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n Motivation — BDDs

" Formulas are huge
= E.g., when presenting circuit as formula
= Hundreds of thousands of variables, millions of clauses....

= We need efficient methods Nr"afiib'es lec'auses
= to store, to manipulate formula, and to decide formulas p cnf 51639 368352
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Motivation — BDDs

= | ast week
= SAT Solvers

= DPLL - Efficient algorithm to decide huge formulas

Formula (in CNF)

Satisfiable
(+ model)

SAT
~ Solver




Motivation — BDDs

= This week- BDDs
" Graph-based data structure
" To represent and manipulate formulas

f=lanbnrc)Vian-bre)V(ianbAh-ch—-e)V(maN-ehd)V
(raNneh—e)V (nah-eAhdNe)

Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, L. J. Hwang:
Symbolic Model Checking: 10220 States and Beyond. LICS 1990: 428-439



Motivation — BDDs

" This week- BDDs
" Graph-based data structure
" To represent and manipulate formulas
" E.g., Used in hardware and software verification tools
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J. R. BUurCcH, E. M. CLARKE, aND K. L. MCMILLAN

School of Computer Science, Carnegie Mellon University,
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Circuit Equivalence Checking

Motivation — BDDs

= Advantages:

= Efficient Manipulation
" Boolean Operations

= Often small representation
= Canonical (unique) representation
" |[f two formulas are equivalent, then
their BDD representations are equivalent

Application:

Circuit A

Circuit B
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Outline

= What are Binary Decision Diagrams (BDDs)?
" [ntuitive Explanation
" Formal Definition
= Reduced-Ordered BDDs
= for us, a BDD is always reduced and ordered

= Represent a formula in propositional logic as BDD
* From the BDD, derive the formula that is represented by a BDD



Learning Outcomes

-
After this lecture...

1. students can define and explain BDDs.
e BDD =reduced and ordered binary decision diagram
 Define and explain its elements and their meaning

2. students can represent a formula in propositional logic as BDD.
3. students can derive the formula that is represented by a BDD.

4. students can state properties of BDDs.
 advantages, disadvantages



Binary Decision Diagram (BDD) -> nitial Representation
4mmm Function node:

Represents formula f

4mmm Internal nodes:

Variables of f

Terminal nodes:

0 == Represent truth values



Binary Decision Diagram (BDD)

GivenM := {a =T,b =T,c =T,d =T}
Does it hold that M E f?




= Binary Decision Diagram (BDD)

GivenM := {a =T,b =T,c =T,d =T}
Does it hold that M E f?

M is a satisfying assignment




Binary Decision Diagram (BDD)

M & f iff its path in BDDs ends in terminal node 1
M & [ iff its path in BDDs ends in terminal node 0

\© How can we find the formula f
that is represented by this BDD?




= Binary Decision Diagram (BDD)

M & f iff its path in BDDs ends in terminal node 1
M & [ iff its path in BDDs ends in terminal node 0

\© How can we find the formula f
that is represented by this BDD?

\ |/ = b Represent f in DNF
NS by enumerating all paths

= \ (models) that end in 1
i Or
Exclude all paths that end in 0




peusuauUUUBUYEYEENDDOY
. * ! . f is in disjunctive
Binary Decision Diagram (BDD) e
if it is a disjunction of
conjunctions.
f=@Ab)V (~aVo)

\l/, b
- f_@J Represent f in DNF

= \ by enumerating all paths (models)
thatendin 1




peusuauUUUBUYEYEENDDOY
. * ! . f is in disjunctive
Binary Decision Diagram (BDD) e
if it is a disjunction of
conjunctions.
f=@Ab)V (~aVo)

\l/, b
- i@J Represent f in DNF
- = b \ by enumerating all paths (models)

that end in

fi=(a@aAbAc)V(aAbA-CcAd)V
(aNn-bAd)V(waAbAd)V(—aAN=abAcAd)




BDD - Representation

Else-edges are

, marked by circles
(b)

\/




BDD - Representation




Definition of BDDs
= Directed Acyclic Graph

= (Vufuil}, E)
= |nternal Nodesv eV

"  Function Node f

= Represents propositional formula f
» May have additional nodes for subformulas

" Terminal Node 1
=  Represents the truth value T

= EdgesE

=  “Complement” attribute
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Definition of BDDs: Internal Node

