

SCIENCE PASSION TECHNOLOGY

Logic and Computability

Lecture 1

Propositional Logic

bettina.koenighofer@lamarr.at

Stefan Pranger

stefan.pranger@iaik.tugraz.at

https://xkcd.com/2497/

 Logic in CS aims to formulate specifications such that we can *reason* about systems *formally*.

 Logic in CS aims to formulate specifications such that we can *reason* about systems *formally*.

Automatically prove that the system is correct (does what it is supposed to do)

 Logic in CS aims to formulate specifications such that we can *reason* about systems *formally*.

- Automatically prove that the system is correct (does what it is supposed to do)
- First step: Formal specification that accurately captures desired system behavior

 Logic in CS aims to formulate specifications such that we can *reason* about systems *formally*.

- Automatically prove that the system is correct (does what it is supposed to do)
- First step: Formal specification that accurately captures desired system behavior
- Automatically prove that system satisfies specification
 - Use techniques like model checking, theorem proving, SMT solving

- **Example**: Prove that the argumentation is valid
- 1. If the plane arrives late and there are no taxis at the airport, then Alice is late for her appointment.
- 2. Alice is not late for her appointment.
- 3. The plane did arrive late.
- 4. *Therefore,* there were taxis at the airport.

• **Example**: Prove that the argumentation is valid

Knowledge that we have Facts that we know are true

- If the plane arrives late and there are no taxis at the airport, then Alice is late for her appointment.
- 2. Alice is not late for her appointment.
- 3. The plane did arrive late.
- 4. Therefore, there were taxis at the airport.

• **Example**: Prove that the argumentation is valid

Knowledge that we have Facts that we know are true

- If the plane arrives late and there are no taxis at the airport, then Alice is late for her appointment.
- 2. Alice is not late for her appointment.
- 3. The plane did arrive late.
- 4. *Therefore,* there were taxis at the airport.

Deduce new knowledge: Prove that sentence 4 follows from the sentences 1,2, and 3.

- **Example**: Prove that the argumentation is valid
- 1. If the plane arrives late and there are no taxis at the airport, then Alice is late for her appointment.
- 2. Alice is not late for her appointment.
- 3. The plane did arrive late.
- 4. *Therefore,* there were taxis at the airport.

- **Example**: Prove that the argumentation is valid
- 1. If the plane arrives late and there are no taxis at the airport, then Alice is late for her appointment.
- 2. Alice is not late for her appointment.
- 3. The plane did arrive late.
- 4. *Therefore,* there were taxis at the airport.

- p... the plane arrives late
- t ... there are taxis at the airport
- *l*... Alice is late for the appointment

- **Example**: Prove that the argumentation is valid
- If the plane arrives late and there are no taxis at the airport, 1. $(p \land \neg t) \rightarrow l$ 1. then Alice is late for her appointment. Alice is not late for her appointment. 2. $\neg l$ 2. The plane did arrive late. 3.
- *Therefore*, there were taxis at the airport. 4.

3. p 4. t

- p... the plane arrives late
- t ... there are taxis at the airport
- *l*... Alice is late for the appointment

