Logic and Computability

SCIENCE
PASSION
TECHNOLOGY

Binary Decision Diagrams (BDDs)

Bettina Könighofer

bettina.koenighofer@iaik.tugraz.at

Stefan Pranger
stefan.pranger@iaik.tugraz.at

Motivation - BDDs

- Formulas are huge
- E.g., when presenting circuit as formula
- Hundreds of thousands of variables, millions of clauses....
- We need efficient methods
- to store, to manipulate formula, and to decide formulas

Nr variables p cnf 51639	$\begin{aligned} & \text { es } \quad \mathrm{Nr} \text { clauses } \\ & 9368352 \end{aligned}$
$\stackrel{\substack{\mathrm{p} \text { cnf } 51639368352 \\-1700}}{-160}\left(\neg x_{1} \vee x_{7}\right) \wedge$	
$\begin{aligned} & -150 \\ & -1-40 \end{aligned}$	$\left(\neg x_{1} \vee x_{6}\right) \wedge \cdots$
-130	
-120	
-1-80	
-9 150	
-9140	
-9 130	
-9-120	
-9 110	
-9 100	
-9-160	
-17230	
-17220	

Motivation - BDDs

- Last week
- SAT Solvers
- DPLL - Efficient algorithm to decide huge formulas

Motivation - BDDs

- This week- BDDs
- Graph-based data structure
- To represent and manipulate formulas

$$
\begin{gathered}
f=(a \wedge b \wedge c) \vee(a \wedge \neg b \wedge e) \vee(a \wedge b \wedge \neg c \wedge \neg e) \vee(\neg a \wedge \neg c \wedge d) \vee \\
(\neg a \wedge c \wedge \neg e) \vee(\neg a \wedge \neg c \wedge d \wedge e)
\end{gathered}
$$

Motivation - BDDs

- This week- BDDs

- Graph-based data structure
- To represent and manipulate formulas
- E.g., Used in hardware and software verification tools

Symbolic Model Checking: 10^{20} States and Beyond*
J. R. Burch, E. M. Clarke, and K. L. McMillan
School of Computer Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania 15213
AND
D. L. Dill and L. J. Hwang
Stanford University, Stanford. California 94305

Motivation - BDDs

- Advantages:
- Efficient Manipulation
- Boolean Operations
- Often small representation
- Canonical (unique) representation
- If two formulas are equivalent, then their BDD representations are equivalent

Application:
Circuit Equivalence Checking

Outline

- What are Binary Decision Diagrams (BDDs)?
- Intuitive Explanation

- Formal Definition
- Reduced-Ordered BDDs
- for us, a BDD is always reduced and ordered
- Represent a formula in propositional logic as BDD
- From the BDD, derive the formula that is represented by a BDD

Learning Outcomes

After this lecture...

1. students can define and explain BDDs.

- BDD = reduced and ordered binary decision diagram
- Define and explain its elements and their meaning

2. students can represent a formula in propositional logic as BDD.
3. students can derive the formula that is represented by a BDD.
4. students can state properties of BDDs.

- advantages, disadvantages

Binary Decision Diagram (BDD) \rightarrow Initial Representation

Binary Decision Diagram (BDD)

Given $M:=\{a=T, b=T, c=T, d=T\}$ Does it hold that $\mathrm{M} \vDash f$?

Binary Decision Diagram (BDD)

$$
\text { Given } M:=\{a=T, b=T, c=T, d=T\}
$$ Does it hold that $\mathrm{M} \vDash f$?

M is a satisfying assignment

Binary Decision Diagram (BDD)

$\mathbf{M} \vDash f$ iff its path in BDDs ends in terminal node 1
$\mathrm{M} \nLeftarrow f$ iff its path in BDDs ends in terminal node 0

How can we find the formula f that is represented by this BDD?

Binary Decision Diagram (BDD)

$\mathbf{M} \vDash f$ iff its path in BDDs ends in terminal node 1
$\mathrm{M} \nLeftarrow f$ iff its path in BDDs ends in terminal node 0

How can we find the formula f that is represented by this BDD?

