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3
Binary Decision Diagrams

In this chapter, we introduce an efficient data structure to store and manipulate
propositional formulas in the form of reduced ordered binary decision diagrams
(BDDs). For a given variable order, a ROBBD gives a canonical (unique) repre-
sentation for a given formula. This means that semantically equivalent formulas
(formulas can have a different syntax but have the same semantic meaning) are
represented by the same BDD.
BBDs are used in formal verification tools for hardware and software where BDDs
are used to represent models of the system.

3.1 Binary Decision Diagram

A binary decision diagram (BDD) represents a formula using a graph-based data
structure. We start this chapter by introducing a basic version of BDDs and dis-
cussing its individual elements. We then extend the concept to Reduced Ordered
BDDs (ROBDDs) which are a more efficient data structure that we will use from
there on.
Definition 3.1 (Directed Acyclic Graph) A directed acyclic graph (DAG) is
a directed graph that does not contain any directed cycle. A node of a DAG is
initial if the node has no incoming edges. A node is called terminal if the node
has no outgoing edges.
Definition 3.2 (Binary Decision Diagram.) A binary decision diagram
(BDD) is a DAG that represents a propositional formula f . A BDD consists of a
function node representing the formula f , internal nodes that represent individual
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4 Chapter 3. Binary Decision Diagrams

variables of f , and two terminal nodes representing the truth values 1 and 0.
The function node connects to the internal node on the first level. All internal
nodes have exactly two outgoing edges, namely the then-edge and the else-edge,
connecting the internal node to either a different internal node or a terminal node.
We follow the convention that else-edges are marked by circles, whereas then-edges
are simple connections without annotations.
Example. Figure 3.1 shows a binary decision diagram for a formula with four
variables a, b, c, and d.
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Figure 3.1: A simple BDD with different edge labeling.

Evaluating a Model using a BDD. To evaluate a formula f under a given
model M, we traverse the BDD according to the truth value assignments in the
model. For example, when reaching an inner node labeled with a and M assigns a
to T, we follow the then-edge. If M assigns a to F, we follow the else-edges. Since
the BDD is a DAG, we eventually reach a terminal node. If the terminal node 1 is
reached, M is a satisfying assignment for f (M � f). Otherwise, M is a satisfying
assignment for f (M 2 f).

Constructing formulas from BDDs. We can use the same technique to find
a formula f̂ that is semantically equivalent to the formula f represented by the
BDD. The formula f̂ is then in the so-called disjunctive normal form. We therefore
call f̂ the DNF of f, or DNF(f).
Definition 3.3 (Disjunctive Normal Form) A formula f is in disjunctive
normal form (DNF) if it is a disjunction of conjunctions.
To compute DNF(f), we enumerate all paths through internal nodes that lead to
the terminal node 1. Each path represents a model M that makes the f true, thus
a path will be represented as a conjunction of literals.

• If a path follows the then-edge of a node labeled with a (i.e., a = T in the
corresponding model), we add a to the conjunction representing this path.
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Exercise 3.1

Consider the following BDD:
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Evaluate the formula f represented by the following BDD under the given
models:

M1 = {a = T, b = T, c = F, d = T},M2 = {a = T, b = F, c = T, d = F}.

Solution.
• M1: We follow the edges according to the truth assignments in M1

and reach the terminal node 1. Therefore M1 � f .
• M2: We follow the edges according to the truth assignments in M2

and reach the terminal node 0. Therefore M2 2 f . Note that the
truth value for c did not influence the outcome.

• If a path follows the else-edge of a node labeled with a (i.e., a = F in the
corresponding model), we add ¬a to the conjunction representing this path.

To obtain DNF(f), the conjunctions representing the individual paths (satisfying
models) are connected via disjunctions.
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Exercise 3.2

Consider the following BDD:
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Compute the DNF of the formula f represented by the BDD.

