
1

Bettina Könighofer

January 24, 2020

Graz University of Technology

Institute for Applied Information

Processing and Communications

Temporal Logic

Model Checking SS24
Bettina Könighofer

bettina.koenighofer@iaik.tugraz.at

22nd April 2024

A B

CX

A A B

C

mailto:bettina.koenighofer@iaik.tugraz.at

Temporal Logic
2

▪ Used to specify the dyamic behavior of systems.

▪ E.g., A temporal logic formula can express that…

▪ …a property has to hold in the next time step.

▪ …a property has to hold always.

▪ …a property has to hold eventually.

▪ …

▪ MC Question
▪ Does the model of the system satisfy a temporal logic formula?

▪ System model
▪ Kripke structure (today)

▪ I/O Automaton

▪ Markov Decision Process / Stochastic Multiplayer Game, ….

3 Plans for the Next 4 Weeks

▪ Topic: Model Checking of Temporal Logic Formulas

1. Intro to Temporal Logics: CTL*, LTL, CTL

2. CTL Model Checking – Part 1

3. CTL Model Checking – Part 2

4. LTL Model Checking

▪ Next: Model Checking of Probabilistic Systems

(Stefan’s Part)

Plan for Today4

▪ Motivating Example

▪ CTL*

▪ Informal Explanation of Syntax and Semantics

▪ Syntax

▪ Semantics

▪ Sublogics: CTL, LTL

5

• “If a sentence as a truth value, then it is a declarative sentence.”

• “A model is an assignment that makes a formula either true or

false.”

Warm Up

Model sentences in propositional logic.

6

• “If a sentence as a truth value, it is a declarative sentence.”

• “A model is an assignment that makes a formula either true or that

makes the formula false.”

Warm Up

Model sentences in propositional logic.

p… sentence has a truth value, q… sentence is a declarative sentence

𝑝 → 𝑞

p… assignment that makes the formula true,

q… assignment that makes the formula false

𝑝 ⊕ 𝑞

Properties of Kripke Structures
7

a b

x
c

• For any execution, it is always the case

that if the robot visits A, it

visits C within the next two steps.

• There exists an execution, in which the

robot always visits C within the next two

steps after visiting A.

Write properties as formulas:

For detailed modelling, we need…

• temporal operators, and

• path quantifiers!

Properties

Propositional Temporal Logic8

AP – a set of atomic propositions, 𝑝, 𝑞𝐴𝑃

Temporal operators

▪ Describe properties along a given path/execution

▪ 3 operators to start with:

Xp

Gp

Fp

pUq

pRq

Path quantifiers: A for all paths

E there exists a path

Properties of Kripke Structures
9

• For any execution, it is always the case

that if the robot visits A, it

visits C within the next two steps.

Write properties as formulas:Properties

Temporal Operators

X… next

G… globally

F… eventually

Path quantifiers

A for all paths

E there exists a path

a b

x
c

𝐴 𝐺 (𝑎 → 𝑋𝑐 ∨ 𝑋𝑋𝑐)

Properties of Kripke Structures
10

• For any execution, it is always the case

that if the robot visits A, it

visits C within the next two steps.

• There exists an execution in which it is

always the case that if the robot visits

A, it visits C within the next two steps.

Write properties as formulas:Properties

Temporal Operators

X… next

G… globally

F… eventually

Path quantifiers

A for all paths

E there exists a path

a b

x
c

𝐴 𝐺 (𝑎 → 𝑋𝑐 ∨ 𝑋𝑋𝑐)

𝐸 𝐺 (𝑎 → 𝑋𝑐 ∨ 𝑋𝑋𝑐)

Properties of Kripke Structures
11

• For any execution it holds that

the robot never visits X.

• There exists an execution in which

it holds that the robot never visits X.

Write properties as formulas:Properties

Temporal Operators

X… next

G… globally

F… eventually

Path quantifiers

A for all paths

E there exists a path

a b

x
c

𝐴 𝐺 (¬𝑥)

𝐸 𝐺 (¬𝑥)

Properties of Kripke Structures
12

22.04.2024

• There exists an execution in which

it holds that the robot visits A infinitely

often and C infinitely often.

• For any execution, it holds that the

robot visits A infinitely often,

but C only finitely often.

Write properties as formulas:Properties

Temporal Operators

X… next

G… globally

F… eventually

Path quantifiers

A for all paths

E there exists a path

a b

x
c

𝐸 (𝐺𝐹 𝑎 ∧ 𝐺𝐹 𝑐)

𝐴 (𝐺𝐹 𝑎 ∧ 𝐹𝐺¬𝑐)

Properties of Kripke Structures
13

• For any execution, it holds that if the

robot visits A infinitely often,

it also visits C finitely often.