Represent f in DNF by enumerating all paths (models) that end in 1

Binary Decision Diagram (BDD)

f is in disjunctive normal form (DNF) if it is a disjunction of

Represent f in DNF
by enumerating all paths (models) that end in 1
$f=(a \wedge b) \vee(\neg a \vee c)$

Binary Decision Diagram (BDD)

f is in disjunctive normal form (DNF) if it is a disjunction of conjunctions.
$f=(a \wedge b) \vee(\neg a \vee c)$
Represent f in DNF
by enumerating all paths (models) that end in 1

$$
\begin{gathered}
f:=(a \wedge b \wedge c) \vee(a \wedge b \wedge \neg c \wedge d) \vee \\
(a \wedge \neg b \wedge d) \vee(\neg a \wedge b \wedge d) \vee(\neg a \wedge \neg b \wedge c \wedge d)
\end{gathered}
$$

BDD - Representation

BDD - Representation

Definition of BDDs

- Directed Acyclic Graph
- ($V \cup f \cup\{\mathbf{1}\}, E)$
- Internal Nodes $v \in V$
- Function Node f
- Represents propositional formula f
- May have additional nodes for subformulas
- Terminal Node 1
- Represents the truth value T

- Edges E
- "Complement" attribute

Definition of BDDs: Internal Node

- Label $l(v) \in\left\{x_{1}, \ldots, x_{n}\right\}$
- Variables of f
- Out-degree: 2
- Then-Edge T
- Else-Edge E
- Marked with (empty) circle
- Can have complement attribute
 (full cycle)

Definition of BDDs: Function Node

- Represents Boolean Formula f
- In-degree: 0
- Out-degree: 1
- Edge can have complement attribute

Definition of BDDs: Terminal Node

- Constant Function True
- Out-degree: 0

Size of a BDD

- Worst case: exponential
- If each internal node has 2 Sub-BDDs, then BDD has $2^{n}-1$ internal nodes
- Often: BDDs contain much redundancy
- Obtain compact BDD by removing redundancies

BDD - Representation

Reduced Ordered BDD

1. No duplicate sub-BDDs

Reduced Ordered BDD

1. No duplicate sub-BDDs
2. No redundant nodes

Reduced Ordered BDD

1. No duplicate sub-BDDs
2. No redundant nodes

Reduced Ordered BDD

1. No duplicate sub-BDDs
2. No redundant nodes
3. Ordering on the variables along any path - E.g., $a<b<c<d$

Reduced Ordered BDD

1. No duplicate sub-BDDs
2. No redundant nodes
3. Ordering on the variables along any path - E.g., $a<b<c<d$
 A reduced and ordered BDD gives a canonical
representation of a formula

Reduced Ordered BDD

 A reduced and ordered BDD gives a canonical representation of a formula

How can we use canonicity to decide validity and satisfiability in constant time?
Assume: BDD is given

Reduced Ordered BDD

How can we use canonicity
to decide validity and satisfiability in
constant time?
Assume: BDD is given

BDD of a valid formula

BDD of UNSAT formula

Formula f is SAT if BDD looks different than this

From now on

BDDs are always reduced and ordered!

Outline

- What are Binary Decision Diagrams (BDDs)?
- Intuitive Explanation
- Formal Definition
- Reduced-Ordered BDDs
- for us, a BDD is always reduced and ordered
- Represent a formula in propositional logic as BDD
- From the BDD, derive the formula that is represented by a BDD

From BDD to Formula

From BDD to Formula

$$
f=(a \wedge b \wedge c) \vee(\neg a \wedge \neg c \wedge \neg d)
$$

From BDD to Formula

- Complement flips truth value

- Satisfying model
- Represented by path with
even number of negations
- Build DNF from satisfying models

What is the formula f represented by this BDD?
(a) $f=(x \wedge z) \vee(\neg x \wedge y) \vee(\neg x \wedge \neg y \wedge \neg z)$
(b) $f=(x \wedge \neg z) \vee(\neg x \wedge \neg y \wedge z) \vee(x \wedge z)$
(c) $f=(x \wedge \neg z) \vee(\neg x \wedge \neg y \wedge z)$

From BDD to Formula

- Complement flips truth value

- Satisfying model
- Represented by path with even number of negations
- Build DNF from satisfying models
(a) $f=(x \wedge z) \vee(\neg x \wedge y) \vee(\neg x \wedge \neg y \wedge \neg z)$
(b) $f=(x \wedge \neg z) \vee(\neg x \wedge \neg y \wedge z) \vee(x \wedge z)$
(c) $f=(x \wedge \neg z) \vee(\neg x \wedge \neg y \wedge z)$

Outline

- What are Binary Decision Diagrams (BDDs)?
- Intuitive Explanation

- Formal Definition
- Reduced-Ordered BDDs
- for us, a BDD is always reduced and ordered
- Represent a formula in propositional logic as BDD
- From the BDD, derive the formula that is represented by a BDD