• **Example**: Prove that the argumentation is valid

 If the plane arrives late and there are no taxis at the airport, then Alice is late for her appointment. Alice is not late for her appointment. The plane did arrive late. Therefore, there were taxis at the airport. If the plane arrives late there are taxis at the airport Alice is late for the appointment Alice is late for the appointment If the plane arrives late Therefore, there were taxis at the airport Alice is late for the appointment 	 If the plane arrives late and there are no taxis at the airport, then Alice is late for her appointment. Alice is not late for her appointment. The plane did arrive late. Therefore, there were taxis at the airport. the plane arrives late the plane arrives late there are taxis at the airport Alice is late for the appointment Alice is late for the appointment Therefore, there were taxis at the airport. Matural Deduction (in 2 weeks) Defines fixed set of rewriting rules Creates watertight proves. Proofs can be checked (and generated) automatically. 					
 Alice is not late for her appointment. Alice is not late for her appointment. The plane did arrive late. Therefore, there were taxis at the airport. the plane arrives late there are taxis at the airport Alice is late for the appointment Natural Deduction (in 2 weeks) Defines fixed set of rewriting rules Creates watertight proves. Proofs can be checked (and generated) automatically 	 Alice is not late for her appointment. Alice is not late for her appointment. The plane did arrive late. Therefore, there were taxis at the airport. the plane arrives late there are taxis at the airport Alice is late for the appointment Natural Deduction (in 2 weeks) Defines fixed set of rewriting rules Creates watertight proves. Proofs can be checked (and generated) automatically. 	If the plane arrives late and there are no taxis at the airport,		1.	$(p \land \neg t) \rightarrow l$	
 The plane did arrive late. Therefore, there were taxis at the airport. the plane arrives late there are taxis at the airport Alice is late for the appointment Alice is late for the appointment Creates watertight proves. Proofs can be checked (and generated) automatically 	 The plane did arrive late. Therefore, there were taxis at the airport. the plane arrives late there are taxis at the airport Alice is late for the appointment Watural Deduction (in 2 weeks) Defines fixed set of rewriting rules Creates watertight proves. Proofs can be checked (and generated) automatically. 	Alice is not late for her appointment.		2	_1	
 <i>Therefore</i>, there were taxis at the airport. <i>4. t</i> <l< td=""><td> Therefore, there were taxis at the airport. the plane arrives late there are taxis at the airport Alice is late for the appointment Natural Deduction (in 2 weeks) Defines fixed set of rewriting rules Creates watertight proves. Proofs can be checked (and generated) automatically. </td><td>. The plane did arrive late.</td><td></td><td><i>3</i>.</td><td>p</td></l<>	 Therefore, there were taxis at the airport. the plane arrives late there are taxis at the airport Alice is late for the appointment Natural Deduction (in 2 weeks) Defines fixed set of rewriting rules Creates watertight proves. Proofs can be checked (and generated) automatically. 	. The plane did arrive late.		<i>3</i> .	p	
 the plane arrives late there are taxis at the airport Alice is late for the appointment Creates watertight proves. Proofs can be checked (and generated) automatically 	 the plane arrives late there are taxis at the airport Alice is late for the appointment Creates watertight proves. Proofs can be checked (and generated) automatically. 	<i>Therefore</i> , there were taxis at the airport.		4.	t	
	automaticany.	the plane arrives late there are taxis at the airport Alice is late for the appointment	 Constant of the second s	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU		

1

2

3

4

p

t

l.

- Prove that the argumentation is valid:
- 1. If the sun is shining and John has no sunscreen, then John gets a sunburn.
- 2. John has no sunburn.
- 3. The sun is shining.
- 4. Therefore, John has a sunscreen.

- Prove that the argumentation is valid:
- 1. If the sun is shining and John has no sunscreen, then John gets a sunburn.
- 2. John has no sunburn.
- 3. The sun is shining.
- 4. Therefore, John has a sunscreen.

- s... the sun is shining c ... John has a sunscreen
- *b*... John has a sunburn

Prove that the argumentation is valid:

1. $(s \land \neg c) \rightarrow b$
$2. \neg b$
3. s
4. с

s... the sun is shiningc ... John has a sunscreenb... John has a sunburn

Prove that the argumentation is valid:

sun is shining and John has no sunscreen, ohn gets a sunburn.	1.	$(s \land \neg c) \rightarrow b$
as no sunburn.	2.	$\neg b$
n is shining.	З.	S
<i>ore,</i> John has a sunscreen.	4.	С
	sun is shining and John has no sunscreen, ohn gets a sunburn. nas no sunburn. un is shining. fore, John has a sunscreen.	sun is shining and John has no sunscreen,1.ohn gets a sunburn.2.nas no sunburn.2.un is shining.3.fore, John has a sunscreen.4.

s... the sun is shiningc ... John has a sunscreenb... John has a sunburn

Same as before ⁽²⁾ Reuse proof from before

Outline

- Declarative Sentences
- Syntax
 - Symbols & Rules
 - Parse Tree
- Semantics
 - Meaning
 - Models
 - Truth Tables
 - Validity, Satisfiability
- Examples

Prop. logic is based on declarative sentences (also called propositions)

- Prop. logic is based on declarative sentences (also called propositions)
- A declarative sentence
 - states a fact
 - can be true or false

- Prop. logic is based on declarative sentences (also called propositions)
- A declarative sentence
 - states a fact
 - can be true or false
- Examples:
 - Simple
 - "Florian is back in Austria."
 - "Tomorrow is Wednesday."
 - "10 divided by 5 is 3."
 - With Structure
 - "Tomorrow is Saturday and not Sunday."

Examples:

- Questions
 - "What time is it?"
- Commands
 - "Do your homework!"
- Exclamations
 - "Oh my god!"
- Various others
 - "Good morning."
 - "Ready, steady, go."
 - "May the force be with you."
 - ...

