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1
Propositional Logic

Logic in computer science aims to develop languages to formulate specifications
and model systems in such a way that we can reason about them formally. Reason-
ing about situations means constructing arguments that can be formally reasoned
about or whose validity can be proven rigorously.
Example. Consider the following argument: “If the plane arrives late and there
are no taxis at the airport, then Alice is late for her appointment.” “Alice is not
late for her appointment.” “The plane did arrive late.” “Therefore, there were
taxis at the airport.”
We can reason intuitively that the argument is valid. If there were no taxis, Alice
would have been late for the appointment since the plane has been late. Since
she has not been late, it must be the case that there have been available taxis
at the airport. The sentence starting with ’therefore’ logically follows from the
statements before it.
Example. Consider a different argument: “If the sun is shining and John does not
have his sunscreen with him, then he will get a sunburn.” “John is not sunburnt.”
“The sun is shining.” “Therefore, John has his sunscreen with him.”
Again, the argument is valid. Notice, that both arguments actually have the same
logical structure:

If p and not q, then r. Not r. p. Therefore, q.

To make arguments rigorous (to allow formal reasoning over arguments), we need
to develop languages that enable us to express sentences in such a way that the
formulation brings out the logical structure of the modeled sentences. In this
course, we will start with the language of propositional logic.
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1.1 Declarative Sentences

Propositional logic is based on sentences that make statements, so called declara-
tive sentences, or propositions.
Definition 1.1 (Declarative Sentence) A declarative sentence is a sentence
that states a fact, or describes a state of affairs. A declarative sentence can be
argued to be true or false. Hence, a declarative sentence does not ask a question,
or give an order.
Example. Examples for declarative sentences are:

• 10 divided by 5 is 3.
• Mozart was born in Austria.
• Santa Clause lives at the North Pole.
• Florian is back in Austria.

Example. Examples for non-declarative sentences are:
• What is your name?
• Take the dog for a walk!
• Ready, steady, go!
• Good morning.
• May the force be with you!

1.2 Syntax of Propositional Logic

In this section, we discuss the syntax of propositional logic.
Definition 1.2 (Syntax of a formal language) The syntax of a formal language
consists of a set of symbols and rules for combining them to form formulas of the
language.
The symbols of propositional logic are the truth symbols >(“true”) and ⊥ (“false”),
a countably infinite set of propositional variable symbols (typically denoted with
by p, q, r, . . . ), the logical connectors also called logical operators or Boolean con-
nectives (∧,∨,¬,↔,→,⊕), and parentheses.
Definition 1.3 (Syntax of Propositional Logic.) A formula in propositional
logic can be obtained by using the construction rules below, and only those, finitely
many times:

• A propositional variable p, or a truth symbol >, and ⊥ are formulas.
• For any formula ϕ, ¬ϕ is also a formula.
• For any two formulas ϕ and ψ, the following are also formulas: ϕ∧ψ, ϕ∨ψ ,
ϕ→ ψ, and ϕ↔ ψ, ϕ⊕ ψ.

• For any formula ϕ, (ϕ) is also a formula.
Definition 1.4 (Syntax of Propositional Logic in Backus-Naur Form) The
definition of formulas in propositional logic can also be given in the Backus-Naur
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form (BNF). In that notation, the above definition reads more compactly as:

ϕ := < automic proposition> | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ϕ→ ϕ | ϕ↔ ϕ | (ϕ)

In the remainder of this course, we will use the following terminology.
Definition 1.5 (Atom (Atomic Proposition) and Literal) An atom (or
atomic proposition) is a propositional variable (p, q, . . . ), or a truth symbol >
or ⊥. A literal is an atom α or its negation ¬α. A formula is a literal, or the
application of a logical connective to formulas (or to one formula in case of a
negation).