= label l(v) € {x4, ..., x,,}
= Variables of f

= Qut-degree: 2
= Then-Edge T
= FElse-EdgeE
= Marked with (empty) circle
= Can have complement attribute 1
(full cycle)

f

W




Definition of BDDs: Function Node

" Represents Boolean Formula f
f

" In-degree: 0 d)
= Qut-degree: 1 \

= Edge can have complement attribute

W




Definition of BDDs: Terminal Node

= (Constant Function True

f

o
N

= Qut-degree: 0

W




= Size of a BDD

= Worst case: exponential
= |f each internal node has 2 Sub-BDDs,
then BDD has 2™ — 1 internal nodes

= Often: BDDs contain much redundancy
=  Obtain compact BDD by
removing redundancies




ﬂ BDD — Representation

Dangling Edges




l Reduced Ordered BDD

1. No duplicate sub-BDDs
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= Reduced Ordered BDD

1. No duplicate sub-BDDs
2. No redundant nodes




= Reduced Ordered BDD

1. No duplicate sub-BDDs
2. No redundant nodes

(&)
NOT Redundant “
()
Redundant NOT Redundant
(special case) /GK\ (special case) ﬂ‘

Redundant




Reduced Ordered BDD

1. No duplicate sub-BDDs
2. No redundant nodes

3. Ordering on the variables along any path
" Eg,a<b<c<d




= Reduced Ordered BDD

1. No duplicate sub-BDDs
2. No redundant nodes

3. Ordering on the variables along any path
" Eg,a<b<c<d

goeoeooudUldUYYEYEDDDDY

A reduced and ordered BDD
gives a canonical
representation of a formula




Reduced Ordered BDD

ooyl HEYYYEDDDDY

A reduced and ordered BDD
gives a canonical
representation of a formula

\© How can we use canonicity
to decide validity and satisfiability in
constant time?
Assume: BDD is given




= Reduced Ordered BDD

\© How can we use canonicity
to decide validity and satisfiability in
constant time?
Assume: BDD is given

I ~ b :
PN @J BDD of a valid formula  BDD of UNSAT formula

g
\

Formula f is SAT if BDD looks different than this



From now on

BDDs are always reduced and ordered!



Outline

= Represent a formula in propositional logic as BDD
* From the BDD, derive the formula that is represented by a BDD



From BDD to Formula

= Complement flips truth value
= Satisfying model
= Represented by path with
even number of negations
Build DNF from satisfying models



From BDD to Formula

= Complement flips truth value

= Satisfying model
= Represented by path with
even number of negations

Build DNF from satisfying models

f=(@AbAc)V(maA-cA-d)



From BDD to Formula

= Complement flips truth value
= Satisfying model
= Represented by path with
even number of negations
=  Build DNF from satisfying models

© What is the formula f represented by this BDD?

X

(a)| f= xAZ)V(xAy)V(Ax A=y AAz)

(b) f=(xA-2)V(axA=ayAz)V(xAZ)

(c)| f=(xA=2)V(mx Ay Az)




ﬁ-_.h

From BDD to Formula

= Complement flips truth value
= Satisfying model
= Represented by path with
even number of negations
=  Build DNF from satisfying models

(a)| f= xAZ)V(xAy)V(Ax A=y AAz)

g b (b) f=(X/\—|Z)V(—|X/\—|y/\Z)V(X/\Z)

- f=&AN-2Z)V(Ax Ay AZ)




7 Outline

= What are Binary Decision Diagrams (BDDs)?
" |Intuitive Explanation
" Formal Definition
= Reduced-Ordered BDDs
= for us, a BDD is always reduced and ordered

= Represent a formula in propositional logic as BDD
* From the BDD, derive the formula that is represented by a BDD



From Formula to BDD

1. Compute all Cofactors
2. Draw ROBDD from Cofactors
3. Shift Negations Upwards



From Formula to BDD — Step 1: Cofactors

* Boolean formula f w.r.t. a variable x
" Positive Cofactor f,.: f withx setto T
"= Negative Cofactor f_,: f with x setto L

