𝑏𝑒𝑙 𝑠

▪ 𝑓1𝑓2 add to 𝑙𝑎𝑏𝑒𝑙(𝑠)) if and only if

𝑓1 𝑙𝑎𝑏𝑒𝑙(𝑠) or 𝑓2 𝑙𝑎𝑏𝑒𝑙(𝑠)

▪ Give the procedures for labeling states satisfying E𝑋𝑓1
▪ Add E𝑋𝑓1 to 𝑙𝑎𝑏𝑒𝑙(𝑠) if and only if 𝑠 has a successor 𝑡 such that

𝑓1 𝑙𝑎𝑏𝑒𝑙(𝑡)

Model Checking 𝑔 = 𝐸𝑋 𝑓1114

▪ Give the procedures for labeling states satisfying E𝑋𝑓1
▪ Add g to label(s) if and only if s has a successor t such

that f1 label(t)

Model Checking 𝑔 = 𝐸𝑋 𝑓1115

▪ Add E𝑋𝑓1 to 𝑙𝑎𝑏𝑒𝑙(𝑠) if and only if 𝑠 has a successor 𝑡 such that

𝑓1 𝑙𝑎𝑏𝑒𝑙(𝑡)

procedure CheckEX (f1)

T := { t | f1 label(t) }

while T do

choose t T; T := T \ {t};

for all s such that R(s,t) do

if EX f1 label(s) then

label(s) : = label(s) { EX f1};

Model Checking 𝑔 = 𝐸(𝑓1𝑈 𝑓2)116

▪ Procedures for labeling states satisfying 𝐸(𝑓1𝑈 𝑓2)

▪ Think how you can rewrite the procedure CheckEX

procedure CheckEX (f1)

T := { t | f1 label(t) }

while T do

choose t T; T := T \ {t};

for all s such that R(s,t) do

if EX f1 label(s) then

label(s) : = label(s) { EX f1};

procedure CheckEU (f1,f2)
T := { t | f2 label(t) }

for all tT do
label(t) := label(t) { E(f1 U f2) }

while T do
choose t T; T := T \ {t};
for all s such that R(s,t) do

if E(f1 U f2) label(s) and f1 label(s) then

label(s) : = label(s) {E(f1 U f2) };

T : = T {s}

Model Checking 𝑔 = 𝐸(𝑓1𝑈 𝑓2)117

▪ Procedures for labeling states satisfying𝐸(𝑓1𝑈 𝑓2)

▪ Rewriting the procedure CheckEX

procedure CheckEX (f1)

T := { t | f1 label(t) }

while T do

choose t T; T := T \ {t};

for all s such that R(s,t) do

if EX f1 label(s) then

label(s) : = label(s) { EX f1};

procedure CheckEU (f1,f2)
T := { t | f2 label(t) }

for all tT do
label(t) := label(t) { E(f1 U f2) }

while T do
choose t T; T := T \ {t};
for all s such that R(s,t) do

if E(f1 U f2) label(s) and f1 label(s) then

label(s) : = label(s) {E(f1 U f2) };

T : = T {s}

Model Checking 𝑔 = 𝐸(𝑓1𝑈 𝑓2)118

▪ Procedures for labeling states satisfying𝐸(𝑓1𝑈 𝑓2)

▪ Rewriting the procedure CheckEX

procedure CheckEX (f1)

T := { t | f1 label(t) }

while T do

choose t T; T := T \ {t};

for all s such that R(s,t) do

if EX f1 label(s) then

label(s) : = label(s) { EX f1};

procedure CheckEU (f1,f2)
T := { t | f2 label(t) }

for all tT do
label(t) := label(t) { E(f1 U f2) }

while T do
choose t T; T := T \ {t};
for all s such that R(s,t) do

if E(f1 U f2) label(s) and f1 label(s) then

label(s) : = label(s) {E(f1 U f2) };

T : = T {s}

Model Checking 𝑔 = 𝐸(𝑓1𝑈 𝑓2)119

▪ Procedures for labeling states satisfying𝐸(𝑓1𝑈 𝑓2)

▪ Rewriting the procedure CheckEX

procedure CheckEX (f1)