Solution.
The first path that ends in the terminal node 1 is given by always taking the
then-edges. This results in the first conjunction (a∧b∧c). The second path
is given by taking the then-edges on levels 1 and 2, the else-edge on level
3, and the then-edge on level 4. This path gives us the second conjunction
(a∧ b∧¬c∧ d). We construct the formula f by enumerating and encoding
all paths that end in the terminal node 1:

DNF(f) =(a ∧ b ∧ c) ∨ (a ∧ b ∧ ¬c ∧ d)∨
(a ∧ ¬b ∧ d) ∨ (¬a ∧ b ∧ d) ∨ (¬a ∧ ¬b ∧ c ∧ d)

Final Representation of a BDD. We are adapting our initial representation
of a BDD to match the BDD representation used in several literature. We will
discuss the following changes in the representation:

1. Complement attribute and single terminal node,
2. dangling edges, and
3. complements only at else-edges.

Complement attribute and single terminal node. An edge can be negated
by marking the edge with a full circle. Completed edges allow us to represent a
BDD using only one terminal node. We will use the terminal node 1. Whenever
an edge would lead to the terminal node 0, we complement the edge and direct
it to 1. By doing so, the terminal node 0 can be removed since all edges can be
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redirected to the terminal node 1.
An example BDD using the complement attribute is shown in Figure 3.2.
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Figure 3.2: Left: Simple BDD. Right: BDD with complemented edges.

Dangling edges. Since we only have a single terminal node, there is no need to
draw the terminal node anymore. Instead, we simply draw dangling edges, i.e.,
every dangling edge connects to the terminal node 1. Note, that this is only done
to simplify the drawing of BDDs on paper. Figure 3.3 shows the example BDD
from above with dangling edges.
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Figure 3.3: BDD with dangling edges.

Complements only at else-edges. Finally, we require that the complement
attribute (full circle) is only present at else-edges. If during the construction of
a BDD, a compliment is introduced at a then-edge, the complement of this edge
can be removed by pushing the negation upwards. This approach is discussed in
detail in Section 3.3.
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3.2 Reduced Ordered BDDs

Using the definitions from above, let’s analyze the worst-case size of a BDD.

Size of a BDD. Each internal node representing a variable a has exactly two
sub-trees, one for the assignment a = T and one for a = F. In the worst case,
for a propositional formula f with n variables, the BDD representing f may have
2n−1 internal nodes. Hence, BDDs have the same worst-case size as truth tables.
However, BDDs often contain redundancies that can be removed which is the topic
of this section. Reduced BDDs still have an exponential worst-case size complex-
ity, however, they are often small for many practical examples. Additionally, we
require that BDDs are ordered such that the resulting BDD provides a canonical
representation of the formula. This leads to reduced and ordered BDDs.
We start by defining what it means that a BDD is ordered.
Definition 3.4 (Ordered BDDs) . Let [x1,. . . , xn] be an ordered list of variables
without duplicates. We say that a BDD has the variable order x1 < x2 < · · · < xn

if for every occurrence of xi followed by xj along any path in the BDD, we have
i < j.
Next, we discuss two types of redundancies that need to be removed for a BDD
to be reduced:

• Duplicate Sub-BDDs, and
• Redundant Nodes.

Duplicate Sub-BDDs. A BDD may have two or more identical sub-BDDs which
represent the same sub-formula. If a BDD contains such identical sub-BDDs, we
remove all but one of these sub-BDDs. All edges that lead to one of the removed
sub-BDDs are redirected to the sub-BDDs left in the BDD.
Example. Consider the BDD from Figure 3.3. Three sub-BDDs are representing
the formula ¬c. We can remove two of these sub-BDDs representing ¬c and
redirect the edges to the remaining one. The result after removing this redundancy
is shown in Figure 3.4.
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Figure 3.4: BDD with no duplicate sub-BDDs.

