

Graz University of Technology Institute for Applied Information Processing and Communications

Temporal Logic

Model Checking SS24 Bettina Könighofer bettina.koenighofer@iaik.tugraz.at

22nd April 2024

Temporal Logic

- Used to specify the dyamic behavior of systems.
- E.g., A temporal logic formula can express that...
 - ...a property has to hold in the next time step.
 - ...a property has to hold always.
 - ...a property has to hold eventually.
 - ...

ΙΙΑΙΚ

- MC Question
 - Does the model of the system satisfy a temporal logic formula?
- System model
 - Kripke structure (today)
 - I/O Automaton
 - Markov Decision Process / Stochastic Multiplayer Game,

Plans for the Next 4 Weeks

- Topic: Model Checking of Temporal Logic Formulas
- 1. Intro to Temporal Logics: CTL*, LTL, CTL
- 2. CTL Model Checking Part 1
- **3.** CTL Model Checking Part 2
- 4. LTL Model Checking

ΙΔΙΚ

3

 Next: Model Checking of Probabilistic Systems (Stefan's Part)

Plan for Today

- Motivating Example
 - CTL*

ΠΑΙΚ

- Informal Explanation of Syntax and Semantics
- Syntax
- Semantics
- Sublogics: CTL, LTL

Model sentences in propositional logic.

• "If a sentence as a truth value, then it is a declarative sentence."

• "A model is an assignment that makes a formula either true or false."

Warm Up

Model sentences in propositional logic.

• "If a sentence as a truth value, it is a declarative sentence."

 $p\ldots$ sentence has a truth value, q… sentence is a declarative sentence $p \rightarrow q$

• "A model is an assignment that makes a formula either true or that makes the formula false."

p... assignment that makes the formula true, q... assignment that makes the formula false $p \oplus q$

Properties of Kripke Structures

Properties

- For any execution, it is always the case that if the robot visits A, it visits C within the next two steps.
- There exists an execution, in which the robot always visits C within the next two steps after visiting A.

Write properties as formulas:

For detailed modelling, we need...

- temporal operators, and
- path quantifiers!

Propositional Temporal Logic AP – a set of atomic propositions, $p, q \in AP$ Temporal operators

- Describe properties along a given path/execution
- 3 operators to start with:

Path quantifiers: A for all paths E there exists a path

В

- For any execution it holds that the robot *never* visits X.
- There exists an execution in which it holds that the robot never visits X.

$$\begin{array}{c} A \ G \ (\neg x) \\ F \ G \ (\neg x) \end{array}$$

- it holds that the robot visits **A** *infinitely* often and **C** infinitely often.
- For any execution, it holds that the • robot visits A infinitely often, but **C** only *finitely often*.

 $A (GF a \wedge FG \neg c)$

Properties

For any execution, it holds that if the robot visits A *infinitely often*, it also visits C *finitely often*.

Write properties as formulas:

 $A (GF a \rightarrow FG \neg c)$

Plan for Today

- Motivating Example and Intuitive Explanation of Temporal Operators
 - CTL*

IIAIK

- Informal Explanation of Syntax and Semantics
- Syntax
- Semantics
- LTL
- CTL

Computation Tree Logic - CTL*

- Defines properties of Computation Trees of Kripke structures.
- Computation Tree
 - Shows all possible executions starting form initial state.
 - All branches of the tree are infinite.

Paths

- $\pi = s_0, s_1, \dots$ is an *infinite* **path** in *M* if
- s_0 is an initial state, and

LIAIK

16

a,b

С

b,c

• for all $i \ge 0$, $(s_i, s_{i+1}) \in R$

Propositional Temporal Logic

Path quantifiers: A, E

- A specifies that **all** paths starting from **s** have property φ .
- **E** specifies that **some** paths starting from **s** have property φ .
- Use combination of A and E to describe branching structure in tree.

ΙΙΑΙΚ

 \cap

 \bigcirc

 \bigcirc

ΙΙΑΙΚ **Propositional Temporal Logic** 18 Temporal operators: Describe properties that hold along an infinite path π Хр Gp Fp

p**R**q "p release q":

pRq requires that q holds along π up to and including the first state where p holds. However, p is not required to hold eventually.

