Logic and Computability
 Lecture 2

SAT Solving

Bettina Könighofer

bettina.koenighofer@iaik.tugraz.at

Stefan Pranger
stefan.pranger@iaik.tugraz.at

3. TAKE THE CABBAGE ACROSS.

SAT Problem

- Decide whether a formula φ is satisfiable
- φ is SAT iff there exists a model \mathcal{M} such that $\mathcal{M} \vDash \varphi$

All possible Models

Models satisfying

formula

- One Model
- All Models

SAT-Solver

Motivation - SAT Solving

- Applications
- HW and SW Verification
- Bounded Model Checking
- Hardware Equivalence Checking
- Circuit Synthesis
- Planning (e.g., air-traffic control, telegraph routing)
- Scheduling (sport tournaments)
- Finite mathematics
- Cryptanalysis
- ...

SAT Problem

- Decide whether a formula φ is satisfiable
- φ is SAT iff there exists a model \mathcal{M} such that $\mathcal{M} \vDash \varphi$
- The SAT problem is NP complete
- $P \neq N P \Rightarrow$ worst-case exponential
- Problem: Formulas are huge!
- Automated Tools: "SAT Solver"
- Highly efficient for many practical problem instances

Motivation - SAT Encoding

- Automatically generated from problem specifications

$$
\begin{aligned}
& \text {-9 } 130 \\
& \text {-9-120 } \\
& \text {-9 } 110 \\
& \text {-9 } 100 \\
& -9-160 \\
& -17230 \\
& -17220
\end{aligned}
$$

10 Pages Later

- Automatically generated from problem specifications

```
185-90
185-10
177169161153145137129121113 105 97
89817365574941
33251791-1850
186-1870
186-1880
    ...
    i.e., ( }\mp@subsup{\textrm{x}}{177}{}\mathrm{ or }\mp@subsup{\textrm{x}}{169}{}\mathrm{ or }\mp@subsup{\textrm{x}}{161}{}\mathrm{ or }\mp@subsup{\textrm{x}}{153}{}
    x ( or }\mp@subsup{x}{25}{}\mathrm{ or }\mp@subsup{x}{17}{}\mathrm{ or }\mp@subsup{x}{9}{}\mathrm{ or }\mp@subsup{x}{1}{}\mathrm{ or (not }\mp@subsup{x}{185}{\prime})
```

Note x_{1}

4.000 Pages Later

- Automatically generated from problem specifications

10236-10050 0
10236-10051 0
10236-10235 0
10008100091001010011100121001310014 10015100161001710018100191002010021 10022100231002410025100261002710028 10029100301003110032100331003410035 10036100371008610087100881008910090 10091100921009310094100951009610097 10098100991010010101101021010310104 $10105101061010710108-55-5453-52-5150$ $100471004810049100501005110235-102360$
10237-10008 0
10237-10009 0
10237-10010 0

Finally, 15.000 Pages Later

$$
\begin{aligned}
& -72600 \\
& 7-2600 \\
& 107210700 \\
& -15-14-13-12-11-100 \\
& -15-14-13-12-11100 \\
& -15-14-13-1211-100 \\
& -15-14-13-1211100 \\
& -7-6-5-4-3-20 \\
& -7-6-5-4-320 \\
& -7-6-5-43-20 \\
& -7-6-5-4320 \\
& 1850
\end{aligned}
$$

- Search space of truth assignments:
- $2^{50000} \approx 3.1607 * 10^{15051}$
- How long to solve it?
- Modern SAT solver needs just a few seconds!

Outline

- DPLL Algorithm
- Boolean Constrain Propagation
- Pure Literals

- Conflict-Driven Clause Learning

DPLL Algorithm

- Introduced by Martin Davis, Hilary Putnam, Donald Loveland and George Logemann in 1962
[D] M. Davis, G. Logemann, and D. Loveland.
"A machine program for theorem-proving". Communications of the ACM, 5:394-397, 1962
- Algorithm still forms the basis for most modern SAT solvers

DPLL Algorithm

- Introduced by Martin Davis, Hilary Putnam, Donald Loveland and George Logemann in 1962
[]] M. Davis, G. Logemann, and D. Loveland.
"A machine program for theorem-proving". Communications of the ACM, 5:394-397, 1962
- Algorithm still forms basis for most modern SAT solvers
- Input:
- Formula in Conjunctive Normal Form (CNF)

Conjunctive Normal Form

Conjunctive Normal Form

- Literal: propositional variable or its negation
- Example: $p, \neg q$

Conjunctive Normal Form

- Literal: propositional variable or its negation
- Example: $p, \neg q$
- Clause: disjunction of literals
- Example: $(p \vee \neg q \vee r)$