Write properties as formulas:Properties

Temporal Operators

X… next

G… globally

F… eventually

Path quantifiers

A for all paths

E there exists a path

a b

x
c

𝐴 (𝐺𝐹 𝑎 → 𝐹𝐺¬𝑐)

Plan for Today14

▪ Motivating Example and Intuitive Explanation of

Temporal Operators

▪ CTL*

▪ Informal Explanation of Syntax and Semantics

▪ Syntax

▪ Semantics

▪ LTL

▪ CTL

Computation Tree Logic - CTL*15

▪ Defines properties of Computation Trees of Kripke structures.

▪ Computation Tree

▪ Shows all possible executions starting form initial state.

▪ All branches of the tree are infinite.

a,b

b,c c

Kripke structure 𝑀,

labeled with 𝐴𝑃 = {𝑎, 𝑏, 𝑐}
a,b

b,c c

cca,b

Unwinding of 𝑀 into

infinite computation tree

Paths16

▪ = 𝑠0, 𝑠1, … is an infinite path in 𝑀 if

▪ 𝑠0 is an initial state, and

▪ for all 𝑖 0, (𝑠𝑖, 𝑠𝑖+1) 𝑅

a,b

b,c c

a,b

b,c c

cca,b

𝝅𝟏 𝝅𝟐

Propositional Temporal Logic17

Path quantifiers: A, E

▪ A specifies that all paths starting from s have property 𝝋.

▪ E specifies that some paths starting from s have property 𝝋.

▪ Use combination of A and E to describe

branching structure in tree.

a,b

b,c c

a,b

b,c c

cca,b

𝝅𝟏 𝝅𝟐

Propositional Temporal Logic18

Temporal operators:

▪ Describe properties that hold along an infinite path 𝜋

Xp

Gp

Fp

pUq

pRq

pRq “p release q”:

pRq requires that q holds along 𝜋 up to and including the first

state where p holds. However, p is not required to hold eventually.

19

▪ Path Formulas:

▪ On 𝜋1, 𝑏 holds at every state. → 𝜋1 ⊨ 𝐺𝑏

▪ On 𝜋2, 𝑏 does not hold at every state. → 𝜋2 ⊭ 𝐺𝑏

▪ State Formulas:

▪ There is a path from 𝑠0 that satisfies 𝐺𝑏 →𝑠0 ⊨ EG b

▪ Not all paths from 𝑠0 satisfy 𝐺𝑏 →𝑠0 ⊭ AG b

Informal Semantics of State and Path Formulas

▪ Illustrate CTL* Semantics on Example

𝝅𝟏 𝝅𝟐

20

▪ Does 𝑠0 satisfy the following formula?

▪ 𝑠0 ⊨ EXX (a ∧ 𝑏)

▪ 𝑠0 ⊭ EXAX (a ∧ 𝑏)

𝝅𝟏 𝝅𝟐

Informal Semantics of State and Path Formulas

Plan for Today21

▪ Motivating Example

▪ CTL*

▪ Informal Explanation of Syntax and Semantics

▪ Syntax

▪ Semantics

▪ Sublogics: CTL, LTL

Syntax of CTL*22

Two types of formulas in the inductive definition

▪ State formulas (true in a specific state)

▪ Path formulas (true along a specific path)

CTL* formulas are the set of all state formulas

Syntax of CTL*: State Formulas23

Inductive definition of state formulas:

▪ If 𝑝 ∈ 𝐴𝑃, then 𝑝 is a state formula.

▪ If 𝑓1 and 𝑓2 are state formulas, so are 𝑓1, 𝑓1𝑓2, and 𝑓1𝑓2.

▪ If 𝑔 is a path formula, then 𝑬𝑔, 𝑨𝑔 are state formulas.

Inductive definition of path formulas:

▪ If 𝑓 is a state formula, then 𝑓 is also a path formula.

▪ If 𝑔1, 𝑔2 are path formulas, then ¬𝑔1, 𝑔1 ∨ 𝑔2, 𝑔1 ∧ 𝑔2,
𝑿𝑔1, 𝑮𝑔1, 𝑭𝑔1, 𝑔1𝑼 𝑔2, 𝑔1𝑹 𝑔2

are path formulas.

CTL* is the set of all state formulas!

