Logic and Computability

Binary Decision
Diagrams (BDDs)

y
O oSN\

- PZ2RZ7. .
2 -'-‘* P& raai

Gak”] .
I’L‘Ll'

Bettina Kénighofer
bettina.koenighofer@iaik.tugraz.at

Stefan Pranger
stefan.pranger@iaik.tugraz.at

https://xkcd.com/835/

o ¢
p W T

TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

n Motivation — BDDs

" Formulas are huge
= E.g., when presenting circuit as formula
= Hundreds of thousands of variables, millions of clauses....

= We need efficient methods Nr"afiib'es lec'auses
= to store, to manipulate formula, and to decide formulas p cnf 51639 368352

=170 3
o1 . 160 O (X1 Vx7)A
-~ ~150
g% —1-40 (_'xlvx6)/\'"

KGJ_C ~130
Some E%J : 120

o

Automatically

[
. .) ' Tra nSIate -1-80
Circuit i o _ _ 9150
o . 9140
= —9130
2 ° 9110

—9100

—9-160

—17 230
o-. —17 22 0

Motivation — BDDs

= | ast week
= SAT Solvers

= DPLL - Efficient algorithm to decide huge formulas

Formula (in CNF)

Satisfiable
(+ model)

SAT
~ Solver

Motivation — BDDs

= This week- BDDs
" Graph-based data structure
" To represent and manipulate formulas

f=lanbnrc)Vian-bre)V(ianbAh-ch—-e)V(maN-ehd)V
(raNneh—e)V (nah-eAhdNe)

Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, L. J. Hwang:
Symbolic Model Checking: 10220 States and Beyond. LICS 1990: 428-439

Motivation — BDDs

" This week- BDDs
" Graph-based data structure
" To represent and manipulate formulas
" E.g., Used in hardware and software verification tools

Symbolic Model Checking: 10%° States and Beyond*
J. R. BUurCcH, E. M. CLARKE, aND K. L. MCMILLAN

School of Computer Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania 15213

AND

D. L. DiLL AND L. J. HwWANG

Stanford University, Stanford, California 94305

Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, L. J. Hwang:
Symbolic Model Checking: 10220 States and Beyond. LICS 1990: 428-439

Circuit Equivalence Checking

Motivation — BDDs

= Advantages:

= Efficient Manipulation
" Boolean Operations

= Often small representation
= Canonical (unique) representation
" |[f two formulas are equivalent, then
their BDD representations are equivalent

Application:

Circuit A

Circuit B

/.

i
i
i
H
Vm

I
°~J

¥

Vm

Outline

= What are Binary Decision Diagrams (BDDs)?
" [ntuitive Explanation
" Formal Definition
= Reduced-Ordered BDDs
= for us, a BDD is always reduced and ordered

= Represent a formula in propositional logic as BDD
* From the BDD, derive the formula that is represented by a BDD

Learning Outcomes

-
After this lecture...

1. students can define and explain BDDs.
e BDD =reduced and ordered binary decision diagram
 Define and explain its elements and their meaning

2. students can represent a formula in propositional logic as BDD.
3. students can derive the formula that is represented by a BDD.

4. students can state properties of BDDs.
 advantages, disadvantages

Binary Decision Diagram (BDD) -> nitial Representation
4mmm Function node:

Represents formula f

4mmm Internal nodes:

Variables of f

Terminal nodes:

0 == Represent truth values

Binary Decision Diagram (BDD)

GivenM := {a =T,b =T,c =T,d =T}
Does it hold that M E f?

= Binary Decision Diagram (BDD)

GivenM := {a =T,b =T,c =T,d =T}
Does it hold that M E f?

M is a satisfying assignment

Binary Decision Diagram (BDD)

M & f iff its path in BDDs ends in terminal node 1
M & [iff its path in BDDs ends in terminal node 0

\© How can we find the formula f
that is represented by this BDD?

= Binary Decision Diagram (BDD)

M & f iff its path in BDDs ends in terminal node 1
M & [iff its path in BDDs ends in terminal node 0

\© How can we find the formula f
that is represented by this BDD?