Conjunctive Normal Form

- Literal: propositional variable or its negation
- Example: $p, \neg q$
- Clause: disjunction of literals
- Example: $(p \vee \neg q \vee r)$
- Conjunctive Normal Form (CNF)
- Conjunction of clauses:

$$
\left(a_{1} \vee a_{2} \vee \cdots \vee a_{n}\right) \wedge\left(b_{1} \vee \cdots \vee b_{m}\right) \wedge \cdots
$$

where each a_{i}, b_{j} is a literal

Conjunctive Normal Form

- Literal: propositional variable or its negation
- Example: $p, \neg q$
- Clause: disjunction of literals
- Example: $(p \vee \neg q \vee r)$
- Conjunctive Normal Form (CNF)
- Conjunction of clauses:

$$
\left(a_{1} \vee a_{2} \vee \cdots \vee a_{n}\right) \wedge\left(b_{1} \vee \cdots \vee b_{m}\right) \wedge \cdots
$$

where each a_{i}, b_{j} is a literal

- Examples: $\varphi=\underline{a} \wedge(b \vee \neg c) \wedge(\neg a \vee \neg b \vee c)$

$$
\varphi=\neg a
$$

Notation

- Today: φ is a formula in CNF
$-\quad \varphi=(b \vee \neg c) \wedge(\neg a \vee \neg b \vee c)$

Today: φ is a formula in CNF

- $\quad \varphi=(b \vee \neg c) \wedge(\neg a \vee \neg b \vee c)$

$$
x-2 x+
$$

(

$$
)
$$

\square

1

—
K

2
都 \square

\square \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\square

Notation

- Today: φ is a formula in CNF
- $\varphi=(b \vee \neg c) \wedge(\neg a \vee \neg b \vee c)$
- \mathbf{A} is an assignment of truth values to variables
- $A=\{a \rightarrow$ true, $b \rightarrow$ false,$c \rightarrow$ false $\}$
- Total or partial assignment

Notation

- Today: φ is a formula in CNF
- $\varphi=(\underset{\perp}{(b \vee \neg c) \wedge(\neg a \vee \neg b \vee c)}$
- \mathbf{A} is an assignment of truth values to variables
- $A=\{a \rightarrow$ true, $b \rightarrow$ false, $c \rightarrow$ false $\}$
- Total or partial Assignment
- $\varphi[A]: \varphi$ with all variables set according to A
- $\varphi[A]=(\perp \vee \neg \perp) \wedge(\neg T \vee \neg \perp \vee \perp)=T \wedge(\perp \vee T \vee \perp)=T$

Basis Idea - Backtracking Binary Search

- Recursively search for a satisfying model/assignment
- Search for A such that $\varphi[A]=\top$

Basis Idea - Backtracking Binary Search

- Recursively search for a satisfying model/assignment
- Search for A such that $\varphi[A]=\top$
- No such A exists
- φ is unsatisfiable

Basis Idea - Backtracking Binary Search

- Recursively search for a satisfying model/assignment
- Search for A such that $\varphi[A]=\top$
- No such A exists
- φ is unsatisfiable
- Several optimizations to prune search tree.

Basis Idea - Backtracking Binary Search

```
# sat (\varphi, {}) = True iff \varphi is satisfiable
# sat ( }\varphi,A)= True iff \varphi[A] is satisfiabl
procedure sat(\varphi, A):
    if }\varphi[A]=\perp
        return False
    if }\varphi[A]=T: # \varphi is SAT, A is satisfying assignment
        return True
    # There are some unassigned variables left
    # Assign next variable
    l = pick unassigned variable
    if sat( }\varphi,A\cup{l=\top}
        return True
    if sat ( }\varphi,A\cup{l=\perp}
        return True
    return False
```


Basis Idea－Backtracking Binary Search

```
```


sat (\varphi, {}) = True iff }\varphi\mathrm{ is satisfiable

```
```


sat (\varphi, {}) = True iff }\varphi\mathrm{ is satisfiable

sat (\varphi, A) = True iff }\varphi[A] is satisfiabl

sat (\varphi, A) = True iff }\varphi[A] is satisfiabl

procedure sat (},A)\mathrm{ :
procedure sat (},A)\mathrm{ :
if }\varphi[A]=\perp
if }\varphi[A]=\perp
return False
return False
if }\varphi[A]=丁: \# \varphi is SAT, A is satisfying assignmen
if }\varphi[A]=丁: \# \varphi is SAT, A is satisfying assignmen
return True
return True
\# There are some unassigned variables left
\# There are some unassigned variables left
\# Assign next variable
\# Assign next variable
l = pick unassigned variable
l = pick unassigned variable
if sat (\varphi, A\cup{l=丁})
if sat (\varphi, A\cup{l=丁})
return True
return True
if sat (}\varphi,A\cup{l=\perp}
if sat (}\varphi,A\cup{l=\perp}
return True
return True
return False

```
```

 return False
    ```
```


Decision Level：

－Decision＝algorithm assigns truth value to a variable
－Decision level＝number of currently made decisions

Decision Level 0

Decision Level 1

Decision Level 2

Basis Idea - Backtracking Binary Search