Redundant Nodes. A node is redundant if its then-edge and its else-edge both
lead to the same node and neither of the edges is negated (or both of them are
negated). Special cases are nodes with two dangling edges with both or none
having the complement attribute. Redundant nodes can be removed from the
BDD without changing its meaning. Note, that a node is not redundant if one of
its outgoing edges has the compliment attribute since the decision in such a node
(following the then or else-edge) makes a difference in whether paths passing this
node evaluate to true or to false.
Examples of redundant nodes and non-redundant are illustrated in Figure 3.5.
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Figure 3.5: Examples of redundant and not redundant nodes.

Example. Figure 3.6 shows the BDD after removing redundant nodes from Fig-
ure 3.4. We can remove the node representing b on the right as it is redundant, as
well as the node representing c on the left, as both of its outgoing edges are not
negated.

Canonicity. In case a BDD is reduced and ordered, a BDD forms a canonical
representation of a formula in propositional logic. For a BDD to be reduced, a
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Figure 3.6: Optimization 3: BDD with no redundant nodes.

BDD cannot have any redundant node or duplicate sub-BDD.
A BDD that is reduced and ordered is also referred to as ROBDD. From here on,
we will always assume that a BDD is reduced and ordered = is an ROBDD.
Example. Consider the formulas f1 =

(
a∧(b∨c)

)
and f2 =

(
a∧(a∨b)∧(b∨c)

)
. The

two formulas are syntactically different but semantically equivalent. Therefore, f1
and f2 are represented by the same reduced and ordered BDD.

Satisfiability and Validity

The canonicity of ROBDDs leads to a useful side effect. To decide whether a
formula is satisfiable or valid can be done in constant time, assuming that the
ROBDD for the formula has been constructed.
We can easily see this, as a valid formula needs to lead to the terminal node 1
on every path starting from the function node. Therefore, any internal node needs
to be redundant and only the function node and terminal node representing 1 are
left.
Likewise, an unsatisfiable formula needs to be represented by the BDD consisting
of the function node and a complemented edge to the terminal node 1. Therefore,
any BDD that is different from this BDD (that represents unsatisfiable formulas)
needs to have at least one satisfying model and is, therefore, a satisfiable formula.

Evaluating a Model using a BDD

Due to optimization 1, we only have a single terminal node representing the truth
value true. In addition, we have introduced complemented edges, which represent
a flip in the resulting truth value. We therefore need to count the number of flips
when evaluating a formula f under model M.
Negation of a BDD. From this, we can deduce that for any formula for which
the BDD has been computed, its negation can be computed in constant time. In
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Exercise 3.3

Consider the following ROBDD:

f
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Check whether the models M1, M2 and M3 are satisfying models or falsi-
fying models.

• M1 : a = >, b = ⊥, c = >, d = >
• M2 : a = ⊥, b = >, c = ⊥, d = ⊥
• M3 : a = >, b = >, c = ⊥, d = ⊥

Solution. Consider M1: We traverse the ROBDD and count the number
of complemented edges. There is a single complemented edge on the else-
edge of the left node represeting b, therefore M1 2 f . Both M2 and M3 are
satisfying models, since for both evaluations we encouter an even amount
of complemented edges, 2 and 0, respectively.

order to negate a BDD, we simply negate the edge connecting the function node
and the node on the first level.

Constructing Formulas from BDDs

In order to compute DNF(f) from a BDD representing f , we follow the same steps
as discussed in Section 3.2. We again search for all paths such that the formula
evaluates to true, and compute DNF(f) from the resulting conjunctions.
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Exercise 3.4

Consider the following BDD:

f

x

y

z

Compute the formula represented by the BDD.

Solution. The first path follows the else-edge from x and the then-edge
from y. This path has no negations and therefore represents a satisfying
assignment. Subsequently, we find two different paths that feature an even
amount of complemented edges, and the resulting DNF is:

DNF(f) := (¬x ∧ y) ∨ (¬x ∧ ¬y ∧ ¬z) ∨ (x ∧ z).

Variable Order

The variable order chosen to construct a BDD heavily influences the space needed
to store the BDD in memory. Consider the following formula

(x1 ↔ y1) ∧ (x2 ↔ y2) ∧ (x3 ↔ y3) . . . (xn ↔ yn).

