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Natural Deduction for Predicate Logic

In this chapter, we will discuss the natural deduction calculus for predicate logic.
We will extend the set of rules we have discussed for propositional logic by adding
new rules for quantifiers. As in the natural deduction calculus for propositional
logic, we will discuss introduction and elimination rules for the quantifiers and the
equality predicate.

7.1 Natural Deduction Rules

The ∀-Elimination Rule

We start by discussing the rule for eliminating the universal quantifier ∀:

∀x ϕ
∀e

ϕ
[
t/x

]
The rule states that if ∀x ϕ is true, we are allowed to replace the x in ϕ with any
term t, under the condition that t has to be free for x in ϕ, and conclude that
ϕ
[
t/x

]
is also true. Recall that ϕ

[
t/x

]
is obtained by replacing all free occurrences

of x in ϕ by t. Since ϕ is assumed to be true for all x, then ϕ should also be true
for any term t.
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4 Chapter 7. Natural Deduction for Predicate Logic

Example 1

Give the proof for the following sequent:

∀x
(
¬P (x) → Q(x)

)
,¬Q(t) ` P (t)

Solution.

1. ∀x
(
¬P (x) → Q(x)

)
prem.

2. ¬Q(t) prem.
3. ¬P (t) → Q(t) ∀e 1
4. ¬¬P (t) MT 3,2
5. P (t) ¬¬e 4

Note that if you apply the ∀e rule, you can use for the substitution any term t
(free for x in ϕ) which is helpful in your current proof.

The ∀-Introduction Rule

Now, let us take a look at the rule for the introduction of a universal quantifier ∀:

x0 x0 fresh
...
ϕ
[
x0/x

]
∀i∀x ϕ

In order to introduce a formula ϕ that is universally quantified, we have to assume
that ϕ holds under an arbitrary choice of variable. Therefore, the rule states, that
if we are starting with a fresh variable x0 and we are able to prove ϕ[x0/x], we
can derive ∀x ϕ.
As we have seen in the natural deduction calculus for propositional logic, we have
to introduce a proof box that defines the scope of the freshly introduced variable.
When applying this rule, there are two things to consider about the fresh variable:
First, the variable needs to be fresh, i.e. it must not appear in a previous part of
the proof, and (2) the variable is bound to the scope, meaning that it must not be
used outside the box it has been introduced in.
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Example 2

Give the proof for the following sequent:

∀x
(
P (x) → Q(x)

)
,∀x P (x) ` ∀x Q(x).

Solution.

1. ∀x
(
P (x) → Q(x)

)
prem.

2. ∀x P (x) prem.
3. x0 P (x0) → Q(x0) ∀e 1
4. P (x0) ∀e 2
5. Q(x0) →e 3,4
6. ∀x Q(x) ∀i 3-5

The structure of this proof is guided by the fact that the conclusion is a ∀ formula,
therefore the application of the ∀i rule is needed. So we set up the box controlling
the scope of x0, and we need to prove Q(x0) inside the box in order to be able to
conclude ∀x Q(x) outside of the box. Using ∀e, we get the two instances of the
premises P (x0) and P (x0) → Q(x0) used to prove Q(x0).

Example 3

Give the proof for the following sequent:

∀x∀y P (x, y) ` ∀a∀b P (a, b)

Solution.

1. ∀x∀y P (x, y) prem.
2. x0 ∀y P (x0, y) ∀e 1
3. y0 P (x0, y0) ∀e 2
4. ∀b P (x0, b) ∀i 3
5. ∀a∀b P (a, b) ∀i 4
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The ∃-Introduction Rule

The ∃i rule is simply:

ϕ
[
t/x

]
∃i∃x ϕ

The rule states, that if ϕ[t/x] is true, we can conclude ∃x ϕ. This naturally follows,
as ∃x only asks for ϕ to be true for some term t, dependent on the side condition
that t be free for x in ϕ.

Example 4

Give the proof for the following sequent:

∀x
(
P (x) → Q(x)

)
` ∃y

(
P (y) → Q(y)

)
Solution.

1. ∀x
(
P (x) → Q(x)

)
prem.

2. P (t) → Q(t) ∀e 1
3. ∃y

(
P (y) → Q(y)

)
∃i 2

Example 5

Give the proof for the following sequent:

∀x
(
P (x) ∧Q(x)

)
` ∃x

(
P (x) ∨Q(x)

)
Solution.

1. ∀x
(
P (x) ∧Q(x)

)
prem.