```
# sat ( }\varphi,{})= True iff \varphi is satisfiabl
# sat(\varphi, A) = True iff \varphi[A] is satisfiable
procedure sat(\varphi, A):
    if }\varphi[A]=\perp
        return False
    if }\varphi[A]=T: # \varphi is SAT, A is satisfying assignmen
        return True
    # There are some unassigned variables left
    # Assign next variable
    l = pick unassigned variable
    if sat( }\varphi,A\cup{l=\top}
        return True
    if sat( }\varphi,A\cup{l=\perp}
        return True
    return False
```


Decision heuristic

- Heuristic to decide which variable should be assigned next
- Huge impact on solving time
E.g.: Dynamic Largest Individual Sum
- pick the variable and truth value, such that the most unresolved clauses become satisfied.

We will use a predefined order.

- E.g., lexicographical order, positive phase first

Tabular Execution of the Basic Search

$$
\varphi:=(\neg a \vee b) \wedge(\neg b \vee c) \wedge(\neg c \vee \neg a)
$$

Decision heuristic: alphabetical order starting with the positive phase

| Iteration | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dec. Level | 0 | | | | | | | | |
| Assignment | $\}$ | | | | | | | | |
| CL1: $\{\neg a, b\}$ | $\sim a, b\}$ | | | | | | | | |
| $\mathrm{CL2}:\{\neg \mathrm{b}, c\}$ | $\neg b, c\}$ | | | | | | | | |
| $\mathrm{CL3}:\{\neg \mathrm{c}, \neg a\}$ | $\neg c, \neg Q)$ | | | | | | | | |
| Decision | Q | | | | | | | | |

Tabular Execution of the Basic Search

$$
\varphi:=(\neg a \vee b) \wedge(\neg b \vee c) \wedge(\neg c \vee \neg a)
$$

Decision heuristic: alphabetical order starting with the positive phase
Evaluate clauses under current A :

| Iteration | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dec. Level | 0 | 1 | 2 | 3 | | | | | |
| Assignment | $\}$ | a | a, b | a, b, c | | | | | |
| $\mathrm{CL} 1:\{\neg a, b\}$ | $\langle a, b\}$ | b | | | | | | | |
| $\mathrm{CL} 2:\{\neg \mathrm{b}, c\}$ | $\neg b, c\}$ | $\neg b, c$ | c | | | | | | |
| $\mathrm{CL} 3:\{\neg \mathrm{c}, \neg a\}$ | $\{\neg c, \neg a\}$ | $\neg c$ | $\neg c$ | $\} X$ | | | | | |
| Decision | a | b | c | | | | | | |

- Satisfied Clause:
- At least on of its literals is satisfied under A
- Marked with \boldsymbol{V}
- Conflicting clauses:
- all of its literals are not satisfied under A
- Marked with $\} \boldsymbol{X}$
- Unresolved clauses:
- Otherwise

Tabular Execution of the Basic Search

$$
\varphi:=(\neg a \vee b) \wedge(\neg b \vee c) \wedge(\neg c \vee \neg a)
$$

Decision heuristic: alphabetical order starting with the positive phase

| Step | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dec. Level | 0 | 1 | 2 | 3 | 3 | 2 | 1 | 2 | 3 |
| Assignment | $\}$ | a | $a, \mathrm{~b}$ | $a, \mathrm{~b}, \mathrm{c}$ | $a b \neg c$ | $\checkmark \neg b$ | $\neg Q$ | $\neg a b$ | $\neg a b c$ |
| $\mathrm{CL} 1:\{\neg a, b\}$ | $\neg a, b$ | b | \checkmark | \checkmark | | $\alpha\}$ | | | \checkmark |
| $\mathrm{CL2}:\{\neg \mathrm{b}, c\}$ | $\neg \mathrm{b}, c$ | $\neg \mathrm{~b}, c$ | c | \checkmark | $\alpha\}$ | \neg | $\neg b, c$ | C | \checkmark |
| $\mathrm{CL}:\{\neg \mathrm{c}, \neg a\}$ | $\neg \mathrm{c}, \neg a$ | $\neg \mathrm{c}$ | $\neg \mathrm{c}$ | $\} \mathrm{X}$ | \checkmark | $\neg \mathrm{C}$ | \checkmark | | \checkmark |
| Decision | a | b | c | $\neg \mathrm{c}$ | $\neg b$ | $\neg \mathrm{Q}$ | b | C | $S A T$ |

Found a conflicting clause: $\}$

- All of its literals are not satisfied under A
- Backtrack
- Remove last decision
- Reduce Decision

Decision Level 0

Tabular Execution of the Basic Search

$$