T := { t | f1 label(t) }

while T do

choose t T; T := T \ {t};

for all s such that R(s,t) do

if EX f1 label(s) then

label(s) : = label(s) { EX f1};

procedure CheckEU (f1,f2)
T := { t | f2 label(t) }

for all tT do
label(t) := label(t) { E(f1 U f2) }

while T do
choose t T; T := T \ {t};
for all s such that R(s,t) do

if E(f1 U f2) label(s) and f1 label(s) then

label(s) : = label(s) {E(f1 U f2) };

T : = T {s}

Model Checking 𝑔 = 𝐸(𝑓1𝑈 𝑓2)120

▪ Procedures for labeling states satisfying𝐸(𝑓1𝑈 𝑓2)

▪ Rewriting the procedure CheckEX

procedure CheckEX (f1)

T := { t | f1 label(t) }

while T do

choose t T; T := T \ {t};

for all s such that R(s,t) do

if EX f1 label(s) then

label(s) : = label(s) { EX f1};

procedure CheckEU (f1,f2)
T := { t | f2 label(t) }

for all tT do
label(t) := label(t) { E(f1 U f2) }

while T do
choose t T; T := T \ {t};
for all s such that R(s,t) do

if E(f1 U f2) label(s) and f1 label(s) then

label(s) : = label(s) {E(f1 U f2) };

T : = T {s}

Example: Model Checking 𝑈 Formulas121

procedure CheckEU (f1,f2)
T := { t | f2 label(t) }

for all tT do
label(t) := label(t) { E(f1 U f2) }

while T do
choose t T; T := T \ {t};
for all s such that R(s,t) do

if E(f1 U f2) label(s) and f1 label(s) then

label(s) : = label(s) {E(f1 U f2) };

T : = T {s}

s1

s2 s5

s3 s4

s6

a s0
a,b,c

a,b,c
a

a,c

ba

Does it hold that M ⊨ f?

• 𝑓 ∶= 𝐸(𝑎𝑈𝑏)

Example: Model Checking 𝑈 Formulas122

procedure CheckEU (f1,f2)
T := { t | f2 label(t) }

for all tT do
label(t) := label(t) { E(f1 U f2) }

while T do
choose t T; T := T \ {t};
for all s such that R(s,t) do

if E(f1 U f2) label(s) and f1 label(s) then

label(s) : = label(s) {E(f1 U f2) };

T : = T {s}

s1

s2 s5

s3 s4

s6

a s0
a,b,c

a,b,c
a

a,c

ba

Does it hold that M ⊨ f?

• 𝑓 ∶= 𝐸(𝑎𝑈𝑏)

[[E(aUb)]] = {0,3,5}

Example: Model Checking 𝑈 Formulas123

procedure CheckEU (f1,f2)
T := { t | f2 label(t) }

for all tT do
label(t) := label(t) { E(f1 U f2) }

while T do
choose t T; T := T \ {t};
for all s such that R(s,t) do

if E(f1 U f2) label(s) and f1 label(s) then

label(s) : = label(s) {E(f1 U f2) };

T : = T {s}

s1

s2 s5

s3 s4

s6

a s0
a,b,c

a,b,c
a

a,c

ba

Does it hold that M ⊨ f?

• 𝑓 ∶= 𝐸(𝑎𝑈𝑏)

[[E(aUb)]] = {0,2,3,4,5}

Example: Model Checking 𝑈 Formulas124

procedure CheckEU (f1,f2)
T := { t | f2 label(t) }

for all tT do
label(t) := label(t) { E(f1 U f2) }

while T do
choose t T; T := T \ {t};
for all s such that R(s,t) do

if E(f1 U f2) label(s) and f1 label(s) then

label(s) : = label(s) {E(f1 U f2) };

T : = T {s}

s1

s2 s5

s3 s4

s6

a s0
a,b,c

a,b,c
a

a,c

ba

Does it hold that M ⊨ f?

