
Lecture Notes for

Logic and Computability

Course Number: IND04033UF

Contact

Bettina Könighofer
Institute for Applied Information Processing and Communications (IAIK)

Graz University of Technology, Austria
bettina.koenighofer@iaik.tugraz.at

mailto:bettina.koenighofer@iaik.tugraz.at

5
Combinational Equivalence Checking

In this chapter we discuss combinational equivalence checking (CEC) based on
Boolean satisfiability (SAT). CEC plays an important role in the design of elec-
tronic systems such as integrated circuits and printed circuit boards. Its immediate
application is verifying functional equivalence of combinational circuits after the
application of synthesis and optimization tools. In a typical scenario, there are
two structurally different implementations of the same design, and the problem is
to prove their functional equivalence.
The standard approach for checking the equivalence of two circuits is to reduce the
equivalence problem to SAT and using a solver to decide the problem instance.

Overview of CEC based on Satisfiablilty

In the following, we give the overview of the algorithm to check for the equivalence
of two circuits. In the remainder of this chapter, we will discuss the individual
steps in more detail.
Algorithm - Decide equivalence of combinational circuits. Let C1 and C2

denote the two combinational circuits. In order to check whether C1 and C2 are
equivalent, we perform the following steps:

1. Translate C1 and C2 into propositional formulas ϕ1 and ϕ2.
2. Compute the CNF of ϕ1 ⊕ ϕ2, using Tseitin encoding; i.e., CNF(ϕ1 ⊕ ϕ2).
3. Use CNF(ϕ1 ⊕ ϕ2) as input for a SAT solver and determine satisfiability.
4. C1 and C2 are equivalent if and only if CNF(ϕ1 ⊕ ϕ2) is UNSAT.

1

2 Chapter 5. Combinational Equivalence Checking

5.1 Translation of Circuits to Formulas

Each gate of a combinational circuit can be represented via a propositional formula
over its inputs and outputs. The following figure gives a summary of common
Boolean logic gates with their representation in a curcuit and the corresponding
truth tables.

Figure 5.1: Boolean logic gates.

When translating a curcuit into a propositional formula, we want to find the
formula that expresses the output depending on the inputs. In order to translate
a curcuit, we introduce temporary variables as intermediate results of gates. The
following example shows the individual steps.

5.2. Relations between Satisfiability, Validity, Equivalence and Entailment 3

Example 1

Translate the following circuit C into a propositional formula.

a
p

b

q

r

c

Solution. The inputs of C are denoted by a, b, and c and the output is
denoted by r. We assign temporary variable names to the inner wires;
in this case we use p and q. Using these variables, we can create the
propositional formula over the inputs and the output of C.

r = q ∧ c
= (a ∨ p) ∧ c
= (a ∨ ¬b) ∧ c

5.2 Relations between Satisfiability, Validity,
Equivalence and Semantic Entailment

In the first chapter, we have introduced the notions of satisfiability, validity, equiv-
alence, and semantic entailment. Each of these notions can be reduced to every
other. Therefore, only one decision procedure is needed to decide all notions. This
is particularly important, since deciding the satisfiability of a formula can be done
efficiently with SAT solvers. Therefore, in order to answer whether a formula is
valid, whether two formulas are equivalent or whether a formula semanticlly entails
another formula can be decided by checking satisfiability.
In this section, we discuss the relations between the notions.

Duality of Satisfiability and Validity

A formula ϕ is valid, if and only if, ¬ϕ is not satisfiable. Consider the
formula ϕ = (x∨¬x). This formula is valid, i.e., all rows in the truth table would
evaluate to true. The negation of ϕ is the following: ¬ϕ = ¬(x ∨ ¬x) = ¬x ∧ x,
which is not satisfiable, i.e., all rows the truth table would evaluate to false.
A formula ϕ is satisfiable, if and only if, ¬ϕ is not valid. If ϕ is satisfiable,
there is at least one model that makes the formula true. If we negate the formula,
these models make the negated formula false, and therefore, the negated formula
cannot be valid.

4 Chapter 5. Combinational Equivalence Checking

Overview over all Relations
aaaaaaa

using
solving ϕ

satisfiable? ϕ valid? ϕ � ψ? ϕ ≡ ψ?

Satisfiability X
¬ϕ not

satisfiable?
ϕ ∧ ¬ψ not
satisfiable?

ϕ⊕ ψ not
satisfiable?

Validity ¬ϕ not
valid? X

ϕ→ ψ
valid?

ϕ↔ ψ
valid?

Entailment > 2 ¬ϕ? > � ϕ? X
ϕ � ψ and
ψ � ϕ?