Outline

- Declarative Sentences
- Syntax
 - Symbols & Rules
 - Parse Tree
- Semantics
 - Meaning
 - Models
 - Truth Tables
 - Validity, Satisfiability, Entailment & Equivalence
- Examples

Syntax vs Semantics

Syntax vs Semantics

The syntax of a logical language consists
of a set of symbols and
rules for combining them
to form formulas of the language.

Syntax vs Semantics

The **syntax** of a logical language consists

- of a set of symbols and
- rules for combining them
 to form formulas of the language.

The **semantics** of a logic provides its **meaning**. In prop logic, the meaning is given by the truth values T (true) and \bot (false). \rightarrow The semantics of prop logic assigns a meaning (\bot , T) to prop logic formulas.

Defines symbols and rules to form formulas in propositional logic

- Defines symbols and rules to form formulas in propositional logic
 - Example: The string " $pq()(\Lambda)$ " is no propositional logic formula
 - Uses allowed symbols, but does not adhere to the rules for combining the symbols

- Defines symbols and rules to form formulas in propositional logic
- Elements/Symbols

- Defines symbols and rules to form formulas in propositional logic
- Elements/Symbols
 - Turth symbols T ("true") and ⊥("false")

- Defines symbols and rules to form formulas in propositional logic
- Elements/Symbols
 - Turth symbols T ("true") and ⊥("false")
 - Set of propositional variable symbols p, q, r ...

- Defines symbols and rules to form formulas in propositional logic
- Elements/Symbols
 - Turth symbols T ("true") and ⊥("false")
 - Set of propositional variable symbols p, q, r ...
 - Logical connectors (logical operators, Boolean connectors)
 - Conjunction ∧, Disjunction ∨, Negation ¬,
 Implication →, Equivalence ≡ or Biimplication ↔ , Exclusive Disjunction (XOR) ⊕

- Defines symbols and rules to form formulas in propositional logic
- Elements/Symbols
 - Turth symbols T ("true") and ⊥("false")
 - Set of propositional variable symbols p, q, r ...
 - Logical connectors (logical operators, Boolean connectors)
 - Conjunction ∧, Disjunction ∨, Negation ¬,
 Implication →, Equivalence ≡ or Biimplication ↔ , Exclusive Disjunction (XOR) ⊕
 - Parentheses ()

- Defines symbols and rules to form formulas in propositional logic
- Rules

- Defines symbols and rules to form formulas in propositional logic
- Rules
 - A propositional variable p, or a truth symbol T and \perp are formulas
- Defines symbols and rules to form formulas in propositional logic
- Rules
 - A propositional variable p, or a truth symbol T and \bot are formulas
 - For any formula φ , $\neg \varphi$ is also a formula.

- Defines symbols and rules to form formulas in propositional logic
- Rules
 - A propositional variable p, or a truth symbol T and \bot are formulas
 - For any formula φ , $\neg \varphi$ is also a formula.
 - For any two formulas φ and ψ , the following are also formulas: $\varphi \land \psi, \varphi \lor \psi$, $\varphi \rightarrow \psi$, and $\varphi \leftrightarrow \psi, \varphi \oplus \psi$

- Defines symbols and rules to form formulas in propositional logic
- Rules
 - A propositional variable p, or a truth symbol T and \bot are formulas
 - For any formula φ , $\neg \varphi$ is also a formula.
 - For any two formulas φ and ψ , the following are also formulas: $\varphi \land \psi, \varphi \lor \psi$, $\varphi \rightarrow \psi$, and $\varphi \leftrightarrow \psi, \varphi \oplus \psi$
 - For any formula φ , (φ) is also a formula.

- Defines symbols and rules to form formulas in propositional logic
- Rules
 - Backus-Naur form (BNF)
 - $\varphi := \top |\bot| < prop. variable > |\neg \varphi| \varphi \land \varphi |\varphi \lor \varphi| \varphi \rightarrow \varphi |\varphi \leftrightarrow \varphi | (\varphi)$

Notation: Atom and Literal

Notation: Atom and Literal

- An **atom** (atomic proposition) is a
 - propositional variable (p, q, ...),
 - or a truth symbol \top or \bot .

Notation: Atom and Literal

- An **atom** (atomic proposition) is a
 - propositional variable (p, q, ...),
 - or a truth symbol \top or \bot .
- A **literal** is an atom α or its negation $\neg \alpha$.