Informal Semantics of State and Path Formulas

- Illustrate CTL* Semantics on Example
- Path Formulas:
 - On π_1 , *b* holds at every state. $\rightarrow \pi_1 \vDash Gb$
 - On π_2 , *b* does not hold at every state. $\rightarrow \pi_2 \not\models Gb$
- State Formulas:
 - There is a path from s_0 that satisfies $Gb \rightarrow s_0 \models EGb$
 - Not all paths from s_0 satisfy $Gb \rightarrow s_0 \neq AGb$

- Does s_0 satisfy the following formula? $s_0 \models EXX (a \land b)$
 - $s_0 \not\models \text{EXAX} (a \land b)$

Plan for Today

- Motivating Example
 - CTL*

IIAIK

- Informal Explanation of Syntax and Semantics
- Syntax
- Semantics
- Sublogics: CTL, LTL

Syntax of CTL*

Two types of formulas in the inductive definition

State formulas (true in a specific state)

ΙΔΙΚ

22

Path formulas (true along a specific path)

CTL* formulas are the set of all state formulas

Syntax of CTL*: State Formulas

Inductive definition of state formulas:

• If $p \in AP$, then p is a state formula.

ΙΔΙΚ

23

- If f_1 and f_2 are state formulas, so are $\neg f_1$, $f_1 \lor f_2$, and $f_1 \land f_2$.
- If g is a path formula, then **E**g, **A**g are state formulas.

Inductive definition of path formulas:

- If *f* is a state formula, then *f* is also a path formula.
- If g_1, g_2 are path formulas, then $\neg g_1, g_1 \lor g_2, g_1 \land g_2, Xg_1, Gg_1, Fg_1, g_1Ug_2, g_1Rg_2$ are path formulas.

CTL* is the set of all state formulas!

Plan for Today

- Motivating Example
 - CTL*

IIAIK

- Informal Explanation of Syntax and Semantics
- Syntax
- Semantics
- Sublogics: CTL, LTL

Semantics of CTL*

- Kripke Structure $M = (S, S_0, R, AP, L)$
 - $\pi = S_0, S_1, \dots$ is an infinite **path** in M
- π^{i} the **suffix** of π , starting at s_{i}
- For state formulas:

ΙΔΙΚ

- $M, s \models f$... the state formula f holds in state s of M
- For path formulas:
 - $M, \pi \models g$... the **path** formula g holds along π in M

Semantics of CTL*

- Let g₁ and g₂ be path formulas and f₁ and f₂ be state formulas.
- \models is inductively defined via the structure of the formula.

State formulas:

ΙΔΙΚ

- $M, s \models p \quad \Leftrightarrow p \in L(s) \text{ for } p \in AP$
- $M, s \models \mathsf{E} g_1 \Leftrightarrow \mathsf{there} \mathsf{ is a path } \pi \mathsf{ from } s \mathsf{ s.t. } M, \pi \models g_1$
- $M, s \models A g_1 \Leftrightarrow \text{ for every path } \pi \text{ from } s \text{ s.t. } M, \pi \models g_1$
- Boolean combination (\land, \lor, \neg) the usual semantics

Semantics of CTL*

Let g_1 and g_2 be path formulas and f_1 and f_2 be state formulas.

Path formulas:

ΙΔΙΚ

27

- $M, \pi \models f_1 \iff s$ is the first state of π and $M, s \models f_1$
- $M, \pi \vDash X g_1 \quad \Leftrightarrow M, \pi^1 \vDash g_1$
- $M, \pi \vDash \mathbf{G} \mathbf{g}_1 \quad \Leftrightarrow \text{ for every } i \ge 0, M, \pi^i \vDash \mathbf{g}_1$
- $M, \pi \vDash Fg_1 \qquad \Leftrightarrow$ there exists $k \ge 0, M, \pi^k \vDash g_1$
- $M, \pi \vDash g_1 \cup g_2 \Leftrightarrow$ there exists $k \ge 0, M, \pi^k \vDash g_2$ and for every $0 \le j < k, M, \pi^j \vDash g_1$

 $M \vDash f_1 \iff$ for all initial states $s_0 \in S_{0:}$ $M, s_0 \vDash f_1$

Properties of CTL*

The operators \vee , \neg , X, U, E are sufficient to express any CTL* formula:

- $f_1 \wedge f_2 \equiv \neg(\neg f_1 \vee \neg f_2)$
- $F g_1 \equiv true U g_1$
- $\boldsymbol{G} g_1 \equiv \neg \boldsymbol{F} \neg g_1$
- $\boldsymbol{A} f \equiv \neg \boldsymbol{E} \neg \boldsymbol{f}$
- $g_1 \mathbf{R} g_2 \equiv \neg(\neg g_1 \mathbf{U} \neg g_2)$ or $g_1 \mathbf{R} g_2 \equiv (g_2 \mathbf{U} (g_1 \land g_2)) \lor G g_2$
 - Intuitively, once g₁ becomes true, it "releases" g₂.
 If g₁ never becomes true then g₂ stays true forever
 - Rewrite it using the operators U, F, G, or X

28

ΙΙΑΙΚ

Negation Normal Form (NNF)

- Formulas in Negation Normal Form (NNF) are formulas in which negations are applied only to atomic propositions
- Every CTL* formula is equivalent to a CTL* formula in NNF
- Negations can be "pushed" inwards.