\varphi:=(\neg a \vee b) \wedge(\neg b \vee c) \wedge(\neg c \vee \neg a)
$$

Decision heuristic: alphabetical order starting with the positive phase

| Step | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dec. Level | 0 | 1 | 2 | 3 | 3 | 2 | 1 | 2 | 3 |
| Assignment | $\}$ | a | $a, \mathrm{~b}$ | $a, \mathrm{~b}, \mathrm{c}$ | $a, \mathrm{~b}, \neg \mathrm{c}$ | $a, \neg \mathrm{~b}$ | $\neg \mathrm{a}$ | $\neg \mathrm{a}, \mathrm{b}$ | $\neg \mathrm{a}, \mathrm{b}, \mathrm{c}$ |
| | | | | | | | | | |
| $\mathrm{CL1}:\{\neg a, b\}$ | $\neg a, b$ | b | \checkmark | \checkmark | \checkmark | $\} \mathrm{X}$ | \checkmark | \checkmark | \checkmark |
| $\mathrm{CL2}:\{\neg \mathrm{b}, c\}$ | $\neg \mathrm{b}, c$ | $\neg \mathrm{~b}, c$ | c | \checkmark | $\} \mathrm{X}$ | \checkmark | $\neg \mathrm{b}, c$ | c | \checkmark |
| $\mathrm{CL3:}\{\neg \mathrm{c}, \neg a\}$ | $\neg \mathrm{c}, \neg a$ | $\neg \mathrm{c}$ | $\neg \mathrm{c}$ | $\} \mathrm{X}$ | \checkmark | $\neg \mathrm{c}$ | \checkmark | \checkmark | \checkmark |
| Decision | a | b | c | $\neg \mathrm{c}$ | $\neg \mathrm{b}$ | $\neg \mathrm{a}$ | b | c | SAT |

All clauses are satisfied $\boldsymbol{\checkmark}$

- Report SAT and

A as satisfying assignment

Decision Level 0

Decision Level 1

Decision Level 2

Boolean Constrain Propagation (BCP)

- Unit clause:
- a clause with a single unassigned literal
- Examples:
- (a)
- (\neg b)
- Unit Clause exists $\boldsymbol{\rightarrow}$ set its literal
- Very simple but very important heuristic!

DPLL + BCP Example

- $\varphi:=(\neg a \vee b) \wedge(\neg b \vee c) \wedge(\neg c \vee \neg a)$

| Step | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dec. Level | 0 | 1 | 1 | 1 | 1 | 2 | 2 | | |
| Assignment | - | a | a, b | a,b,c | 70 | $2, b$ | ح,$l_{1, c}$ | | |
| CL1: $\{\neg a, b\}$ | Ra, b | (b) | \checkmark | \checkmark | \checkmark | \checkmark | \checkmark | | |
| CL2: $\{\neg \mathrm{b}, \mathrm{c}\}$ | , b, c | Tb,c | C | \checkmark | ᄀb, c | (C) | \checkmark | | |
| CL3: $\{\neg \mathrm{C}, \neg a\}$ | ว c, $7 a$ | (ac) | $\bigcirc C$ | d\} | \checkmark | \checkmark | \checkmark | | |
| BCP | | b | C | | | C | | | |
| Decision | a | | | $\neg Q$ | b | | SAT | | |

DPLL + BCP Example

- $\varphi:=(\neg a \vee b) \wedge(\neg b \vee c) \wedge(\neg c \vee \neg a)$

| Step | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Decision Level | 0 | 1 | 1 | 1 | 1 | 2 | 2 |
| Assignment | - | a | a, b | a, b, c | $\neg a$ | $\neg a, b$ | $\neg a, b, c$ |
| Cl. 1: $\neg a, b$ | $\neg a, b$ | b | \checkmark | \checkmark | \checkmark | \checkmark | \checkmark |
| Cl. 2: $\neg b, c$ | $\neg b, c$ | $\neg b, c$ | c | \checkmark | $\neg b, c$ | c | \checkmark |
| Cl. 3: $\neg c, \neg a$ | 3 | $\neg c$ | $\neg c$ | $\} \boldsymbol{X}$ | \checkmark | \checkmark | \checkmark |
| BCP | - | b | c | - | - | c | - |
| Decision | a | - | - | $\neg a$ | b | - | SAT |

Pure Literals

- Pure Literal:
- Unassigned literal
- Complement does not occur in any unsatisfied clause
- Pure literals \rightarrow set to TRUE

DPLL + BCP + Pure Literal Example
 - $\varphi:=(\neg a \vee b) \wedge(\neg b \vee c) \wedge(\neg c \vee \neg a)$

| Step | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dec. Level | 0 | 0 | 0 | | | | | | |
| Assignment | αS | $2 Q$ | rerb | | | | | | |
| CL1: $\{\neg a, b\}$ | 2a,b | \checkmark | \checkmark | | | | | | |
| CL2: $\{\neg \mathrm{b}, \mathrm{c}\}$ | $2 b, c$ | >b,c | \checkmark | | | | | | |
| $\mathrm{CL3}$: $\{\neg \mathrm{C}, \neg a\}$ | $\neg C, 7 Q$ | \checkmark | \checkmark | | | | | | |
| BCP | | | | | | | | | |