Reduces number of parentheses needed

- Reduces number of parentheses needed
- Relative operator precedence
 - Highest $\neg \land \lor \rightarrow \leftrightarrow \mathsf{Lowest}$
 - Example

 $\neg a \lor b \land c \equiv (\neg a) \lor (b \land c)$

- Reduces number of parentheses needed
- Relative operator precedence
 - Highest $\neg \land \lor \rightarrow \leftrightarrow \mathsf{Lowest}$
 - Example

 $\neg a \lor b \land c \equiv (\neg a) \lor (b \land c)$

- Implication and bi-implication are right associative
 - Example:

 $a \rightarrow b \rightarrow c \equiv a \rightarrow (b \rightarrow c)$

- Reduces number of parentheses needed
- Relative operator precedence
 - Highest $\neg \land \lor \rightarrow \leftrightarrow \mathsf{Lowest}$
 - Example

 $\neg a \lor b \land c \equiv (\neg a) \lor (b \land c)$

- Implication and bi-implication are right associative
 - Example:

 $a \rightarrow b \rightarrow c \equiv a \rightarrow (b \rightarrow c)$

- Disjunction and conjunction are left associative
 - Example:

 $a \wedge b \wedge c \equiv (a \wedge b) \wedge c$

- A string is a formula, if
 - all leaves are labelled with atomic propositions and
 - all other nodes are labelled with logical operators

- A string is a formula, if
 - all leaves are labelled with atomic propositions and
 - all other nodes are labelled with logical operators
- Example:
 - Is "(a V b) $\land (\neg (c \rightarrow d))$ " a formula in prop logic?

- A string is a formula, if
 - all leaves are labelled with atomic propositions and
 - all other nodes are labelled with logical operators
- Example:

Is "(a V b) $\land (\neg (c \rightarrow d))$ " a formula in prop logic?

- A string is a formula, if
 - all leaves are labelled with atomic propositions and
 - all other nodes are labelled with logical operators
- Example:

Is "(a \vee b) $\wedge \neg$ ((c \rightarrow d))" a formula in prop logic?

YES "(a V b) $\land \neg$ (c \rightarrow d)" represents a formula.

Outline

- Declarative Sentences
- Syntax
 - Symbols & Rules
 - Parse Tree

Semantics

- Meaning
- Models
- Truth Tables
- Validity, Satisfiability

Examples

Syntax vs Semantics

The syntax of a logical language consists

- of a set of symbols and
- rules for combining them
 to form formulas of the language.

The **semantics** of a logic provides its **meaning**. In prop logic, the meaning is given by the truth values T (true) and \perp (false). \rightarrow The semantics of prop logic assigns meaning (\perp , T) to prop logic formulas.

Semantics of Propositional Logic

The semantics of prop logic assigns a meaning (truth value ⊥, ⊤) to prop logic formulas.

Semantics of Propositional Logic

- The semantics of prop logic assigns a meaning (truth value ⊥, ⊤) to prop logic formulas.
- To define the semantics / assign truth values to formulas...
 - We need possibility to assign truth values to propositional variables
 - Use assignment to interpret formulas

- Model \cong Valuation \cong Interpretation \cong Assignment
- Assignment: $\{Atomic \ propositions\} \mapsto \{\top, \bot\}$

- Model \cong Valuation \cong Interpretation \cong Assignment
- Assignment: $\{Atomic \ propositions\} \mapsto \{\top, \bot\}$
- Example

•
$$\varphi = (p \lor y \lor \neg r) \land (\neg x \lor \neg q \lor z)$$

• $\varphi^{\mathcal{M}}$... φ is evaluated under \mathcal{M}

- $\varphi^{\mathcal{M}} \dots \varphi$ is evaluated under \mathcal{M}
- Satisfying Model: $\mathcal{M} \vDash \varphi$
 - \mathcal{M} satisfies φ , or
 - φ evaluates to true under \mathcal{M}
 - Example _____
 - $\varphi = a \lor b$
 - $\mathcal{M}: \{a \to \top, b \to \bot\}$
 - $\mathcal{M} \vDash \varphi$ or $\varphi^{\mathcal{M}} = \mathsf{T}$

• $\varphi^{\mathcal{M}}$... φ is evaluated under \mathcal{M}

- Satisfying Model: $\mathcal{M} \vDash \varphi$
 - \mathcal{M} satisfies φ , or
 - φ evaluates to true under \mathcal{M}
 - Example
 - $\varphi = a \lor b$
 - $\mathcal{M}: \{a \to \top, b \to \bot\}$
 - $\mathcal{M} \models \varphi$ or $\varphi^{\mathcal{M}} = \mathsf{T}$