• 𝑓 ∶= 𝐸(𝑎𝑈𝑏)

M ⊨ E(aUb)
[[E(aUb)]] = {0,1,2,3,4,5}

Model Checking 𝑔 = 𝐸𝐺𝑓1125

Observation:

s ⊨ EG f1
if and only if

There is a path , starting at s, such that ⊨ G 𝑓1

Model Checking 𝑔 = 𝐸𝐺𝑓1126

Observation:

s ⊨ EG f1
if and only if

There is a path , starting at s, such that ⊨ G 𝑓1
if and only if

There is a path from s to a strongly connected component,

where all states satisfy f1

Model Checking 𝑔 = 𝐸𝐺𝑓1127

▪ A Strongly Connected Component (SCC) in a graph

is a subgraph C such that every node in C is reachable from any

other node in C via nodes in C

Model Checking 𝑔 = 𝐸𝐺𝑓1128

▪ A Strongly Connected Component (SCC) in a graph

is a subgraph C such that every node in C is reachable from any

other node in C via nodes in C

▪ An SCC C is maximal (MSCC) if it is not contained in any other

SCC in the graph

▪ Possible to find all MSCC in linear time O(|S|+|R|) (Tarjan)

Model Checking 𝑔 = 𝐸𝐺𝑓1129

▪ A Strongly Connected Component (SCC) in a graph

is a subgraph C such that every node in C is reachable from any

other node in C via nodes in C

▪ An SCC C is maximal (MSCC) if it is not contained in any other

SCC in the graph

▪ Possible to find all MSCC in linear time O(|S|+|R|) (Tarjan)

▪ C is nontrivial if it contains at least one edge.
Otherwise, it is trivial.

Model Checking 𝑔 = 𝐸𝐺𝑓1130

▪ Reduced structure for M and 𝑓1:

▪ Remove from M all states such that 𝑓1 ∉ 𝑙𝑎𝑏𝑒𝑙𝑠(𝑠)

Model Checking 𝑔 = 𝐸𝐺𝑓1131

▪ Reduced structure for M and 𝑓1:

▪ Remove from M all states such that 𝑓1 ∉ 𝑙𝑎𝑏𝑒𝑙𝑠(𝑠)

▪ Resulting model: 𝑀′ = (𝑆′, 𝑅′, 𝐿′)

▪ S′ = s M, s ⊨ 𝑓1}

▪ R′ = 𝑆′ × 𝑆′ ∩ 𝑅

▪ 𝐿′(𝑠′) = 𝐿 𝑠′ for every 𝑠′ ∈ 𝑆′

Model Checking 𝑔 = 𝐸𝐺𝑓1132

▪ Reduced structure for M and 𝑓1:

▪ Remove from M all states such that 𝑓1 ∉ 𝑙𝑎𝑏𝑒𝑙𝑠(𝑠)

▪ Resulting model: 𝑀′ = (𝑆′, 𝑅′, 𝐿′)

▪ S′ = s M, s ⊨ 𝑓1}

▪ R′ = 𝑆′ × 𝑆′ ∩ 𝑅

▪ 𝐿′(𝑠′) = 𝐿 𝑠′ for every 𝑠′ ∈ 𝑆′

▪ Theorem: 𝑀, 𝑠 ⊨ 𝐸𝐺 𝑓1 if and only if

𝑠 ∈ 𝑆 and

there is 𝑎 𝑝𝑎𝑡ℎ in 𝑀 from 𝑠 to some state 𝑡
in a nontrivial MSCC of 𝑀.

Model Checking 𝑔 = 𝐸𝐺𝑓1133

procedure CheckEG (f1)
S := {s | f1 label(s) }
MSCC := { C | C is a nontrivial MSCC of M }
T := C MSCC { s | s C}

for all tT do
label(t) := label(t) { EG f1}

while T do
choose t T; T := T \ {t};
for all s S’ such that R’(s,t) do

if EG f1 label(s) then

label(s) : = label(s) {EG f1};

T : = T {s}

Model Checking 𝑔 = 𝐸𝐺𝑓1134

procedure CheckEG (f1)
S := {s | f1 label(s) }
MSCC := { C | C is a nontrivial MSCC of M }
T := C MSCC { s | s C}

for all tT do
label(t) := label(t) { EG f1}

while T do
choose t T; T := T \ {t};
for all s S’ such that R’(s,t) do

if EG f1 label(s) then

label(s) : = label(s) {EG f1};