Exercise 1.1

Model the following sentences in propositional logic,
1. ”The number k is even and greater than seven”
2. ”If k is even and greater than seven, then k is not a prime number”
3. ”Either k is even, or k is prime, and not both”

Solution.
We define the following atomic propositions:

• a : ”the number k is even”
• b : ”the number k is greater than seven”
• c : ”the number k is prime”

Using this atoms, we model the sentences as follows:
• Formula for sentence 1: a ∧ b
• Formula for sentence 2: a ∧ b→ ¬c
• Formula for sentence 3: (a ∨ c) ∧ ¬(a ∧ c)

Operator Precedence and Parentheses. We define the relative operator prece-
dence of the logical connectives from the highest to the lowest connective as follows:

Highest ¬ ∧ ∨ → ↔ Lowest

Additionally, we define that the connectives → and ↔ are right associative. There-
fore, the formula p→ q → r is the same formula as p→ (q → r). The connectives
∨ and ∧ are left associative. The relative precedence helps to reduce the number
of parentheses needed.
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Exercise 1.2

For the following formulas, insert parentheses to represent the order of
evaluation.

• p ∧ q ∧ r
• r → p→ r

• p ∧ q ∧ r → p→ r

Solution.

p ∧ q ∧ r is equivalent to (p ∧ q) ∧ r,
r → p→ r is equivalent to r → (p→ r), and

p ∧ q ∧ r → p→ r is equivalent to ((p ∧ q) ∧ r) → (p→ r).

Parse Trees

Parse trees are a simple way to check whether a string is a formula in propositional
logic. A formula ϕ is a formula in propositional logic if all leaves are atomic
propositions and all other nodes are labeled with logical operators.
Example. The parse tree for (a ∨ b) ∧ (¬(c→ d)) is given below. Since all leaves
are labeled with atomic propositions and all inner nodes are labeled with logical
operators, the string is a formula.

∧

∨

a b

¬

→

c d
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Exercise 1.3

Consider the string ¬(a ∨ ¬b¬). Determine whether the string forms a
formula in propositional logic using its parse tree.

Solution.

¬

∨

a ¬

b

¬

The string is not a logical formula because of the leaf note that represents
a negation and the inner node that represents the propositional variable b.

1.3 Semantics of Propositional Logic

The semantics assigns a meaning to a formula. In propositional logic, it assigns a
truth value > or ⊥ to formulas. We first define models, to assign truth values to
propositional variables. Next, we give an inductive definition of the semantics in
propositional logic.

Models

A model assigns a truth value to the propositional variables in a formula. Models
are also called valuations, interpretations, or assignments.
Definition 1.6 (Model) A model M of a propositional formula ϕ is an assign-
ment of truth values to variables in the formula. A model M is called a full (or
total) assignment if M assigns a truth value to each variable in the formula. Oth-
erwise, M is called a partial model. Thus, a partial model assigns values to some
but not all variables in ϕ.
Let M be a model for a formula ϕ. We use the following notation:

• ϕM: The formula ϕ is evaluated under the model M.
• M � ϕ: The model satisfies the formula.
• M 2 ϕ: The model does not satisfy the formula.
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We call a model M satisfying for a formula ϕ if ϕM evaluates to true or falsifying
if ϕM resolves to false. We call � the semantic entailment relation.

Exercise 1.4

Let ϕ = (a ∨ b) ∧ (¬(c→ d)) and M = {a = F, b = T, c = T, d = F}.
Use the parse tree to evaluate ϕM.

Solution.

∧

∨

a b

¬

→

c d

T

F T

T

F

T F

T

We have ϕM1 = T , or M1 � ϕ.

Exercise 1.5

Let ϕ = (a∨b)∧(¬(c→ d)) and model M = {a = F, b = T, c = F, d = F}.
Use the parse tree to evaluate ϕM.

Solution.

∧

∨

a b

¬

→

c d

T

F T

F

T

F F

F

We have ϕM = F , or M 2 ϕ.
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Inductive Definition of the Semantics

Base Cases. The base cases define the semantic entailment relation for the truth
values (the formula > is true for any model M, and the formula ⊥ is false for
any M). Furthermore, it assigns the truth values to the propositional variables
according to their assignment in M.

• M � >
• M 2 ⊥
• M � p iff M[p] = > ...p has the value > if M assigns the value > to p
• M 2 p iff M[p] = ⊥ ...p has the value ⊥ if M assigns the value ⊥ to p

Inductive Step. Assume that the formulas ϕ and ψ have already truth values
assigned. Using ϕ and ψ, we can inductively assign truth values to composed
formulas.