= Example:
» f=((xAY)V(axAZ)
@ fx =

XS



From Formula to BDD — Step 1: Cofactors

* Boolean formula f w.r.t. a variable x
" Positive Cofactor f,.: f withx setto T
"= Negative Cofactor f_,: f with x setto L

= Example:
» f=((xAY)V(axAZ)
" =Y

0 f_l —3 4



= From Formula to BDD

Construct the BDD for the formula f = ((aAbV —a) A=cAd) V c.
Use the variableordera < b <c <d



= From Formula to BDD

Construct the BDD for the formula f = ((aAbV —a) A=cAd) V c.
Use the variableordera < b <c <d

fap = cANdV e

fabc =T
fﬂb—wc =d
fab—lcd =T
fab—mﬁd =1
fa—ib = C
fa—lbc =T
fa—'b—wc =1

fﬁa:_'ﬂf\dvc:fab



K3 From Formula to BDD —
Step 3: Shift Negations Upwards




B3 From Formula to BDD —
Step 3: Shift Negations Upwards




K2 From Formula to BDD —
Step 3: Shift Negations Upwards




K3 From Formula to BDD —
Step 3: Shift Negations Upwards




From Formula to BDD —
Step 3: Shift Negations Upwards




= From Formula to BDD @

Construct the BDD for the formula f = (a A =¢) V (ma A (b V (=b A ©))). ~ o
Use the variableordera < b <c <d %



= From Formula to BDD

Construct the BDD for the formula f = (a A =¢) V (ma A (b V (=b A ©))).
Use the variableordera < b <c <d

fa = —c
fac =1
fa—|c = T

fa=bV(abAc)

f—|ab = T
f—|a—|b =C= _'fa



/s b
From Formula to BDD e <Cd
Construct the BDD for the formula f = (a A —¢) V (ma A (b V (=b A ©))). = \
Use the variableordera < b <c¢ <d

fa = —C
fac =1
fa—|c = T

fa=bV(abAc)

f—|ab = T
f—|a—|b =C= _'fa

Details: Next slide
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Ja | |f-a-

fa | |f-a-
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= From Formula to BDD

Construct the BDD for the formula f = (a A —=¢) V (=a A (bV (=b A ¢))).
Use the variableordera < b <c <d

@ —




= From Formula to BDD

Construct the BDD for the formula
f=(@oe b)A(ceod)
Use the variableorder a<b <c<d



= From Formula to BDD

Construct the BDD for the formula
f=(@e b)A(ceod)
Use the variableorder a<b <c<d

fa=bA(ced) fra="bA(ced)
fap =c e d faap =1
fabe = 4d faa-p =Cc o d=fgp
fabea =T
fabc-a =1

fab—|c =-d = _'fabc
fa—|b :J‘




= From Formula to BDD

Construct the BDD for the formula
f=(@oe b)A(ceod)
Use the variableorder a<c<b<d



= From Formula to BDD

Construct the BDD for the formula
f=(@oe b)A(ceod)
Use the variableorder a<c<b<d

fa=bA(ced) fra=-"bA(ced)
fac =b Ad fac =-bAd
fach = 4d feacp =1L
facba =T f-ac-p = A = facp
facb-a =41
fac-p =1
famc =bA-d f~a-c = b A—d
fameb = —d = = fach faamer =1

fa—c—p =1 faa-c-p = d = 2 facp



= From Formula to BDD




: Disadvantages of BDDs

Size of BDDs strongly depends on variable order
= Hard to optimize
" Problem to find the optimal variable order is NP complete

Example before: f = (x; @ x; )A (x; @ x, )A (x5 0 x3 ) A (xg © x, ) A -+

= Order:x; <x; <x, <xy < ..Hp sizeof BDDis3 *n + 2 nodes
= Order:x; <x, < <x; <xy< .. W sizeof BDDis 3 * 2™ — 1 nodes



Learning Outcomes

-
After this lecture...

1. students can define and explain BDDs.
e BDD =reduced and ordered binary decision diagram
 Define and explain its elements and their meaning

2. students can represent a formula in propositional logic as BDD.
3. students can derive the formula that is represented by a BDD.

4. students can state properties of BDDs.
 advantages, disadvantages
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