| Pure Literal | $\neg Q$ | $\neg b$ | | | | | | | |
| Decision | | | SAT | | | | | | |

DPLL+BCP+Pure Literals Example

- $\varphi:=(\neg a \vee b) \wedge(\neg b \vee c) \wedge(\neg c \vee \neg a)$

| Step | 1 | 2 | 3 |
| :--- | :---: | :---: | :---: |
| Decision Level | 0 | 0 | 0 |
| Assignment | - | $\neg a$ | $\neg a, \neg b$ |
| Cl. 1: $\neg a, b$ | $\neg a, b$ | \checkmark | \checkmark |
| Cl. 2: $\neg b, c$ | $\neg b, c$ | $\neg b, c$ | \checkmark |
| Cl. 3: $\neg c, \neg a$ | $\neg c, \neg a$ | \checkmark | \checkmark |
| BCP | - | - | - |
| PL | $\neg a$ | $\neg b$ | - |
| Decision | - | - | SAT |

Clause
五

Clause Learning

1. $(a \vee \neg c)$
2. $(b \vee \neg c)$
3. $(\neg a \vee \neg b \vee c)$
4. $(\neg a \vee \neg b)$
5. $(\neg a \vee b)$
6. $(a \vee \neg b)$
7. $(a \vee b)$

$$
\begin{array}{ll}
\text { 1. } & (a \vee \neg c) \downarrow \\
\text { 2. } & (b \vee \neg c) \vee \\
\text { 3. } & (\neg a \vee \neg b \vee c) \\
\text { 4. } & (\neg a \vee \neg b) \\
\text { 5. } & (\neg a \vee b) \\
\text { 6. } & (a \vee \neg b) \\
\text { 7. } & (a \vee b)
\end{array}
$$

Clause Learning

Clause Learning

Clause Learning

1. $(a \vee \neg c)$
2. $(b \vee \neg c)$
3. $(\neg a \vee \neg b \vee c)$
4. $(\neg a \vee \neg b)$
5. $(\neg a \vee b)$
6. $\quad(a \vee \neg b)$
7. $(a \vee b)$

Problem is with "a":
\rightarrow No need to try c=TRUE!

Conflict Graph

- Draw conflict graph for every conflict
- Illustrates decisions involved in conflict

7. $(a \vee b)$

Conflict Graph

- Draw conflict graph for every conflict
- Illustrates decisions involved in conflict

| 1. | $(a \vee \neg c)$ |
| :--- | :--- |
| 2. | $(b \vee \neg c)$ |
| 3. | $(\neg a \vee \neg b \vee c)$ |
| 4. | $(\neg a \vee \neg b)$ |
| 5. | $(\neg a \vee b)$ |
| 6. | $(a \vee \neg b)$ |
| 7. | $(a \vee b)$ |

Conflict Graph

- Draw conflict graph for every conflict
- Illustrates decisions involved in conflict
- To avoid conflict: change at least one decision that was involved

1. $(a \vee \neg c)$
2. $(b \vee \neg c)$
3. $(\neg \mathbf{a} \vee \neg \boldsymbol{b} \vee c)$
4. $(\neg a \vee \neg b)$
5. $(\neg a \vee b)$
6. $\quad(a \vee \neg b)$

UNSAT
7. $(a \vee b)$

\Rightarrow Learn New Clause: (a)

Backtracking

| 1. | $(a \vee \neg c) \checkmark$ |
| :--- | :--- |
| 2. | $(b \vee \neg c)$ |
| 3. | $(\neg a \vee \neg b \vee c)$ |
| 4. | $(\neg a \vee \neg b)$ |
| 5. | $(\neg a \vee b)$ |
| 6. | $(a \vee \neg b) \checkmark$ |
| 7. | $(a \vee b) \checkmark$ |
| 8. | $a \vee$ |

No decision was necessary \Rightarrow We learn: UNSAT

| 1. | $(a \vee \neg c) \downarrow$ |
| :--- | :--- |
| 2. | $(b \vee \neg c)$ |
| 3. | $(\neg a \vee \neg b \vee c)$ |
| 4. | $(\neg a \vee \neg b)$ |
| 5. | $(\neg a \vee b)$ |
| 6. | $(a \vee \neg b) \downarrow$ |
| 7. | $(a \vee b) \downarrow$ |
| 8. | $a \vee$ |

No need to search here

No decision was necessary \Rightarrow We learn: UNSAT
－$\quad \varphi:=(a \vee \neg c) \wedge(b \vee \neg c) \wedge(\neg a \vee \neg b \vee c) \wedge(\neg d \wedge \neg b) \wedge(\neg a \vee b) \wedge(a \vee \neg b) \wedge(a \vee b)$
Order：$\neg c<c<\neg a<a<\neg b<b$

| Step－ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dec．Level | 0 | 1 | 2 | 2 | 0 | 0 | | | |
| Assignment | $\alpha \delta$ | $\rightarrow \mathrm{C}$ | フaフc | フa ${ }^{\text {a }}$ | a | $a>b$ | | | |
| CL1：$\{a, \neg c\}$ | 1 | \checkmark | \checkmark | \checkmark | \checkmark | \checkmark | | | |
| CL2：$\{b, \neg c\}$ | 2 | \checkmark | \checkmark | \checkmark | $b, 7 c$ | 7 C | | | |
| CL3：$\{\neg a, \neg b, c\}$ | 3 | 29,26 | \checkmark | \checkmark | $\rightarrow b, c$ | i | | | |