- Falsifying Model: $\mathcal{M} \not\models \varphi$
 - $\mathcal M$ does not satisfies φ , or
 - φ evaluates to false under $\mathcal M$
 - Example
 - $\varphi = a \lor b$
 - $\mathcal{M}: \{a \to \bot, b \to \bot\}$

•
$$\mathcal{M} \nvDash \varphi$$
 or $\varphi^{\mathcal{M}} = \bot$

- Base cases for assignment of truth values
 - $\mathcal{M} \models \mathsf{T}$
 - $\mathcal{M} \nvDash \bot$
 - $\mathcal{M} \models p$ iff $\mathcal{M}[p] = \mathsf{T}$
 - $\mathcal{M} \not\models p$ iff $\mathcal{M}[p] = \bot$

p has the value \top if \mathcal{M} assigns the value \top to p has the value \perp if \mathcal{M} assigns the value \perp to p

- Inductive step
- Assume formulas φ and ψ have truth values

• $\mathcal{M} \vDash \neg \varphi$ iff $\mathcal{M} \nvDash \varphi$

- Inductive step
- Assume formulas φ and ψ have truth values
 - $\mathcal{M} \vDash \neg \varphi$ iff $\mathcal{M} \nvDash \varphi$
 - $\mathcal{M} \vDash \varphi \land \psi$ iff $\mathcal{M} \vDash \varphi$ and $\mathcal{M} \vDash \psi$

Semantics – Inductive Definition

- Inductive step
- Assume formulas φ and ψ have truth values
 - $\mathcal{M} \vDash \neg \varphi$ iff $\mathcal{M} \nvDash \varphi$
 - $\mathcal{M} \vDash \varphi \land \psi$ iff $\mathcal{M} \vDash \varphi$ and $\mathcal{M} \vDash \psi$
 - $\mathcal{M} \vDash \varphi \lor \psi$ iff $\mathcal{M} \vDash \varphi$ or $\mathcal{M} \vDash \psi$

- Inductive step
- Assume formulas φ and ψ have truth values
 - $\mathcal{M} \vDash \neg \varphi$ iff $\mathcal{M} \nvDash \varphi$
 - $\mathcal{M} \vDash \varphi \land \psi$ iff $\mathcal{M} \vDash \varphi$ and $\mathcal{M} \vDash \psi$
 - $\mathcal{M} \vDash \varphi \lor \psi$ iff $\mathcal{M} \vDash \varphi$ or $\mathcal{M} \vDash \psi$
 - $\mathcal{M} \vDash \varphi \rightarrow \psi$ iff if $\mathcal{M} \vDash \varphi$ then $\mathcal{M} \vDash \psi$
 - $\mathcal{M} \vDash \varphi \leftrightarrow \psi$ iff $\mathcal{M} \vDash \varphi$ and $\mathcal{M} \vDash \psi$, or $\mathcal{M} \nvDash \varphi$ and $\mathcal{M} \nvDash \psi$

Semantics – Definition via Truth Tables

- Base cases as before
 - Prop variables get truth values from \mathcal{M}

 $\mathcal{M} \vDash \varphi$ $\varphi \text{ evaluates to true under } \mathcal{M}$ $\mathcal{M} \nvDash \varphi$ $\varphi \text{ evaluates to false under } \mathcal{M}$

Truth tables summarize truth assignments for compounded formulas

φ	ψ	$\varphi \wedge \psi$	φ	ψ	$\varphi \vee \psi$]	φ	$\neg \varphi$	φ	ψ	$\varphi \to \psi$	φ	ψ	$\varphi \leftrightarrow \psi$
F	\mathbf{F}	F	F	\mathbf{F}	F		F	Т	F	F	Т	F	F	Т
\mathbf{F}	Т	F	F	Т	Т		Т	F	\mathbf{F}	Т	Т	F	Т	F
Т	\mathbf{F}	F	Т	\mathbf{F}	Т				Т	\mathbf{F}	F	Т	\mathbf{F}	F
Т	Т	Т	Т	Т	Т				Т	Т	Т	Т	Т	Т

Satisfiability (SAT)

At least one model satisfies the formula.