Plan for Today24

▪ Motivating Example

▪ CTL*

▪ Informal Explanation of Syntax and Semantics

▪ Syntax

▪ Semantics

▪ Sublogics: CTL, LTL

Semantics of CTL*25

▪ Kripke Structure 𝑀 = 𝑆, 𝑆0, 𝑅, 𝐴𝑃, 𝐿

▪ = s0, s1, … is an infinite path in 𝑀

▪ i – the suffix of , starting at 𝑠𝑖

▪ For state formulas:

▪ 𝑴, 𝒔 ⊨ 𝒇 … the state formula 𝑓 holds in state 𝑠 of 𝑀

▪ For path formulas:

▪ 𝑴, 𝝅 ⊨ 𝒈 … the path formula 𝑔 holds along 𝜋 in 𝑀

Semantics of CTL*26

▪ Let 𝒈𝟏 and 𝒈𝟐 be path formulas and 𝒇𝟏 and 𝒇𝟐 be state
formulas.

▪ ⊨ is inductively defined via the structure of the formula.

State formulas:

▪ 𝑴, 𝒔 ⊨ 𝒑 𝒑 𝑳(𝒔) for 𝒑 𝑨𝑷

▪ 𝑴, 𝒔 ⊨ E 𝒈𝟏 there is a path from 𝒔 s.t. M, ⊨ 𝒈𝟏

▪ 𝑴, 𝒔 ⊨ A 𝒈𝟏 for every path from 𝒔 s.t. M, ⊨ 𝒈𝟏

▪ Boolean combination (, ,) – the usual semantics

Let 𝒈𝟏 and 𝒈𝟐 be path formulas and 𝒇𝟏 and 𝒇𝟐 be state

formulas.

Path formulas:

▪ 𝑴, 𝝅 ⊨ 𝒇𝟏 𝒔 is the first state of 𝝅 and 𝑴, 𝒔 ⊨ 𝒇𝟏

▪ M, ⊨ X 𝒈𝟏 M, 𝝅𝟏 ⊨ 𝒈𝟏

▪ M, ⊨ G 𝒈𝟏 for every 𝑖 0, M, 𝝅𝒊 ⊨ 𝒈𝟏

▪ M, ⊨ F𝒈𝟏 there exists 𝑘 0, M, 𝝅𝒌 ⊨ 𝒈𝟏

▪ M, ⊨ 𝒈𝟏 U 𝒈𝟐 there exists 𝑘 0, M, 𝝅𝒌 ⊨ 𝒈𝟐

and for every 0 𝑗 < 𝑘, M, 𝝅𝒋 ⊨ 𝒈𝟏

Semantics of CTL*27

M ⊨ 𝒇𝟏 for all initial states s0 S0: 𝑀, 𝑠0 ⊨ 𝒇𝟏

28 Properties of CTL*

The operators , , X, U, E are sufficient to express

any CTL* formula:

▪ 𝑓1 𝑓2 (𝑓1 𝑓2)

▪ 𝑭 𝑔1 𝑡𝑟𝑢𝑒 𝑼 𝑔1

▪ 𝑮 𝑔1 𝑭 𝑔1

▪ 𝑨 𝑓 𝑬 𝑓

▪ 𝑔1 𝑹 𝑔2 (𝑔1 𝑼 𝑔2) or

𝑔1 𝑹 𝑔2 𝑔2 𝑼 𝑔1 ∧ 𝑔2 ∨ 𝐺 𝑔2

▪ Intuitively, once g1 becomes true, it “releases” g2.

If g1 never becomes true then g2 stays true forever

▪ Rewrite it using the operators U, F, G, or X

29 Negation Normal Form (NNF)

▪ Formulas in Negation Normal Form (NNF) are formulas in

which negations are applied only to atomic propositions

▪ Every CTL* formula is equivalent to a CTL* formula in NNF

▪ Negations can be “pushed” inwards.

▪ E f A f

 G f F f

 X f X f

 (f U g) (f R g)

Example 1: Semantics of CTL*30

▪ Does M ⊨ EX 𝑝 or M ⊨ ¬EX 𝑝 ?

s0 s1

p ¬ p

M ⊨ 𝒇𝟏 for all initial states s0 S0: 𝑀, 𝑠0 ⊨ 𝒇𝟏

Example 1: Semantics of CTL*31

▪ Does M ⊨ EX 𝑝 or M ⊨ ¬EX 𝑝 ?

s0 s1

p ¬ p

M ⊨ 𝒇𝟏 for all initial states s0 S0: 𝑀, 𝑠0 ⊨ 𝒇𝟏

Solution:

M ⊨ EX 𝑝

Example 2: Semantics of CTL*32

▪ Does M ⊨ EX 𝑝 or M ⊨ ¬EX 𝑝 ?