Equivalence ϕ 6≡ ⊥? ϕ ≡ >? ϕ→ ψ ≡
>? X

Deciding semantic entailment via satisfiability. The question whether ϕ � ψ
can be decided by checking whether ϕ ∨ ¬ψ not satisfiable. If there is no model
under which ϕ evaluates true and ψ evaluates to false, ϕ semantically entails ψ.
Deciding equivalence via satisfiability. The question whether ϕ ≡ ψ can be
decided by checking whether ϕ ⊕ ψ is not satisfiable. If there is no model, under
which one sub-formula evaluates to true and the other sub-formula evaluates to
false, then the two formulas are semantically equivalent. We are going to decide
whether two curcuits are equivalent using this insight.
Deciding semantic entailment via validity. The question whether ϕ � ψ can
be decided by checking whether ϕ → ψ is valid. For an implication to hold, all
models that satisfy ϕ also have to satisfy ψ. This is also the requirement for ϕ � ψ
to be true.
Deciding equivalence via validity. The question whether ϕ ≡ ψ can be decided
by checking whether ϕ ↔ ψ is valid. This holds, since the formula ϕ ↔ ψ only
evaluates to true under models that either make both sub-formulas true, or both
false.
Deciding satisfiability via semantic entailment. The question whether ϕ is
satisfiable can be decided by checking T 2 ¬ϕ. If not all models satisfy ¬ϕ, then
there exists a model that satisfies ϕ, and therefore ϕ is satisfiable.
Deciding validity via semantic entailment. The question whether ϕ is valid
can be decided by checking > � ϕ. If all models satisfy ϕ, then ϕ is valid.
Deciding equivalence via entailment. The question whether ϕ ≡ ψ is valid
can be decided by checking ϕ � ψ and ψ � ϕ. If all models that satisfy ϕ also
satisfy ψ and all models that satisfy ψ also satisfy ϕ, then ϕ and ψ are satisfied
by exactly the same models and are therefore equivalent.
Deciding satisfiability via equivalence. The question whether ϕ is satisfiable
can be decided by checking ϕ 6≡ ⊥. If it is not true, that ϕ evaluates to false under
all models, then ϕ is satisfiable.
Deciding validity via equivalence. The question whether ϕ is valid can be
decided by checking ϕ ≡ >. If it is true, that ϕ evaluates to true under all models

5.3. Normal Forms 5

then ϕ is valid.
Deciding entailment via equivalence. The question whether ϕ � ψ can be
decided by checking whether ϕ → ψ ≡ >. If all models that satisfy ϕ also satisfy
ψ, then we have semantic entailment.

5.3 Normal Forms

As we have seen in ??, SAT solver that implement the DPLL algorithm need
the input to be a CNF. So far, we have seen two standard normal forms: the
disjunctive normal form (DNF) and the conjunctive normal form (CNF). In the
following, we will discuss how any propositional formula ϕ can be converted into
a DNF(ϕ) or CNF(ϕ) via its truth table.

Disjunctive Normal Form (DNF)

For every row in the truth table under which ϕ evaluates to true, we form a con-
junction of the literals. This means, variables which are assigned T are not negated
and variables which are assigned F are negated. The resulting conjunctions are
then connected with disjunctions to form DNF(ϕ).

Example 2

Given the formula ϕ := ¬a∨¬(b→ c). Compute its representation in DNF
using its truth table.

a b c ¬a ∨ ¬(b→ c)
F F F T
F F T T
F T F T
F T T T
T F F F
T F T F
T T F T
T T T F

Solution.

DNF(ϕ) = (¬a∧¬b∧¬c)∨(¬a∧¬b∧c)∨(¬a∧b∧¬c)∨(¬a∧b∧c)∨(a∧b∧¬c).

6 Chapter 5. Combinational Equivalence Checking

Conjunctive Normal Form (CNF)

To convert the formula into a CNF, we consider the rows under which the formula
evaluates to false. For every of these rows, we form a disjunction of the negated
literals. This means, variables which are assigned T are negated and variables
which are assigned F are not negated. The resulting disjunctions are connected
via conjunctions to form CNF(ϕ).

Example 3

Given the formula ϕ := ¬a∨¬(b→ c). Compute its representation in CNF
using its truth table.

a b c ¬a ∨ ¬(b→ c)
F F F T
F F T T
F T F T
F T T T
T F F F
T F T F
T T F T
T T T F

Solution.
The resulting formula in DNF is

(¬a ∨ b ∨ c) ∧ (¬a ∨ b ∨ ¬c) ∧ (¬a ∨ ¬b ∨ ¬c).