Using the variable order x1 < y1 < x2 < y2 < . . . < yields an BDD with 3n+ 2
nodes, whereas the order x1 < x2 < . . . < y1 < y2 < . . . < results in an BDD
with 3 · 2n − 1 nodes.
The problem of finding an optimal variable order is an NP-complete problem [2]
and is therefore being researched extensively.
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3.3 Construction of Reduced Ordered BDDs

In the final section of this chapter, we are going to discuss an algorithm to construct
BDDs from formulas. The optimization discussed so far shows us the characteris-
tics of a BDD. Constructing a BDD from an already computed BDD is of no use
since this would entail the need for an exponential amount of space to construct
the BDD in the first place. We are therefore looking for a way to construct the
BDD directly from the formula f .
There are different ways to construct BDDs, another interesting approach recur-
sively builds the BBD from the subformulas of f . This is done by merging two
BDDs, based on the logical operator that connects the respective subformulas in
f . This approach is out of the scope of this lecture, but we refer the interested
reader to [1].
The algorithm we are going to discuss for this lecture is based on cofactors.
Definition 3.5 (Cofactor.) A cofactor of a formula f for a given assignment
A is a formula fA = f [x1 ← F/T, x2 ← F/T, . . .] that is computed from f
by substituting the variables in f by their respective assignment in A. We call
fx = f [x← T] the positive cofactor of f w.r.t. x, and define the negative cofactor
f¬x likewise.
One can view a cofactor as the formula being evaluated under a, potentially, partial
assignment.
Example. We compute the positive and the negative cofactor w.r.t. the variable
x for the following formula:

f = (x ∧ y) ∨ (¬x ∧ z).

Setting x to true results in the positive cofactor

fx = (> ∧ y) ∨ (⊥ ∧ z) = y,

and setting x to false gives us the negative cofactor

f¬x = (⊥ ∧ y) ∨ (> ∧ z) = z.

The Algorithm to Construct a reduced and ordered BDD

Step 1) Compute all cofactors.
In the first step, we recursively compute all cofactors with respect to the given
variable order. Given the order a < b < c < d <, we first compute fa with
fa = f [a← T], followed by fab, where fab = fa[b← T], etc.
If a cofactor matches a cofactor or the negation of a cofactor that we have
already seen, we take note of this equality and backtrack. This takes care of
the optimizations that we have introduced.

Step 2) Draw the BDD from the cofactors.
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The goal is to draw a BDD such that each node represents a cofactor. The
root node of the BDD represents the entire formula f . We therefore connect
it with the function node representing f . The internal node connected via the
then-edge represents the positive cofactor fa. The internal node connected via
the else-edge represents the negative cofactor f¬a.
We construct the BDD such that each node representing a cofactor leads us to
the next one in the recursive computation. If a cofactor resolves to true, we
draw a dangling edge. If a cofactor resolves to false, we draw a complemented
dangling edge. If a cofactor is equivalent to a cofactor we have already seen, we
connect the outgoing with the node that represents this cofactor. If a cofactor
is equivalent to a negation of a cofactor we have already seen, we connect the
outgoing with the node that represents this cofactor and complement the edge.

Step 3) Shift negations upwards
In the final step, we follow the convention that only else-edges may be comple-
mented, in order for the BDD to be canonical. The execution of Step 2 might
cause complemented dangling then-edges, as any positive cofactor may evaluate
to F.
In order to remove the complement from a then-edge, we shift the complement
upwards by distributing it to all edges connected to the source node of the
then-edge. Note that this does not change the formula, as for any path the
amount of complemented edges is not changed by this operation.
Edges that are complemented twice in this process do not need to be comple-
mented. As this process might in turn complement an adjacent then-edge, we
repeat this process.
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Exercise 3.5

Consider the following formula f = (a∧ b∨¬a)∧¬c∧d∨ c and the variable
order a < b < c < d. Construct the BDD that represents f .