Example 1: Semantics of CTL*

 $M \models f_1 \iff$ for all initial states $s_0 \in S_{0:}$ $M, s_0 \models f_1$

• Does $M \models \mathsf{EX} p$ or $M \models \neg \mathsf{EX} p$?

Example 1: Semantics of CTL*

 $M \vDash f_1 \iff$ for all initial states $s_0 \in S_{0:}$ $M, s_0 \vDash f_1$

• Does $M \models \mathsf{EX} p$ or $M \models \neg \mathsf{EX} p$?

Example 2: Semantics of CTL*

 $M \models f_1 \iff$ for all initial states $s_0 \in S_{0:}$ $M, s_0 \models f_1$

• Does $M \models \mathsf{EX} p$ or $M \models \neg \mathsf{EX} p$?

33

Example 2: Semantics of CTL*

 $M \vDash f_1 \iff$ for all initial states $s_0 \in S_{0:}$ $M, s_0 \vDash f_1$

• Does $M \models \mathsf{EX} p$ or $M \models \neg \mathsf{EX} p$?

Neither

Note, such a situation never happens when *M* has a single initial state.

Example 3: Semantics of CTL*

Question:

Given a, b ∈ AP
 How does a path satisfying F(a U b) look like?

Example 4: Semantics of CTL*

Question:

For $p \in AP$, what is the meaning of the following formulas?

- Infinitely often p along π ■ π ⊨ **GF** p
- $\pi \models \mathbf{FG} p$ Finitely often $\neg p$ along π

Example 5: Semantics of CTL*

Question:

For $p \in AP$, what are the meaning of the following formulas?

- $S \models EGF p$ There exists a path with satisfies infinitely often p
- S = EGEF p There exists a path in which we can reach p from all states

Plan for Today

- Motivating Example
 - CTL*

IIAIK

- Informal Explanation of Syntax and Semantics
- Syntax
- Semantics
- Sublogics: CTL, LTL

Useful sublogics of CTL*

CTL and LTL are the two most used sub-logics of CTL*

ΙΙΑΙΚ

- Differ on how temporal operators and path quantifiers can be combined.
- CTL* allows any combination of temporal operators and path quantifiers. It includes both LTL and CTL.

39

Linear Temporal Logic (LTL)

LTL consists of state formulas of the form **A** g, where g is a path formula, containing **no** path **quantifiers**.

- Describes the paths in the computation tree, using only one, outermost universal quantification.
- Typically when writing formulas in LTL, the path quantifier is omitted.
- Examples:
 - *GF* φ
 - $G(\varphi \to F \psi)$
 - $G(\varphi \to XXX \psi)$
 - ...

LTL - Syntax

LTL is the set of all state formulas.

State formulas:

• Ag where g is a path formula

Path formulas:

- *p AP*
- $\neg g_1, g_1 \lor g_2, g_1 \land g_2, Xg_1, Gg_1, Fg_1, g_1Ug_2, g_1Rg_2$ where g_1 and g_2 are path formulas.

41

Computation Tree Logic (CTL)

CTL consists of state formulas, where path quantifiers and temporal operators appear in pairs: AG, AU, AX, AF, AR, EG, EU, EX, EF, ER

- Examples:
 - E(φUψ)
 - $EF(\varphi) \wedge EG\psi$
 - AF AG φ ...

CTL - Syntax

CTL is the set of all state formulas, defined below (by means of state formulas only):

• *p AP*

ΙΔΙΚ

- $\neg f_1, f_1 \lor f_2, f_1 \land f_2$
- $AX f_1, AG f_1, AF f_1, A (f_1 U f_2), A (f_1 R f_2)$
- **EX** f_1 , **EG** f_1 , **EF** f_1 , **E** $(f_1 U f_2)$, **E** $(f_1 R f_2)$ where f_1 and f_2 are state formulas

LTL/CTL/CTL*

ΙΙΑΙΚ

- Linear Temporal Logic (LTL) consists of state formulas of the form Ag, where g is a path formula, containing no path quantifiers.
- CTL consists of state formulas, where path quantifiers and temporal operators appear in pairs: AG, AU, AX, AF, AR, EG, EU, EX, EF, ER

Secure & Correct Systems