2. P (x0) ∧Q(x0) ∀e 1
3. P (x0) ∧e1 2
4. P (x0) ∨Q(x0) ∨i1 3
5. ∃x

(
P (x) ∨Q(x)

)
∃i 4

The ∃-Elimination Rule

The rule for eliminating an ∃ relates to the already known ∨e-rule. The ∃e rule is
defined as follows:
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∃x ϕ

x0 x0 fresh
ϕ
[
x0/x

]
ass.

...
χ

∃eχ

Just like when eliminating a disjunction, we need to make a case analysis. As
∃x ϕ holds, we know that ϕ is true for at least one value of x. If we can deduce
a formula χ without the exact knowledge of the value x0, we can deduce that χ
can be deduced simply from the fact that there exists an x0. In order to do so, we
construct a case analysis over all possible values by introducing an arbitrary fresh
variable x0. If by assuming ϕ[x0/x] we can prove χ (that does not contain x0),
χ can be deduced outside of the box. Note, that via the box we are introducing
two things: (1) the scope of x0, and (2) the scope of the assumption ϕ[x0/x].

Example 6

Give the proof for the following sequent:

∀x
(
P (x) → Q(x)

)
,∃x P (x) ` ∃x Q(x)

Solution.

1. ∀x
(
P (x) → Q(x)

)
prem.

2. ∃x P (x) prem.
3. x0 P (x0) ass.
4. P (x0) → Q(x0) ∀e 1
5. Q(x0) → e 4,3
6. ∃x Q(x) ∃i 5
7. ∃x Q(x) ∃e 2,3-6

The motivation for introducing the box in line 3 of this proof is the existential
quantifier in the premise ∃xP (x) which has to be eliminated. In line 4 we eliminate
the ∀ from line 1. Now, we can extract Q(x0) using line 4 and line 3. In line 6 we
introduce an ∃ and substitute the x0 again with an x.
As the formula in line 6 does not contain x0 any more, we now may close the box
in accordance to our ∃e rule. To conclude our ∃e, which we started with the box
at line 3, in line 7 we need to rewrite the same formula as in line 6.
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Example 7

Consider the following proof and analyse the error made in this proof:

1. ∀x
(
P (x) → Q(x)

)
prem.

2. ∃x P (x) prem.
3. x0 P (x0) ass.
4. P (x0) → Q(x0) ∀e 1
5. Q(x0) → e 4,3
6. Q(x0) ∃e 2,3-5
7. ∃x Q(x) ∃i 6

Solution. Line 6 allows the fresh variable x0 to escape the scope of the
box which declares it. This is not allowed. Therefore, the ∃i rule has to be
applied already inside of the box like in the proof above.

Boxes may also be nested within each other. But we need to be careful, on where
our scopes begin and where they end. To understand the concept of multiple
boxes, we take a look at another interesting example.

Example 8

Give the proof for the following sequent:

∃x P (x),∀x ∀y
(
P (x) → Q(y)

)
` ∀y Q(y)

Solution.

1. ∃x P (x) prem.
2. ∀x ∀y

(
P (x) → Q(y)

)
prem.

3. y0

4. x0 P (x0) ass.
5. ∀y

(
P (x0) → Q(y)

)
∀e 2

6. P (x0) → Q(y0) ∀e 5
7. Q(y0) → e 6,4
8. Q(y0) ∃e 1,4-7
9. ∀y Q(y) ∀i 3-8

In this example, the first premise is an ∃ formula, which requires an ∃e to be of any
use. The conclusion is an ∀ formula, which requires the application of the ∀i rule.
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Therefore, this proof has two boxes. The outer box from 3-8 is for introducing ∀,
whereas the inner box from 4-7 is for eliminating the ∃ from line 1. We need to
declare for both boxes fresh variables. To keep it simple, we will substitute y0 for
y for the outer box and x0 for x for the inner box. Note again, that it is important
to not use x0 and y0 outside of their respective boxes.

Example 9

Give the proof for the following sequent:

∀x
(
P (x) ∧Q(x)

)
` ∀x P (x) ∧ ∀x Q(x)

)
Solution.

1. ∀x
(
P (x) ∧Q(x)

)
prem.

2. x0 P (x0) ∧Q(x0) ∀e 1
3. P (x0) ∧e1 2
4. ∀x P (x) ∀i 2-3
5. y0 P (y0) ∧Q(y0) ∀e 1
6. Q(y0) ∧e2 5
7. ∀x Q(x) ∀i 5-6
8. ∀x P (x) ∧ ∀x Q(x) ∧i 4,7

Example 10

Give the proof for the following sequent:

∃x P (x) ` ¬∀x ¬P (x)

Solution.
1. ∃x P (x) prem.
2. ∀x ¬P (x) ass.
3. x0 P (x0) ass.
4. ¬P (x0) ∀ 2
5. ⊥ ¬e 3,4
6. ⊥ ∃e 1,4-5
7. ¬∀x ¬P (x) ¬i 2-6
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Example 11

Give the proof for the following sequent:

¬∀x
(
P (x) ∧Q(x) ∧R(y)

)
` ∃x ¬

(
P (x) ∧Q(x) ∧R(y)

)
Solution.