\ |/ = b Represent f in DNF
NS by enumerating all paths

= \ (models) that end in 1
i Or
Exclude all paths that end in 0

peusuauUUUBUYEYEENDDOY
. * ! . f is in disjunctive
Binary Decision Diagram (BDD) e
if it is a disjunction of
conjunctions.
f=@Ab)V (~aVo)

\l/, b
- f_@J Represent f in DNF

= \ by enumerating all paths (models)
thatendin 1

peusuauUUUBUYEYEENDDOY
. * ! . f is in disjunctive
Binary Decision Diagram (BDD) e
if it is a disjunction of
conjunctions.
f=@Ab)V (~aVo)

\l/, b
- i@J Represent f in DNF
- = b \ by enumerating all paths (models)

that end in

fi=(a@aAbAc)V(aAbA-CcAd)V
(aNn-bAd)V(waAbAd)V(—aAN=abAcAd)

BDD - Representation

Else-edges are

, marked by circles
(b)

\/

BDD - Representation

Definition of BDDs
= Directed Acyclic Graph

= (Vufuil}, E)
= |nternal Nodesv eV

" Function Node f

= Represents propositional formula f
» May have additional nodes for subformulas

" Terminal Node 1
= Represents the truth value T

= EdgesE

= “Complement” attribute

o
N

W

Definition of BDDs: Internal Node

= label l(v) € {x4, ..., x,,}
= Variables of f

= Qut-degree: 2
= Then-Edge T
= FElse-EdgeE
= Marked with (empty) circle
= Can have complement attribute 1
(full cycle)

f

W

Definition of BDDs: Function Node

" Represents Boolean Formula f
f

" In-degree: 0 d)
= Qut-degree: 1 \

= Edge can have complement attribute

W

Definition of BDDs: Terminal Node

= (Constant Function True

f

o
N

= Qut-degree: 0

W

= Size of a BDD

= Worst case: exponential
= |f each internal node has 2 Sub-BDDs,
then BDD has 2™ — 1 internal nodes

= Often: BDDs contain much redundancy
= Obtain compact BDD by
removing redundancies

ﬂ BDD — Representation

Dangling Edges

l Reduced Ordered BDD

1. No duplicate sub-BDDs

f
|

o e
2

ABe® A

= Reduced Ordered BDD

1. No duplicate sub-BDDs
2. No redundant nodes

= Reduced Ordered BDD

1. No duplicate sub-BDDs
2. No redundant nodes

(&)
NOT Redundant “
()
Redundant NOT Redundant
(special case) /GK\ (special case) ﬂ‘

Redundant

Reduced Ordered BDD

1. No duplicate sub-BDDs
2. No redundant nodes

3. Ordering on the variables along any path
" Eg,a<b<c<d

= Reduced Ordered BDD

1. No duplicate sub-BDDs
2. No redundant nodes

3. Ordering on the variables along any path
" Eg,a<b<c<d

goeoeooudUldUYYEYEDDDDY

A reduced and ordered BDD
gives a canonical
representation of a formula

Reduced Ordered BDD

ooyl HEYYYEDDDDY

A reduced and ordered BDD
gives a canonical
representation of a formula

\© How can we use canonicity
to decide validity and satisfiability in
constant time?
Assume: BDD is given

= Reduced Ordered BDD

\© How can we use canonicity
to decide validity and satisfiability in
constant time?
Assume: BDD is given

I ~ b :
PN @J BDD of a valid formula BDD of UNSAT formula

g
\

Formula f is SAT if BDD looks different than this

From now on

BDDs are always reduced and ordered!

Outline

= Represent a formula in propositional logic as BDD
* From the BDD, derive the formula that is represented by a BDD

From BDD to Formula

= Complement flips truth value
= Satisfying model
= Represented by path with
even number of negations
Build DNF from satisfying models

From BDD to Formula

= Complement flips truth value

= Satisfying model
= Represented by path with
even number of negations

Build DNF from satisfying models

f=(@AbAc)V(maA-cA-d)

From BDD to Formula

= Complement flips truth value
= Satisfying model
= Represented by path with
even number of negations
= Build DNF from satisfying models

© What is the formula f represented by this BDD?

X

(a)| f= xAZ)V(xAy)V(Ax A=y AAz)

(b) f=(xA-2)V(axA=ayAz)V(xAZ)

(c)| f=(xA=2)V(mx Ay Az)

ﬁ-_.h

From BDD to Formula

= Complement flips truth value
= Satisfying model
= Represented by path with
even number of negations
= Build DNF from satisfying models

(a)| f= xAZ)V(xAy)V(Ax A=y AAz)

g b (b) f=(X/\—|Z)V(—|X/\—|y/\Z)V(X/\Z)

- f=&AN-2Z)V(Ax Ay AZ)

7 Outline

= What are Binary Decision Diagrams (BDDs)?
" |Intuitive Explanation
" Formal Definition
= Reduced-Ordered BDDs
= for us, a BDD is always reduced and ordered

= Represent a formula in propositional logic as BDD
* From the BDD, derive the formula that is represented by a BDD