• M � ¬ϕ iff M 2 ϕ
• M � ϕ ∧ ψ iff M � ϕ and M � ψ

• M � ϕ ∨ ψ iff M � ϕ or M � ψ

• M � ϕ→ ψ iff if M � ϕ then M � ψ

• M � ϕ↔ ψ iff M � ϕ and M � ψ or M 2 ϕ and M 2 ψ.

Definition of the Semantics via Truth Tables

The semantics of the logical operators can also be defined via truth tables. The
base cases are defined as before. The inductive step is given by the truth tables
that define the meaning of the logical operators as given below.

ϕ ψ ϕ ∧ ψ ϕ ∨ ψ ϕ→ ψ ϕ↔ ψ
F F F F T T
F T F T T F
T F F T F F
T T T T T T

Figure 1.1: Truth tables for ∧, ∨, →, and ↔.

ϕ ¬ϕ
F T
T F

Figure 1.2: Truth table for negation.
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1.4 Semantic Entailment, Equivalence, Satisfia-
bility, and Validity

Next, we discuss elementary concepts of semantics in propositional logic: the
concepts of semantic entailment and semantic equivalence of two propositional
formals, as well as validity and satisfiability of a propositional formula.
Definition 1.7 (Satisfiability (SAT)) A formula ϕ is satisfiable if and only if
there exists a model M that satisfies ϕ, i.e., M � ϕ.
Definition 1.8 (Unsatisfiability (UNSAT)) A formula ϕ is unsatisfiable if
and only if for all model M it holds that M 2 ϕ. Therefore, no model makes the
formula true. An unsatisfiable formula is also called a contratiction.
Definition 1.9 (Validity) A formula ϕ is valid if and only if for all model M it
holds that M � ϕ. A valid formula is also called a tautology.
Duality Satisfiability - Validity. Satisfiability and validity are dual concepts.
Therefore, it holds that

• A formula ϕ is valid if and only if ¬ϕ is unsatisfiability.
• A formula ϕ is unsatisfiability if and only if ¬ϕ is valid.

Definition 1.10 (Semantic Entailment) A formula ϕ semantically entails a
formula ψ, if and only if every model M that satisfies ϕ (M � ϕ) also satisfies ψ
(M � ψ).
Example. Consider the following examples for the semantic entailment relation
between formulas.

• a � a ∨ b,
• a ∨ b 2 a,
• (p ∧ q) � p, and
• (p ∨ q) 2 p.

In particular, it holds that
• ⊥ � ϕ, and
• ψ � >.

The definition of semantic entailment requires that all models that satisfy the en-
tailing formula also satisfy the entailed formula. ⊥ � ϕ holds since a contradiction
does not have any satisfying models, a contradiction entails any possible formula.
ψ � > holds since all possible models satisfy a tautology. Thus, any formula entails
>.
Figure 1.3 gives a visual representation of the semantic entailment relation. In the
illustration, we have the following area encodings.

• Big circles represent the sets of all possible models.
• Dark gray areas represent the models that satisfy the formula ϕ.
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• Light gray areas represent the models that satisfy the formula ψ.
• Gridded areas represent the models that satisfy formulas ϕ and ψ.
• White areas represent the models that neither satisfy formula ϕ nor ψ.

ϕ � ψ ϕ � ψ, ψ � ϕ F � ψ

ϕ � ψ ϕ 2 ψ ϕ 2 ψ

Figure 1.3: Visualisation of the semantic entailment relation.

Definition 1.11 (Semantic Equivalence) ϕ and ψ are semantically equivalent
if and only if both evaluate to true under the same models, i.e., ϕ � ψ and ψ � ϕ
holds. We denote equivalence of ϕ and ψ via ϕ ≡ ψ.
Example. The following formulas are equivalent.

• a→ b ≡ ¬b→ ¬a, and
• a→ b ≡ ¬a ∨ b.

The notions of validity, satisfiability, semantic entailment, and semantic equiva-
lence can be checked via truth tables. However, note that truth tables grow expo-
nentially. Given a formula ϕ which contains the propositional variables p1, p2, . . . , pn,
the truth table of ϕ has 2n rows. Therefore, truth tables are not practical for large
formulas.
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Exercise 1.6

Check whether the formulas ϕ := p → q and ψ := ¬p ∨ q are semantically
equivalent using a truth table.