5.4 Tseitin Encoding

We want to use SAT solvers to check equivalence of two formulas ϕ1 and ϕ2 by
deciding whether ϕ1 ⊕ ϕ2 is not satisfiable. Using the truth table of ϕ1 ⊕ ϕ2

to compute CNF(ϕ1 ⊕ ϕ2) is not a viable approach, since the resulting formula
might by exponentially in size. Therefore, we do not generate the equivalent
representation CNF(ϕ1 ⊕ ϕ2), but instead perform a transformation that only
preserves satisfiability. We call such a formula that is not equivalent to the original
formula but preserves satisfiability equisatisfiable.
Definition 5.1 (Equisatisfiability.) Two propositional formulas ϕ and ψ are
equisatisfiable if and only if either both are satisfiable or both are unsatisfiable.
One way to perform the conversion of a propositional formula into an equisatisfi-
able formula in CNF is to apply Tseitin transformation. This transformation only
results in a linear blow-up in the size of the formula.

5.4. Tseitin Encoding 7

The Tseitin Algorithm

Tseitin transformation takes the syntax tree for a propositional formula ϕ as input.
The algorithm traverses the tree, beginning with the leaves, and associates a aux-
illiary variable to each node, i.e., to each subformula. We will call these auxilliary
variables tseitin variables. By traversing the tree, the algorithm translates every
subformula into a set of clauses. We will explain the Tseitin transformation for
formulas that are restricted to the Boolean connectives ∧, ∨, and ¬.
Step 1. Assign tseitin variables to all nodes in the parse tree, i.e. to
each subformula.
Step 2. Add new clauses for each tseitin variable. Every tseitin variable
represents either a ¬, ∧, or ∨ node in the parse tree, i.e. a sub-formula of the
form ¬ϕ, ϕ ∧ ψ, or ϕ ∨ ψ. The Tseitin-Rewriting Rules define, which clauses are
associated with which type of node:
For each node, let x be the tseitin variable, and let ϕ and ψ be the the two
subformulas of the node.

• ∧ node: for x↔ (ϕ∧ψ) introduce the clauses (¬x∨ϕ)∧(¬x∧ψ)∧(¬ϕ∨¬ψ∨x).
• ∨ node: for x↔ (ϕ∨ψ) introduce the clauses (¬ϕ∨x)∧(¬ψ∨x)∧(¬x∨ϕ∨ψ).
• ¬ node: for x↔ ¬ϕ introduce the clauses (¬x ∨ ¬ϕ) ∧ (ϕ ∨ x).

Finally, to obtain the final equisatisfiable formula in CNF, we connect the variable
for the top level node of the formula and all generated clauses with conjunctions.

Example 4

Consider the formula ϕ := ((p ∨ q) ∧ r) ∨ ¬p. Compute an equisatisfiable
CNF(ϕ) in CNF.

Solution. For each sub-formula, we introduce a tseitin variable.

((p ∨ q
x1

) ∧ r

x2

) ∨ ¬p
x3

xϕ

Using the rewriting rules, we obtain the following sets of clauses and the

CNF(ϕ) = (¬p ∨ x1) ∧ (¬q ∨ x1) ∧ (¬x1 ∨ p ∨ q)
∧ (¬x2 ∨ x1) ∧ (¬x2 ∨ r) ∧ (¬x1 ∨ ¬r ∨ x2)
∧ (¬x3 ∨ ¬p) ∧ (p ∨ x3)
∧ (¬x2 ∨ xϕ) ∧ (¬x3 ∨ xϕ) ∧ (¬xϕ ∨ x2 ∨ x3)
∧ xϕ

8 Chapter 5. Combinational Equivalence Checking

Derivation of the Tseitin Rewriting Rules

In the following we derive how the clauses are generated for ∧, ∨, and ¬ nodes.

• x↔ (p ∧ q) generates the clauses (¬x ∨ p) ∧ (¬x ∨ q) ∧ (¬p ∨ ¬q ∨ x) since:
x↔ (p ∧ q)
(x→ (p ∧ q)) ∧ ((p ∧ q) → x) | ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ)
(x→ p) ∧ (x→ q) ∧ ((p ∧ q) → x) | ϕ→ (ψ ∧ χ) ≡ (ϕ→ ψ) ∧ (ϕ→ χ)
(¬x ∨ p) ∧ (¬x ∧ q) ∧ (¬(p ∧ q) ∨ x) | ϕ→ ψ ≡ ¬ϕ ∨ ψ
(¬x ∨ p) ∧ (¬x ∧ q) ∧ (¬p ∨ ¬q ∨ x) | ¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ

• x↔ (p ∨ q) generates the clauses (¬p ∨ x) ∧ (¬q ∨ x) ∧ (¬x ∨ p ∨ q) since:
x↔ (p ∨ q)
(x→ (p ∨ q)) ∧ ((p ∨ q) → x) | ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ)
(x→ (p ∨ q)) ∧ (p→ x) ∧ (q → x) | ψ ∨ ϕ→ χ ≡ (ϕ→ χ) ∧ (ψ → χ)
(¬x ∨ p ∨ q) ∧ (¬p ∨ x) ∧ (¬q ∨ x) | ϕ→ ψ ≡ ¬ϕ ∨ ψ
(¬p ∨ x) ∧ (¬q ∨ x) ∧ (¬x ∨ p ∨ q) | rearranging

• x↔ ¬p generates the clauses (¬x ∨ ¬p) ∧ (p ∨ x) since:
x↔ ¬p
(x→ ¬p) ∧ (¬p→ x) | ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ)
(¬x ∨ ¬p) ∧ (¬¬p ∨ x) | ϕ→ ψ ≡ ¬ϕ ∨ ψ
(¬x ∨ ¬p) ∧ (p ∨ x) | ¬¬ϕ ≡ ϕ

Properties of Tseitin Encoding

We make two observations about the set of clauses that is generated by the Tseitin
transformation for a formula ϕ.

1. The number of variables and clauses is linear in the size of ϕ. We have thus
avoided the exponential blowup we would have observed when constructing
an equisatisfiable CNF formula CNF(ϕ).

2. The constructed formula CNF(ϕ) is equisatisfiable to ϕ: CNF(ϕ) has a sat-
isfying assignment if and only if there is a satisfying assignment for ϕ. We
can obtain a satisfying assignment for ϕ from the satisfying assignment for
CNF(ϕ) by simply dropping the additional variables that the algorithm has
introduced.

5.5. CEC Example 9

5.5 CEC Example

We conclude this short chapter with a complete example.

Example 5

Given are two formulas ϕ1 = ¬a ∧ ¬b and ϕ2 = ¬(a ∨ b). Check whether
ϕ1 and ϕ2 are semantically equivalent using the reduction to satisfiability.

Solution.
• We construct the formula ϕ:

ϕ = ϕ1 ⊕ ϕ2 = (¬a ∧ ¬b)⊕ ¬(a ∨ b)
= (¬a ∧ ¬b) ∧ ¬(¬(a ∨ b)) ∨ ¬(¬a ∧ ¬b) ∧ ¬(a ∨ b)

• Next, the formula ϕ has to be transformed into a CNF formula by
using Tseitin encoding.

(¬a
x1

∧¬b
x2

x4

) ∧ ¬(¬(a ∨ b
x3

)

x5

)

x6

x8

∨¬(¬a
x1

∧¬b
x2

x4

)

x7

∧¬(a ∨ b
x3

)

x5

x9

xϕ

CNF(ϕ) = xϕ∧
∧ (¬x8 ∨ xϕ) ∧ (¬x9 ∨ xϕ) ∧ (¬xϕ ∨ x9 ∨ x8)
∧ (¬x9 ∨ x7) ∧ (¬x9 ∨ x5) ∧ (¬x7 ∨ ¬x5 ∨ x9)
∧ (¬x8 ∨ x4) ∧ (¬x8 ∨ x6) ∧ (¬x4 ∨ ¬x6 ∨ x8)
∧ (¬x7 ∨ ¬x4) ∧ (x7 ∨ x4)
∧ (¬x6 ∨ ¬x5) ∧ (x6 ∨ x5)
∧ (¬x5 ∨ ¬x3) ∧ (x5 ∨ x3)
∧ (¬x4 ∨ x1) ∧ (¬x4 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ x4)
∧ (¬a ∨ x3) ∧ (¬b ∨ x3)(¬x3 ∨ a ∨ b)
∧ (¬x2 ∨ ¬b) ∧ (x2 ∨ b)
∧ (¬x1 ∨ ¬a) ∧ (x1 ∨ a)

• Finally, CNF(ϕ) is given to a SAT solver. If the SAT solver deter-
mines that CNF(ϕ) is unsatisfiable, then ϕ1 ≡ ϕ2.

List of Definitions

5.1 Equisatisfiability. 6

11

	Combinational Equivalence Checking
	Translation of Circuits to Formulas
	Relations between Satisfiability, Validity, Equivalence and Entailment
	Normal Forms
	Tseitin Encoding
	CEC Example