| CL4：$\{\neg a, \neg b\}$ | 4 | 4 | \checkmark | \checkmark | $\sim b$ | \checkmark | | | |
| CL5：$\{\neg a, b\}$ | 5 | 5 | \checkmark | \checkmark | b | 2\} | | | |
| CL6：$\{a, \neg b\}$ | 6 | 6 | $\neg b$ | \checkmark | \checkmark | \checkmark | | | |
| CL7：$\{a, b\}$ | 7 | 7 | b | $2\} \times$ | \checkmark | \checkmark | | | |
| LC：Q | | | | leancel a | | | | | |
| BCP | | | $\neg b$ | θ | 7 b | UNSAT | | | |
| Pure Literal | | | | | | | | | |
| Decision | 1 C | $7 Q$ | | | | | | | |

DPLL + BCP + PL + Learning

| Step | 1 | 2 | 3 | 4 | (1) | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Decision Level | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 0 |
| Assignment | - | $\neg c$ | $\neg a, \neg c$ | $\neg a, \neg b, \neg c$ | - | a | $a, \neg b$ | $a, \neg b, \neg c$ |
| Cl. 1: $a, \neg c$ | 1 | \checkmark | \checkmark | \checkmark | 1 | \checkmark | \checkmark | \checkmark |
| Cl. 2: $b, \neg c$ | 2 | \checkmark | \checkmark | \checkmark | 2 | 2 | $\neg c$ | \checkmark |
| Cl. 3: $\neg a, \neg b, c$ | 3 | $\neg a, \neg b$ | \checkmark | \checkmark | 3 | $\neg b, c$ | \checkmark | \checkmark |
| Cl. 4: $\neg a, \neg b$ | 4 | 4 | \checkmark | \checkmark | 4 | $\neg b$ | \checkmark | \checkmark |
| Cl. 5: $a, \neg b$ | 5 | 5 | $\neg b$ | \checkmark | 5 | \checkmark | \checkmark | \checkmark |
| Cl. 6: a, b | 6 | 6 | b | $\} \boldsymbol{X}$ | 6 | \checkmark | \checkmark | \checkmark |
| LC 1 | | | | learned a | 7 | \checkmark | \checkmark | \checkmark |
| BCP | - | - | $\neg b$ | - | a | $\neg b$ | $\neg c$ | - |
| PL | - | - | - | - | - | - | - | - |
| Decision | $\neg c$ | $\neg a$ | - | - | - | - | | SAT |

Backtrack Level

- Ongoing Research Problem
- In this course:
- \rightarrow earliest level where conflict clause is a unit clause
- New clause immediately be used
$\varphi:=(a \vee \neg c \vee \neg e) \wedge(\neg a \vee \neg e) \wedge(b \vee e) \wedge(\neg b \vee d \vee e) \wedge(\neg b \vee \neg d) \wedge(c \vee \neg d) \wedge(c \vee d)$ Decision heuristic: alphabetical order starting with the negative phase

| Step | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dec. Level | | | | | | | | | | | | | | | | |
| Assignment | | | | | | | | | | | | | | | | |
| 1: $\{a, \neg c, \neg e\}$ | | | | | | | | | | | | | | | | |
| $2:\{\neg a, \neg e\}$ | | | | | | | | | | | | | | | | |
| $3:\{b, e\}$ | | | | | | | | | | | | | | | | |
| $4:\{\neg b, d, e\}$ | | | | | | | | | | | | | | | | |
| 5: $\{\neg b, \neg d\}$ | | | | | | | | | | | | | | | | |
| 6: $\{c, \neg d\}$ | | | | | | | | | | | | | | | | |
| 7: $\{c, d\}$ | | | | | | | | | | | | | | | | |
| LC 1 | | | | | | | | | | | | | | | | |
| LC 2 | | | | | | | | | | | | | | | | |
| BCP | | | | | | | | | | | | | | | | |
| Pure Literal | | | | | | | | | | | | | | | | |
| Decision | | | | | | | | | | | | | | | | |

$\varphi:=(a \vee \neg c \vee \neg e) \wedge(\neg a \vee \neg e) \wedge(b \vee e) \wedge(\neg b \vee d \vee e) \wedge(\neg b \vee \neg d) \wedge(c \vee \neg d) \wedge(c \vee d)$ Decision heuristic: alphabetical order starting with the negative phase

| Step | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Decision Level | 0 | 1 | 2 | 2 | 2 | 2 |
| Assignment | - | $\neg a$ | $\neg a, \neg b$ | $\neg a, \neg b, e$ | $\begin{gathered} \neg a, \neg b, e, \\ \neg c \end{gathered}$ | $\begin{gathered} \neg a, \neg b, e, \\ \neg c, \neg d \end{gathered}$ |
| Cl. 1: $a, \neg c, \neg e$ | $a, \neg c, \neg e$ | $\neg c, \neg e$ | $\neg c, \neg e$ | $\neg C$ | \checkmark | \checkmark |
| Cl. 2: $\neg a, \neg e$ | $\neg a, \neg e$ | \checkmark | \checkmark | \checkmark | \checkmark | \checkmark |