Solution.

p q p→ q ¬p ¬p ∨ q p→ q ↔ ¬p ∨ q
F F T T T T
F T T T T T
T F F F F T
T T T F T T

ϕ and ψ are equivalent since they evaluate to the same truth value for every
entry in the truth table.

Example 1

Consider the formula ϕ = a∧¬(b→ c). Determine whether ϕ is satisfiable,
valid, or both using its truth table.

Solution.

a b c b→ c ¬(b→ c) ϕ
F F F T F F
F F T T F F
F T F F T F
F T T T F F
T F F T F F
T F T T F F
T T F F T T
T T T T F F

Figure 1.4: Truth table of ϕ = a ∧ ¬(b → c).

The formula is satisfiable but not valid since there is an entry that evaluates
to true, but not all.
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1.5 Encoding Example

To solve a problem using propositional logic, we need to find a proper encoding
such that a satisfying assignment of the formula represents a solution for our
problem. A satisfying assignment (if one exists) can be automatically found by an
SAT solver. An SAT solver is a tool that takes as input a propositional formula
and outputs either a satisfying assignment to the variables used in the formula if
the formula can be satisfied.

Example 2

We use propositional logic to solve Sudoku. Rules: A Sudoku grid consists
of a 9x9 square, which is partitioned into nine 3x3 squares. The goal is to
write a number from 1 to 9 in each cell in such a way, that each row, each
column, and each 3x3-square contains each number exactly once. Usually,
several numbers are already given.

6 7 1 5
3 9 8
2 3 4 9
7 4

4 9 8
1 4

6 7 9 3
9 2 5

2 8 7 6
Sudoku

To model SUDOKU, we first need to define the propositional variables that
we want to use in our formula.
One way to solve the problem is to define variables xijk for every row i, for
every column j, and for every value k. This encoding yields to 729 variables
ranging from x111 to x999. Next, we need to define the constraints for the
rows, the columns, the 3x3-squares and the predefined numbers.

• Row-constraints: If a cell in a row has a certain value, then no other
cell in that row can have that value. For each i, and each k we have:

xi1k → ¬xi2k ∧ ¬xi3k ∧ ... ∧ ¬xi9k

xi2k → ¬xi1k ∧ ¬xi2k ∧ ... ∧ ¬xi9k
...

xi9k → ¬xi1k ∧ ¬xi2k ∧ ... ∧ ¬xi8k



12 Chapter 1. Propositional Logic

• Column-constraints: If a cell in a column has a certain value, then
no other cell in that column can have that value. For each j, and
each k we have:

x1jk → ¬x2jk ∧ ¬x3jk ∧ ... ∧ ¬x9jk

x2jk → ¬x1jk ∧ ¬x2jk ∧ ... ∧ ¬x9jk
...

x9jk → ¬x1jk ∧ ¬x2jk ∧ ... ∧ ¬x8jk

• Square-constraints: If a cell in a 3x3 square has a certain value, then
no other cell in that square can have that value. For the first square,
we have for each k:

x11k → ¬x12k∧¬x13k∧¬x21k∧¬x22k∧¬x23k∧¬x31k∧¬x32k∧¬x33k

...

x33k → ¬x11k∧¬x12k∧¬x13k∧¬x21k∧¬x22k∧¬x23k∧¬x31k∧¬x32k
The constraints for the remaining squares are similar.

• Predefined-number-constraints: If a cell has a predefined value, we
need to set the corresponding variable to true, e.g., the cell in the
fifth row and the fifth column has the value 9. Therefore we have

x559.

• Cell-constraints: Each cell must contain a number ranging from one
to nine. For each i, and each j we have

xij1 ∨ xij2 ∨ ... ∨ xij9.

On its own, this constraint would allow for a cell to have more than
one value. However, this is not possible due to the other constraints.

To construct the final propositional formula, all constraints need to be
connected via conjunctions. A satisfying assignment for the final formula
represents one possible solution for the Sudoku puzzle. In case that there
does not exists a solution, the SAT solver would return UNSAT.

This chapter is based on
M. Huth and M. Ryan. Logic in computer science : modelling and reasoning about
systems. Cambridge University Press, Cambridge [U.K.]; New York, 2004.
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