1. ¬∀x
(
P (x) ∧Q(x) ∧R(y)

)
prem.

2. P (t) ∧Q(t) ∧R(y) ass.
3. ∀x

(
P (x) ∧Q(x) ∧R(y)

)
∀i 2

4. ⊥ ¬e 1,3
5. ¬

(
P (t) ∧Q(t) ∧R(y)

)
¬i 2-4

6. ∃x ¬
(
P (x) ∧Q(x) ∧R(y)

)
∃i 5

Example 12

Give the proof for the following sequent:

∃x ¬
(
P (x) ∧Q(x) ∧R(y)

)
` ¬∀x

(
P (x) ∧Q(x) ∧R(y)

)
Solution.

1. ∃x ¬
(
P (x) ∧Q(x) ∧R(y)

)
prem.

2. ∀x
(
P (x) ∧Q(x) ∧R(y)

)
ass.

3. t ¬
(
P (t) ∧Q(t) ∧R(y)

)
ass.

4. P (t) ∧Q(t) ∧R(y) ∀e 2
5. ⊥ ¬e 3,4
6. ⊥ ∃e 1,3-5
7. ¬∀x

(
P (x) ∧Q(x) ∧R(y)

)
¬i 2-6

7.1.1 Quantifier Equivalences

A good way to exercise natural deduction proofs, you can consider proving the
most commonly used quantifier equivalences. The proofs are interesting, because
most of them involve several quantifications over more than just one variable and
your proofs will have nested boxes.
Consider the following equivalences and proof their equivalences by proving both
directions:

¬∀x ϕ ≡ ∃x ¬ϕ
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¬∃x ϕ ≡ ∀x ¬ϕ
¬∀x ¬ϕ ≡ ∃x ϕ
¬∃x ¬ϕ ≡ ∀x ϕ

Example 13

Proof the following quantifier equivalence:

¬∃x P (x) ≡ ∀x ¬P (x)

Solution. For both directions, we create a proof:
∀x ¬P (x) ` ¬∃x P (x)

1. ∀x ¬P (x) prem.
2. ∃x P (x) ass.
3. t P (t) ass.
4. ¬P (t) ∀e 1
5. ⊥ ¬e 3,4
6. ⊥ ∃e 2,3-5
7. ¬∃x P (x) ¬i 2-6

¬∃x P (x) ` ∀x ¬P (x)

1. ¬∃x P (x) prem.
2. t

3. P (t) ass.
4. ∃x P (x) ∃i 3
5. ⊥ ¬e 1,4
6. ¬P (t) ¬i 3-5
7. ∀x ¬P (x) ∀i 2-6

7.1.2 Counterexamples

If a sequent is not valid, there is no natural deduction proof for such a sequent. In
such cases, we construct a counterexample that proofs the sequent to be invalid.
As discussed in the chapter about the natural deduction calculus for propositional
logic, we construct a model, that satisfies all the premises but does not satisfy the
conclusion.
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Example 14

Show that the following sequent is invalid by constructing a counterexample
for it:

∃x
(
P (x) → S

)
` ∃x P (x) → S

Solution. We define the following model M that serves as a counterexam-
ple:

• A = {a, b}
• PM = {a}
• SM = ⊥

To show, that M is a counterexample, we first show that M violates the
conclusion, and second that it satisfies the premise.

→

∃x

P

x

∃x

P

x

P

a

S

x
=
a

∃x

→

P

x

S

→

P

a

S

→

P

b

S

x = a
x = b

M satisfies the premise, but not the conclusion and is therefore a coun-
terexample.
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Showing that M 2 ∃x P (x) → S: We show that M does not satisfy the conclusion
by drawing a syntax tree. In order for M to satisfy the ∃x in our formula, there
needs to be at least one value for x that P (x) true. When substituting [a/x],
we see that PM(a) = T, which also makes the ∃x node true. The predicate S
always evaluates to false. Therefore, the implication results in a F, thus making
the conclusion false.
Showing that M � ∃x

(
P (x) → S

)
: We again draw the syntax tree to evaluate

whether M satisfies the premise. In order for the ∃x node to become true, we need
to fine a value for x that makes the implication node true. Again we first try to
substitute [a/x], which results in a true P (x), but in a false implication. If we,
however, substitute [b/x], P (x) evaluates to false and thus making the implication
true. Thus also our ∃x is true and therefore also the whole premise.
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This chapter is based on
.
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