T : = T {s}

Model Checking Complexity135

▪ MC Atomic Propositions

▪ O(|S|) steps

▪ MC , formulas

▪ O(|S|) steps

▪ MC g = EX f1
▪ Add g to label(s) iff s has a successor t such that f1 label(t)

▪ O(|S| + |R|)

▪ MC 𝑔 = 𝐸(𝑓1𝑈 𝑓2)
▪ O(|S| + |R|)

▪ MC 𝑔 = 𝐸𝐺𝑓1

Steps per Subformula

Model Checking Complexity136

▪ MC Atomic Propositions

▪ O(|S|) steps

▪ MC , formulas

▪ O(|S|) steps

▪ MC g = EX f1
▪ Add g to label(s) iff s has a successor t such that f1 label(t)

▪ O(|S| + |R|)

▪ MC 𝑔 = 𝐸(𝑓1𝑈 𝑓2)
▪ O(|S| + |R|)

▪ MC 𝑔 = 𝐸𝐺𝑓1

Steps per Subformula

Model Checking Complexity137

▪ MC Atomic Propositions

▪ O(|S|) steps

▪ MC , formulas

▪ O(|S|) steps

▪ MC g = EX f1
▪ Add g to label(s) iff s has a successor t such that f1 label(t)

▪ O(|S| + |R|)

▪ MC 𝑔 = 𝐸(𝑓1𝑈 𝑓2)
▪ O(|S| + |R|)

▪ MC 𝑔 = 𝐸𝐺𝑓1

Steps per Subformula

Model Checking Complexity138

▪ MC Atomic Propositions

▪ O(|S|) steps

▪ MC , formulas

▪ O(|S|) steps

▪ MC g = EX f1
▪ Add g to label(s) iff s has a successor t such that f1 label(t)

▪ O(|S| + |R|)

▪ MC 𝑔 = 𝐸(𝑓1𝑈 𝑓2)
▪ O(|S| + |R|)

▪ MC 𝑔 = 𝐸𝐺𝑓1

Steps per Subformula

Model Checking Complexity139

▪ MC Atomic Propositions

▪ O(|S|) steps

▪ MC , formulas

▪ O(|S|) steps

▪ MC g = EX f1
▪ Add g to label(s) iff s has a successor t such that f1 label(t)

▪ O(|S| + |R|)

▪ MC 𝑔 = 𝐸(𝑓1𝑈 𝑓2)
▪ O(|S| + |R|)

▪ MC 𝑔 = 𝐸𝐺𝑓1

Steps per Subformula

Model Checking Complexity 140

▪ MC 𝑔 = 𝐸𝐺𝑓1

▪ Computing M : O (|S| + |R|)

▪ Computing MSCCs using Tarjan’s algorithm:

O (|S| + |R|)

▪ Labeling all states in MSCCs: O (|S|)

▪ Backward traversal: O (|S| + |R|)

▪ => Overall: O (|S| + |R|)

Steps per Subformula

Model Checking Complexity141

▪ MC Atomic Propositions

▪ O(|S|) steps

▪ MC , formulas

▪ O(|S|) steps

▪ MC g = EX f1
▪ Add g to label(s) iff s has a successor t such that f1 label(t)

▪ O(|S| + |R|)

▪ MC 𝑔 = 𝐸(𝑓1𝑈 𝑓2)
▪ O(|S| + |R|)

▪ MC 𝑔 = 𝐸𝐺𝑓1
▪ O(|S| + |R|)

Steps per Subformula

Model Checking Complexity142

▪ Each subformula

▪ O(|S|+ |R|) = O(|M|)

▪ Number of subformulas in f:

▪ O(|f|)

▪ Total

▪ O(|M| |f|)

▪ For comparison

▪ Complexity of MC for LTL and CTL* is O(|M| 2|f|)

Microwave Example143

Start

Error
Close

Close

Heat

Start

Close

Error

Start

Close

Start

Close

Heat

1

2

5 6 7

43

start

close open reset start start

warmup

done

cookopen

openclose

▪ Use the proposed algorithm to compute if M ⊨ f ?