M ⊨ 𝒇𝟏 for all initial states s0 S0: 𝑀, 𝑠0 ⊨ 𝒇𝟏

s0 s1

p ¬ p

Example 2: Semantics of CTL*33

▪ Does M ⊨ EX 𝑝 or M ⊨ ¬EX 𝑝 ?

M ⊨ 𝒇𝟏 for all initial states s0 S0: 𝑀, 𝑠0 ⊨ 𝒇𝟏

s0 s1

p ¬ p

Neither
Note, such a situation never

happens when 𝑀 has

a single initial state.

34

Question:

▪ Given a, b AP

How does a path satisfying F(a U b) look like?

F (a U b)

Example 3: Semantics of CTL*

35

Question:

For p AP, what is the meaning of the following

formulas?

▪ ⊨ GF p

▪ ⊨ FG p

Infinitely often p along

Finitely often ¬p along

Example 4: Semantics of CTL*

36

Question:

For p AP, what are the meaning of the following

formulas?

▪ s ⊨ EGF p

▪ s ⊨ EG EF p

There exists a path with satisfies infinitely often p

There exists a path in which we can
reach p from all states

Example 5: Semantics of CTL*

Plan for Today37

▪ Motivating Example

▪ CTL*

▪ Informal Explanation of Syntax and Semantics

▪ Syntax

▪ Semantics

▪ Sublogics: CTL, LTL

38 Useful sublogics of CTL*

▪ CTL and LTL are the two most used sub-logics of CTL*

▪ Differ on how temporal operators and path quantifiers can be

combined.

▪ CTL* allows any combination of temporal operators and path

quantifiers. It includes both LTL and CTL.

39 Linear Temporal Logic (LTL)

LTL consists of state formulas of the form

A 𝑔, where 𝑔 is a path formula, containing no path quantifiers.

▪ Describes the paths in the computation tree, using only one,

outermost universal quantification.

▪ Typically when writing formulas in LTL, the path quantifier is

omitted.

▪ Examples:

▪ 𝐺𝐹 𝜑

▪ 𝐺 𝜑 → 𝐹 𝜓

▪ 𝐺 𝜑 → 𝑋𝑋𝑋 𝜓

▪ …

40 LTL - Syntax

LTL is the set of all state formulas.

State formulas:

▪ A𝑔 where 𝑔 is a path formula

Path formulas:

▪ 𝑝 𝐴𝑃

▪ 𝑔1, 𝑔1𝑔2, 𝑔1𝑔2, 𝑿𝑔1, 𝑮𝑔1, 𝑭𝑔1, 𝑔1𝑼𝑔2, 𝑔1𝑹𝑔2

where 𝑔1 and 𝑔2 are path formulas.

41 Computation Tree Logic (CTL)

CTL consists of state formulas, where path quantifiers and temporal

operators appear in pairs: AG, AU, AX, AF, AR, EG, EU, EX, EF, ER

▪ Examples:

▪ 𝐸(𝜑𝑈𝜓)

▪ 𝐸𝐹 𝜑 ∧ 𝐸𝐺𝜓

▪ 𝐴𝐹 𝐴𝐺 𝜑 …

42 CTL - Syntax

CTL is the set of all state formulas, defined below

(by means of state formulas only):
▪ 𝑝 𝐴𝑃

▪ 𝑓1, 𝑓1𝑓2, 𝑓1𝑓2

▪ 𝑨𝑿 𝑓1, 𝑨𝑮 𝑓1, 𝑨𝑭 𝑓1, 𝑨 (𝑓1 𝑼 𝑓2), 𝑨 (𝑓1 𝑹 𝑓2)

▪ 𝑬𝑿 𝑓1, 𝑬𝑮 𝑓1, 𝑬𝑭 𝑓1, 𝑬 𝑓1 𝑼 𝑓2 , 𝑬 (𝑓1 𝑹 𝑓2)

where 𝑓1 and 𝑓2 are state formulas

43 LTL/CTL/CTL*

▪ Linear Temporal Logic (LTL) consists of state formulas of the

form A𝑔, where 𝑔 is a path formula, containing no path quantifiers.

▪ CTL consists of state formulas, where path quantifiers and

temporal operators appear in pairs: AG, AU, AX, AF, AR, EG, EU,

EX, EF, ER

44