From Formula to BDD

1. Compute all Cofactors
2. Draw ROBDD from Cofactors
3. Shift Negations Upwards

From Formula to BDD - Step 1: Cofactors

- Boolean formula f w.r.t. a variable x
- Positive Cofactor $f_{x}: f$ with x set to T
- Negative Cofactor $f_{\neg x}: f$ with x set to \perp
- Example:

$$
\text { - } f=(x \wedge y) \vee(\neg x \wedge z)
$$

$$
\overbrace{}^{Q}
$$

$$
\begin{gathered}
f_{x}= \\
f_{\neg x}=
\end{gathered}
$$

From Formula to BDD - Step 1: Cofactors

- Boolean formula f w.r.t. a variable x
- Positive Cofactor $f_{x}: f$ with x set to T
- Negative Cofactor $f_{\neg x}: f$ with x set to \perp
- Example:

$$
\begin{aligned}
& f=(x \wedge y) \vee(\neg x \wedge z) \\
& \quad f_{x}=y \\
& \quad f_{\neg x}=z
\end{aligned}
$$

From Formula to BDD

Construct the BDD for the formula $\boldsymbol{f}=((\boldsymbol{a} \wedge \boldsymbol{b} \vee \neg \boldsymbol{a}) \wedge \neg \boldsymbol{c} \wedge \boldsymbol{d}) \vee \boldsymbol{c}$. Use the variable order $a<b<c<d$

From Formula to BDD

Construct the BDD for the formula $f=((a \wedge b \vee \neg a) \wedge \neg c \wedge d) \vee c$. Use the variable order $a<b<c<d$

$$
\begin{gathered}
f_{a}=b \wedge \neg c \wedge d \vee c \\
f_{a b}=\neg c \wedge d \vee c \\
f_{a b c}=\top \\
f_{a b \neg c}=d \\
f_{a b \neg c d}=\top \\
f_{a b \neg c \neg d}=\perp \\
f_{a \neg b}=c \\
f_{a \neg b c}=\top \\
f_{a \neg b \neg c}=\perp \\
f_{\neg a}=\neg c \wedge d \vee c=f_{a b}
\end{gathered}
$$

${ }^{43}$ From Formula to BDD -
Step 3: Shift Negations Upwards

From Formula to BDD Step 3: Shift Negations Upwards

${ }_{45}$ From Formula to BDD -
Step 3: Shift Negations Upwards

${ }_{46}$ From Formula to BDD -
Step 3: Shift Negations Upwards

${ }_{47}$ From Formula to BDD -
Step 3: Shift Negations Upwards

From Formula to BDD

Construct the BDD for the formula $\boldsymbol{f}=(\boldsymbol{a} \wedge \neg \boldsymbol{c}) \vee(\neg \boldsymbol{a} \wedge(\boldsymbol{b} \vee(\neg \boldsymbol{b} \wedge \boldsymbol{c})))$. Use the variable order $a<b<c<d$

From Formula to BDD

Construct the BDD for the formula $\boldsymbol{f}=(\boldsymbol{a} \wedge \neg \boldsymbol{c}) \vee(\neg \boldsymbol{a} \wedge(\boldsymbol{b} \vee(\neg \boldsymbol{b} \wedge \boldsymbol{c})))$. Use the variable order $a<b<c<d$

$$
\begin{aligned}
& f_{a}=\neg c \\
& f_{a c}=\perp \\
& f_{a \neg c}=\mathrm{T} \\
& f_{\neg a}=b \vee(\neg b \wedge c) \\
& f_{\neg a b}=\mathrm{T} \\
& f_{\neg a \neg b}=c=\neg f_{a}
\end{aligned}
$$

From Formula to BDD

Construct the BDD for the formula $\boldsymbol{f}=(\boldsymbol{a} \wedge \neg \boldsymbol{c}) \vee(\neg \boldsymbol{a} \wedge(\boldsymbol{b} \vee(\neg \boldsymbol{b} \wedge \boldsymbol{c})))$. Use the variable order $a<b<c<d$

Details: Next slide

$$
\begin{aligned}
& f_{a}=\neg c \\
& f_{a c}=\perp \\
& f_{a \neg c}=\mathrm{T} \\
& f_{\neg a}=b \vee(\neg b \wedge c) \\
& f_{\neg a b}=\mathrm{T} \\
& f_{\neg a \neg b}=c=\neg f_{a}
\end{aligned}
$$