• φ is SAT iff there exists a model $\mathcal M$ such that $\mathcal M \vDash \varphi$

Validity - Tautology

- All models satisfy the formula
 - φ is valid iff for all models $\mathcal{M}, \mathcal{M} \vDash \varphi$

Unsatisfiability - UNSAT

A formula that is not satisfiable

• φ is UNSAT iff for all models $\mathcal{M}, \mathcal{M} \neq \varphi$

All possible Models

SAT and Validity are **dual** concepts

 φ is valid iff $\neg \varphi$ is UNSAT

Truth Tables

- Used to check for validity or satisfiability
- Row for each Model \mathcal{M}_i
 - $\#Rows = 2^{\#Vars}$

Huge disadvantage of truth tables

- Entry E_{ij}
 - True, if $\mathcal{M}_i \models \varphi_i$
 - False, if $\mathcal{M}_i \not\models \varphi_j$
Truth Tables

- Used to check for validity or satisfiability
- Row for each Model \mathcal{M}_i
 - $\#Rows = 2^{\#Vars}$

Huge disadvantage of truth tables

- Entry E_{ij}
 - True, if $\mathcal{M}_i \vDash \varphi_i$
 - False, if $\mathcal{M}_i \not\models \varphi_j$
- Satisfiability: Check if at least one row with True?
- Validity check if all rows True?

Outline

- Declarative Sentences
- Syntax
 - Symbols & Grammar
 - Parse Tree
- Semantics
 - Meaning
 - Models
 - Truth Tables
 - Validity, Satisfiability

Examples

•
$$\varphi = (a \lor b) \land (\neg (c \rightarrow d))$$

• $\mathcal{M}_1 : a = F, b = T, c = T, d = F$

•
$$\varphi = (a \lor b) \land (\neg (c \rightarrow d))$$

• $\mathcal{M}_1 : a = F, b = T, c = T, d = F$

•
$$\varphi = (a \lor b) \land (\neg (c \rightarrow d))$$

• $\mathcal{M}_1 : a = F, b = T, c = T, d = F$

$$\varphi^{\mathcal{M}_1} = T$$
$$M_1 \models \varphi$$

•
$$\varphi = (a \lor b) \land (\neg (c \rightarrow d))$$

• $\mathcal{M}_2 : a = F, b = T, c = F, d = F$

•
$$\varphi = (a \lor b) \land (\neg (c \rightarrow d))$$

• $\mathcal{M}_2 : a = F, b = T, c = F, d = F$

$$\varphi^{\mathcal{M}_2} = F$$
$$M_2 \not\models \varphi$$

Usage of Truth Table: $\varphi = a \land \neg(b \rightarrow c)$

- Draw a truth table
- Answer the following questions:
 - a. Is φ Satisfiability?
 - b. Is φ valid?

Usage of Truth Table: $\varphi = a \land \neg(b \rightarrow c)$

- Draw a truth table
- Answer the following questions:
 - a. Is φ Satisfiability?
 - b. Is φ valid?

a	b	c	$b \rightarrow c$	$\neg(b \rightarrow c)$	φ
\mathbf{F}	\mathbf{F}	\mathbf{F}	T	F	F
\mathbf{F}	\mathbf{F}	Т	T	F	F
\mathbf{F}	Т	\mathbf{F}	F	T	F
\mathbf{F}	Т	Т	T	F	F
Т	\mathbf{F}	\mathbf{F}	T	F	F
Т	\mathbf{F}	Т	T	F	F
Т	Т	\mathbf{F}	F	T	$\mid T \mid$
Т	Т	Т	T	F	F

Usage of Truth Table: $\varphi = a \land \neg(b \rightarrow c)$

- Draw a truth table
- Answer the following questions:
 - a. Is φ Satisfiability?
 - b. Is φ valid?

a	b	c	$b \rightarrow c$	$\neg(b \rightarrow c)$	φ
\mathbf{F}	\mathbf{F}	\mathbf{F}	T	F	F
\mathbf{F}	\mathbf{F}	Т	T	F	F
\mathbf{F}	Т	\mathbf{F}	F	T	F
\mathbf{F}	Т	Т	T	F	F
Т	\mathbf{F}	\mathbf{F}	T	F	F
Т	\mathbf{F}	Т	T	F	$ F_{-} $
Т	Т	\mathbf{F}	F	T	T
Т	Т	Т	T	F	F

Solution a. Yes b. No

Learning Targets

Syntax

- Explain syntax of prop. formulas
- Draw parse tree of prop. formulas

Semantics

- Model sentences as prop. formula
- Explain semantics of prop. Formulas
- Explain what models are
- Construct and use truth tables
- Explain and decide validity and satisfiability
 - Using truth tables

https://xkcd.com/1033/