| Cl. 3: b, e | b, e | b, e | e | \checkmark | \checkmark | \checkmark |
| Cl. 4: $\neg b, d, e$ | $\neg b, d, e$ | $\neg b, d, e$ | \checkmark | \checkmark | \checkmark | \checkmark |
| Cl. 5: $\neg b, \neg d$ | $\neg b, \neg d$ | $\neg b, \neg d$ | \checkmark | \checkmark | \checkmark | \checkmark |
| Cl. 6: $c, \neg d$ | $\neg d$ | \checkmark |
| Cl. 7: c, d | d | \{\} \boldsymbol{X} |
| BCP | - | - | e | $\neg C$ | $\neg d$ | - |
| PL | - | - | - | - | - | - |
| Decision | $\neg a$ | $\neg b$ | - | - | - | - |

Conflict in step 6

$\varphi:=(a \vee \neg c \vee \neg e) \wedge(\neg a \vee \neg e) \wedge(b \vee e) \wedge(\neg b \vee d \vee e) \wedge(\neg b \vee \neg d) \wedge(c \vee \neg d) \wedge(c \vee d)$ Decision heuristic: alphabetical order starting with the negative phase

| Step | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Decision Level | 1 | 1 | 1 | 1 | 1 |
| Assignment | $\neg a$ | $\neg a, b$ | $\neg a, b, \neg d$ | $\begin{gathered} \neg a, b, \neg d, \\ c \end{gathered}$ | $\begin{gathered} \neg a, b, \neg d, \\ c, \neg e \end{gathered}$ |
| Cl. 1: $a, \neg c, \neg e$ | $\neg e$ | \checkmark |
| Cl. 2: $\neg a, \neg e$ | \checkmark | \checkmark | \checkmark | \checkmark | \checkmark |
| Cl. 3: b, e | b, e | \checkmark | \checkmark | \checkmark | \checkmark |
| Cl. 4: $\neg b, d, e$ | $\neg b, d, e$ | d, e | e | e | \{\} \boldsymbol{X} |
| Cl. 5: $\neg b, \neg d$ | $\neg b, \neg d$ | $\neg d$ | \checkmark | \checkmark | \checkmark |
| Cl. 6: $c, \neg d$ | $c, \neg d$ | $c, \neg d$ | \checkmark | \checkmark | \checkmark |
| Cl. 7: c, d | c, d | c, d | c | \checkmark | \checkmark |
| Cl. 8: a, b | b | \checkmark | \checkmark | \checkmark | \checkmark |
| BCP | b | $\neg d$ | c | $\neg e$ | - |
| PL | - | - | - | - | - |
| Decision | - | - | - | - | - |

Conflict in step 11

$\varphi:=(a \vee \neg c \vee \neg e) \wedge(\neg a \vee \neg e) \wedge(b \vee e) \wedge(\neg b \vee d \vee e) \wedge(\neg b \vee \neg d) \wedge(c \vee \neg d) \wedge(c \vee d)$ Decision heuristic: alphabetical order starting with the negative phase

| Step | 12 | 13 | 14 | 15 | 16 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Decision Level | 0 | 0 | 0 | 0 | 0 |
| Assignment | - | a | $a, \neg e$ | $a, \neg e, b$ | $a, \neg e, b$,
 $\neg d$ |
| Cl. 1: $a, \neg c, \neg e$ | $a, \neg c, \neg e$ | \checkmark | \checkmark | \checkmark | \checkmark |
| Cl. 2: $\neg a, \neg e$ | $\neg a, \neg e$ | $\neg e$ | \checkmark | \checkmark | \checkmark |
| Cl. 3: b, e | b, e | b, e | b | \checkmark | \checkmark |
| Cl. 4: $\neg b, d, e$ | $\neg b, d, e$ | $\neg b, d, e$ | $\neg b, d$ | d | $\} \boldsymbol{X}$ |
| Cl. 5: $\neg b, \neg d$ | $\neg d$ | \checkmark |
| Cl. 6: $c, \neg d$ | \checkmark |
| Cl. 7: c, d | c |
| Cl. 8: a, b | a, b | \checkmark | \checkmark | \checkmark | \checkmark |
| Cl. 9: a | a | \checkmark | \checkmark | \checkmark | \checkmark |
| BCP | a | $\neg e$ | b | $\neg d$ | - |
| PL | - | - | - | - | - |
| Decision | - | - | - | - | UNSAT |
| Conflict in step 16 | | | | | |

DPLL + BCP + PL + Clause Learning

- Binary Search Tree
- Worst Case: Exponential Time
- Pruning
- Boolean Constraint Propagation (BCP)
- Pure Literals
- Learn Conflict Clauses

$\cdots \quad \sqrt{2}$

Proving Unsatisfiability

- Resolution Rule:
$\left.\frac{\left(a \vee b_{1} \vee \ldots \vee b_{n}\right) \quad\left(\neg a \vee c_{1} \vee \ldots \vee c_{m}\right)}{\left(b_{1} \vee \ldots \vee b_{n} \vee c_{1} \vee \ldots \vee c_{m}\right)}\right\}$
- Turn Conflict Graph Around