From Formula to BDD

Construct the BDD for the formula $\boldsymbol{f}=(\boldsymbol{a} \wedge \neg \boldsymbol{c}) \vee(\neg \boldsymbol{a} \wedge(\boldsymbol{b} \vee(\neg \boldsymbol{b} \wedge \boldsymbol{c})))$. Use the variable order $a<b<c<d$

From Formula to BDD

Construct the BDD for the formula
$f=(\boldsymbol{a} \leftrightarrow \boldsymbol{b}) \wedge(c \leftrightarrow \boldsymbol{d})$
Use the variable order $a<b<c<d$

From Formula to BDD

Construct the BDD for the formula

$$
\boldsymbol{f}=(\boldsymbol{a} \leftrightarrow \boldsymbol{b}) \wedge(\boldsymbol{c} \leftrightarrow \boldsymbol{d})
$$

Use the variable order $a<b<c<d$

$$
\begin{array}{cc}
f_{a}=b \wedge(c \leftrightarrow d) & f_{\neg a}=\neg b \wedge(c \leftrightarrow d) \\
f_{a b}=c \leftrightarrow d & f_{\neg a b}=\perp \\
f_{a b c}=d & f_{\neg a \neg b}=c \leftrightarrow d=f_{a b} \\
f_{a b c d}=\mathrm{T} & \\
f_{a b c \neg d}=\perp & \\
f_{a b \neg c}=\neg d=\neg f_{a b c} & \\
f_{a \neg b}=\perp &
\end{array}
$$

From Formula to BDD

Construct the BDD for the formula
$\boldsymbol{f}=(\boldsymbol{a} \leftrightarrow \boldsymbol{b}) \wedge(\boldsymbol{c} \leftrightarrow \boldsymbol{d})$
Use the variable order $a<c<b<d$

From Formula to BDD

Construct the BDD for the formula

$$
\boldsymbol{f}=(\boldsymbol{a} \leftrightarrow \boldsymbol{b}) \wedge(\boldsymbol{c} \leftrightarrow \boldsymbol{d})
$$

Use the variable order $a<c<b<d$

$$
\begin{array}{cc}
f_{a}=b \wedge(c \leftrightarrow d) & f_{\neg a}=\neg b \wedge(c \leftrightarrow d) \\
f_{a c}=b \wedge d & f_{\neg a c}=\neg b \wedge d \\
f_{a c b}=d & f_{\neg a c b}=\perp \\
f_{a c b d}=\mathrm{T} & f_{\neg a c \neg b}=d=f_{a c b} \\
f_{a c b \neg d}=\perp & \\
f_{a c \neg b}=\perp & \\
f_{a \neg c}=b \wedge \neg d & f_{\neg a \neg c}=\neg b \wedge \neg d \\
f_{a \neg c b}=\neg d=\neg f_{a c b} & f_{\neg a \neg c b}=\perp \\
f_{a \neg \neg \neg b}=\perp & f_{\neg a \neg \neg \neg b}=\neg d=\neg f_{a c b}
\end{array}
$$

From Formula to BDD

Disadvantages of BDDs

Size of BDDs strongly depends on variable order

- Hard to optimize
- Problem to find the optimal variable order is NP complete

Example before: $f=\left(x_{1} \leftrightarrow x_{1}{ }^{\prime}\right) \wedge\left(x_{2} \leftrightarrow x_{2}{ }^{\prime}\right) \wedge\left(x_{3} \leftrightarrow x_{3}{ }^{\prime}\right) \wedge\left(x_{4} \leftrightarrow x_{4}{ }^{\prime}\right) \wedge \cdots$

- Order: $x_{1}<x_{1}^{\prime}<x_{2}<x_{2}^{\prime}<\ldots \Rightarrow$ size of BDD is $3 * n+2$ nodes
- Order: $x_{1}<x_{2}<\cdots<x_{1}{ }^{\prime}<x_{2}^{\prime}<\ldots \Rightarrow$ size of BDD is $3 * 2^{n}-1$ nodes

Learning Outcomes

After this lecture...

1. students can define and explain BDDs.

- BDD = reduced and ordered binary decision diagram
- Define and explain its elements and their meaning

2. students can represent a formula in propositional logic as BDD.
3. students can derive the formula that is represented by a BDD.
4. students can state properties of BDDs.

- advantages, disadvantages

Thank You