▪ f := E (true U (Start EG Heat))

𝑓 ∶= 𝐸 (𝑡𝑟𝑢𝑒 𝑈 (𝑆𝑡𝑎𝑟𝑡 𝐸𝐺 𝐻𝑒𝑎𝑡))144

Start

Error
Close

Close

Heat

Start

Close

Error

Start

Close

Start

Close

Heat

1

2

5 6 7

43

start

close open reset start start

warmup

done

cookopen

openclose

⟦start⟧ = {2,5,6,7}

⟦Heat ⟧ = {1,2,3,5,6}

𝑓 ∶= 𝐸 (𝑡𝑟𝑢𝑒 𝑈 (𝑆𝑡𝑎𝑟𝑡 𝐸𝐺 𝐻𝑒𝑎𝑡))145

Start

Error
Close

Close

Heat

Start

Close

Error

Start

Close

Start

Close

Heat

1

2

5 6 7

43

start

close open reset start start

warmup

done

cookopen

openclose

⟦start⟧ = {2,5,6,7}

⟦Heat ⟧ = {1,2,3,5,6}

⟦(EG Heat ⟧ =
MSCC with 𝐻𝑒𝑎𝑡

𝑓 ∶= 𝐸 (𝑡𝑟𝑢𝑒 𝑈 (𝑆𝑡𝑎𝑟𝑡 𝐸𝐺 𝐻𝑒𝑎𝑡))146

Start

Error
Close

Close

Heat

Start

Close

Error

Start

Close

Start

Close

Heat

1

2

5 6 7

43

start

close open reset start start

warmup

done

cookopen

openclose

⟦start⟧ = {2,5,6,7}

⟦Heat ⟧ = {1,2,3,5,6}

⟦(EG Heat ⟧ = {1,2,3,5}
MSCC with 𝐻𝑒𝑎𝑡

𝑓 ∶= 𝐸 (𝑡𝑟𝑢𝑒 𝑈 (𝑆𝑡𝑎𝑟𝑡 𝐸𝐺 𝐻𝑒𝑎𝑡))147

Start

Error
Close

Close

Heat

Start

Close

Error

Start

Close

Start

Close

Heat

1

2

5 6 7

43

start

close open reset start start

warmup

done

cookopen

openclose

⟦start⟧ = {2,5,6,7}

⟦Heat ⟧ = {1,2,3,5,6}

⟦(EG Heat ⟧ = {1,2,3,5}

⟦ Start EG Heat ⟧ = {2, 5}

𝑓 ∶= 𝐸 (𝑡𝑟𝑢𝑒 𝑈 (𝑆𝑡𝑎𝑟𝑡 𝐸𝐺 𝐻𝑒𝑎𝑡))

29.04.2024

Institute for Applied Information Processing and Communications

148

Start

Error
Close

Close

Heat

Start

Close

Error

Start

Close

Start

Close

Heat

1

2

5 6 7

43

start

close open reset start start

warmup

done

cookopen

openclose

⟦start⟧ = {2,5,6,7}

⟦Heat ⟧ = {1,2,3,5,6}

⟦(EG Heat ⟧ = {1,2,3,5}

⟦ Start EG Heat ⟧ = {2, 5}

⟦ E (true U (Start EG Heat)) ⟧
= {1,2,3,4,5,6,7}

𝑓 ∶= 𝐸 (𝑡𝑟𝑢𝑒 𝑈 (𝑆𝑡𝑎𝑟𝑡 𝐸𝐺 𝐻𝑒𝑎𝑡))149

Start

Error
Close

Close

Heat

Start

Close

Error

Start

Close

Start

Close

Heat

1

2

5 6 7

43

start

close open reset start start

warmup

done

cookopen

openclose

⟦start⟧ = {2,5,6,7}

⟦Heat ⟧ = {1,2,3,5,6}

⟦(EG Heat ⟧ = {1,2,3,5}

⟦ Start EG Heat ⟧ = {2, 5}

⟦ EU ⟧ = {1,2,3,4,5,6,7}

⟦ f ⟧ =

150