- Select clause that implies conflict
- Iteratively, resolve while backtraversing graph

${ }_{58}$ Resolution Proof

| Step | 1 | 2 | 3 |
| :--- | :---: | :---: | :---: |
| Decision Level | 0 | 1 | 1 |
| Assignment | - | $\neg a$ | $\neg a, \neg b$ |
| Cl. 1: a, b | a, b | b | $\} \boldsymbol{X}$ |
| Cl. 2: $\neg a, b$ | $\neg a, b$ | \checkmark | \checkmark |
| Cl. 3: $a, \neg b$ | $a, \neg b$ | $\neg b$ | \checkmark |
| Cl. 4: $\neg a, \neg b$ | $\neg a, \neg b$ | \checkmark | \checkmark |
| BCP | - | $\neg b$ | - |
| PL | - | - | - |
| Decision | $\neg a$ | - | - |

s9 Resolution Proof

| Step | 1 | 2 | 3 |
| :--- | :---: | :---: | :---: |
| Decision Level | 0 | 1 | 1 |
| Assignment | - | $\neg a$ | $\neg a, \neg b$ |
| Cl. 1: a, b | a, b | b | $\} \boldsymbol{X}$ |
| Cl. 2: $\neg a, b$ | $\neg a, b$ | \checkmark | \checkmark |
| Cl. 3: $a, \neg b$ | $a, \neg b$ | $\neg b$ | \checkmark |
| Cl. 4: $\neg a, \neg b$ | $\neg a, \neg b$ | \checkmark | \checkmark |
| BCP | - | $\neg b$ | - |
| PL | - | - | - |
| Decision | $\neg a$ | - | - |

Conflict in step 3

6о Resolution Proof

| Step | 1 | 2 | 3 |
| :--- | :---: | :---: | :---: |
| Decision Level | 0 | 1 | 1 |
| Assignment | - | $\neg a$ | $\neg a, \neg b$ |
| Cl. 1: a, b | a, b | b | $\} \boldsymbol{X}$ |
| Cl. 2: $\neg a, b$ | $\neg a, b$ | $\boldsymbol{\checkmark}$ | $\boldsymbol{\checkmark}$ |
| Cl. 3: $a, \neg b$ | $a, \neg b$ | $\neg b$ | $\boldsymbol{\checkmark}$ |
| Cl. 4: $\neg a, \neg b$ | $\neg a, \neg b$ | $\boldsymbol{\checkmark}$ | $\boldsymbol{\checkmark}$ |
| BCP | - | $\neg b$ | - |
| PL | - | - | - |
| Decision | $\neg a$ | - | - |

Conflict in step 3

$$
\frac{\text { 1. } a \vee b \quad 3 . a \vee \neg b}{a}
$$

${ }^{61}$ Resolution Proof

| Step | 4 | 5 | 6 |
| :--- | :---: | :---: | :---: |
| Decision Level | 0 | 0 | 0 |
| Assignment | - | a | $a, \neg b$ |
| Cl. 1: a, b | a, b | \checkmark | $\boldsymbol{\checkmark}$ |
| Cl. 2: $\neg a, b$ | $\neg a, b$ | b | $\} \boldsymbol{X}$ |
| Cl. 3: $a, \neg b$ | $a, \neg b$ | $\boldsymbol{\checkmark}$ | $\boldsymbol{\checkmark}$ |
| Cl. 4: $\neg a, \neg b$ | $\neg a, \neg b$ | $\neg b$ | $\boldsymbol{\checkmark}$ |
| Cl. 5: a | a | \checkmark | $\boldsymbol{\checkmark}$ |
| BCP | a | $\neg b$ | - |
| PL | - | - | - |
| Decision | - | - | UNSAT |

Resolution Proof

| Step | 4 | 5 | 6 |
| :--- | :---: | :---: | :---: |
| Decision Level | 0 | 0 | 0 |
| Assignment | - | a | $a, \neg b$ |
| Cl. 1: a, b | a, b | $\boldsymbol{\checkmark}$ | $\boldsymbol{\checkmark}$ |
| Cl. 2: $\neg a, b$ | $\neg a, b$ | b | $\} \boldsymbol{X}$ |
| Cl. 3: $a, \neg b$ | $a, \neg b$ | $\boldsymbol{\checkmark}$ | $\boldsymbol{\checkmark}$ |
| Cl. 4: $\neg a, \neg b$ | $\neg a, \neg b$ | $\neg b$ | $\boldsymbol{\checkmark}$ |
| Cl. 5: a | a | $\boldsymbol{\checkmark}$ | $\boldsymbol{\checkmark}$ |
| BCP | a | $\neg b$ | - |
| PL | - | - | - |
| Decision | - | - | UNSAT |

Conflict in step 6

${ }_{63}$ Resolution Proof

| Step | 4 | 5 | 6 |
| :--- | :---: | :---: | :---: |
| Decision Level | 0 | 0 | 0 |
| Assignment | - | a | $a, \neg b$ |
| Cl. $1: a, b$ | a, b | \checkmark | \checkmark |
| Cl. 2: $\neg a, b$ | $\neg a, b$ | b | $\} \boldsymbol{X}$ |
| Cl. 3: $a, \neg b$ | $a, \neg b$ | \checkmark | \checkmark |
| Cl. 4: $\neg a, \neg b$ | $\neg a, \neg b$ | $\neg b$ | \checkmark |
| Cl. 5: a | a | \checkmark | \checkmark |
| BCP | a | $\neg b$ | - |
| PL | - | - | - |
| Decision | - | - | UNSAT |

Conflict in step 6

$\begin{array}{lll}\text { 2. } \neg a \vee b \quad \text { 4. } \neg a \vee \neg b & \text { 5. } a \\ \neg a\end{array}$

Thank You