From Formula to BDD

1. Compute all Cofactors
2. Draw ROBDD from Cofactors
3. Shift Negations Upwards

From Formula to BDD — Step 1: Cofactors

* Boolean formula f w.r.t. a variable x
" Positive Cofactor f,.: f withx setto T
"= Negative Cofactor f_,: f with x setto L

= Example:
» f=((xAY)V(axAZ)
@ fx =

XS

From Formula to BDD — Step 1: Cofactors

* Boolean formula f w.r.t. a variable x
" Positive Cofactor f,.: f withx setto T
"= Negative Cofactor f_,: f with x setto L

= Example:
» f=((xAY)V(axAZ)
" =Y

0 f_l —3 4

= From Formula to BDD

Construct the BDD for the formula f = ((aAbV —a) A=cAd) V c.
Use the variableordera < b <c <d

= From Formula to BDD

Construct the BDD for the formula f = ((aAbV —a) A=cAd) V c.
Use the variableordera < b <c <d

fap = cANdV e

fabc =T
fﬂb—wc =d
fab—lcd =T
fab—mﬁd =1
fa—ib = C
fa—lbc =T
fa—'b—wc =1

fﬁa:_'ﬂf\dvc:fab

K3 From Formula to BDD —
Step 3: Shift Negations Upwards

B3 From Formula to BDD —
Step 3: Shift Negations Upwards

K2 From Formula to BDD —
Step 3: Shift Negations Upwards

K3 From Formula to BDD —
Step 3: Shift Negations Upwards

From Formula to BDD —
Step 3: Shift Negations Upwards

= From Formula to BDD @

Construct the BDD for the formula f = (a A =¢) V (ma A (b V (=b A ©))). ~ o
Use the variableordera < b <c <d %

= From Formula to BDD

Construct the BDD for the formula f = (a A =¢) V (ma A (b V (=b A ©))).
Use the variableordera < b <c <d

fa = —c
fac =1
fa—|c = T

fa=bV(abAc)

f—|ab = T
f—|a—|b =C= _'fa

/s b
From Formula to BDD e <Cd
Construct the BDD for the formula f = (a A —¢) V (ma A (b V (=b A ©))). = \
Use the variableordera < b <c¢ <d

fa = —C
fac =1
fa—|c = T

fa=bV(abAc)

f—|ab = T
f—|a—|b =C= _'fa

Details: Next slide

Q| —

Ja | |f-a-

fa | |f-a-

~

)4

2

= From Formula to BDD

Construct the BDD for the formula f = (a A —=¢) V (=a A (bV (=b A ¢))).
Use the variableordera < b <c <d

@ —

= From Formula to BDD

Construct the BDD for the formula
f=(@oe b)A(ceod)
Use the variableorder a<b <c<d

= From Formula to BDD

Construct the BDD for the formula
f=(@e b)A(ceod)
Use the variableorder a<b <c<d

fa=bA(ced) fra="bA(ced)
fap =c e d faap =1
fabe = 4d faa-p =Cc o d=fgp
fabea =T
fabc-a =1

fab—|c =-d = _'fabc
fa—|b :J‘

= From Formula to BDD

Construct the BDD for the formula
f=(@oe b)A(ceod)
Use the variableorder a<c<b<d

= From Formula to BDD

Construct the BDD for the formula
f=(@oe b)A(ceod)
Use the variableorder a<c<b<d

fa=bA(ced) fra=-"bA(ced)
fac =b Ad fac =-bAd
fach = 4d feacp =1L
facba =T f-ac-p = A = facp
facb-a =41
fac-p =1
famc =bA-d f~a-c = b A—d
fameb = —d = = fach faamer =1

fa—c—p =1 faa-c-p = d = 2 facp

= From Formula to BDD

: Disadvantages of BDDs

Size of BDDs strongly depends on variable order
= Hard to optimize
" Problem to find the optimal variable order is NP complete

Example before: f = (x; @ x;)A (x; @ x,)A (x5 0 x3) A (xg © x,) A -+

= Order:x; <x; <x, <xy < ..Hp sizeof BDDis3 *n + 2 nodes
= Order:x; <x, < <x; <xy< .. W sizeof BDDis 3 * 2™ — 1 nodes

Learning Outcomes

-
After this lecture...

1. students can define and explain BDDs.
e BDD =reduced and ordered binary decision diagram
 Define and explain its elements and their meaning

2. students can represent a formula in propositional logic as BDD.
3. students can derive the formula that is represented by a BDD.

4. students can state properties of BDDs.
 advantages, disadvantages

Thank YoL

https://xkcd.com/1033/

TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