Solution.
We start by recursively computing all the cofactors and taking note of any
equivalent cofactors.

f = (a ∧ b ∨ ¬a) ∧ ¬c ∧ d ∨ c
fa = b ∧ ¬c ∧ d ∨ c

fab = ¬c ∧ d ∨ c
fabc = >
fab¬c = d

fab¬cd = >
fab¬c¬d = ⊥

fa¬b = c
fa¬bc = >
fa¬b¬c = ⊥

f¬a = ¬c ∧ d ∨ c = fab

We can now continue to construct the BDD from the computed cofactors.
We start by introducing the function node f and connect the first-level
node representing a.

f

a

The positive cofactor of a does not evaluate to a truth value yet, we there-
fore add the node representing the next variable b. Note that we also
annotate the cofactor with a function node accordingly.

f

fa

b

a

Again, the positive cofactor of b does not evaluate to a truth value and we
add a node for the next variable c.
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f

fa

fab

c

b

a

The cofactor fabc evaluates to true and we therefore finish this branch by
adding a dangling then-edge. The cofactor fab¬c does not evaluate to a
truth value and we continue this branch by adding a node representing
fab¬c.
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b

fab¬c

d

a

The cofactors for fab¬cd and fab¬c¬d evaluate to T and F respectively. We
therefore add two dangling edges and negate the else-edge.
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We backtrack and consider the cofactor fa¬b. The cofactor does not evalu-
ate to a truth value or to any cofactors we have seen before. We therefore
add another node representing this cofactor.
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d
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c

a

The cofactors fa¬bc and fa¬b¬c evaluate to T and F respectively and draw
the according dangling edges.
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Finally, we consider the negative cofactor f¬a which is equal to fab. Since
this cofactor is already represented in the BDD we simply connect the else
edge of the node a to the node representing fab.
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d
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c
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As there are not complemented then-edges, we do not need to perform step
3 and are therefore done.
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Exercise 3.6

Consider the following formula f = (a∧¬c)∨
(
¬a∧ (b∨ (¬b∧ c))

)
and the

variable order a < b < c. Construct the BDD that represents f .

Solution. We start by recursively computing all the cofactors and taking
note of any equivalent cofactors.

f = (a ∧ ¬c) ∨
(
¬a ∧ (b ∨ (¬b ∧ c))

)
fa = ¬c

fac = ⊥
fa¬c = >

f¬a = b ∨ (¬b ∧ c)
f¬ab = >
f¬a¬b = c = ¬fa

Note that fa = ¬c. The variable b does not appear in fa and assigning
b either truth value does not have an effect in this branch. Therefore, we
skip the cofactor of b and immediately compute the fac and fa¬c.
We can now continue to construct the BDD from the computed cofactors.
We start by introducing the function node f and connect the first-level
node representing a.

f

a

Since the positive cofactor fa does not evaluate a truth value, we draw the
node representing the next variable c.

f

fa

c

a

The cofactors fac and fa¬c evaluate to F and T. We draw the dangling
edges and negate the then-edge.
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f

fa

c

a

We continue with the negative cofactor f¬a by drawing the node represent-
ing the next variable b.

f

a

f¬a¬b

c

b

We have computed that f¬ab evaluates to T and therefore add a dangling
edge.

The cofactor f¬a¬b is equal to the negation of fa, we, therefore, connect the
else-edge of the node representing the cofactor f¬a to the node representing
fa and complement the newly added edge. We also indicate that the node
labeled with c represents two cofactors and negates the edge connecting the
function node for cofactor f¬a¬b.

f

a

fa f¬a¬b

c

b
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This BDD has a complemented then-edge at the node representing c.
Therefore, we distribute the complement to all edges of the c node and
remove the complement from the then-edge.

f

a

fa f¬a¬b

c

b

By doing so we have created a negation at the then-edge outgoing from the
node representing a. We repeat step 3 and distribute the complement to
all adjacent edges.

f

a

fa f¬a¬b

c

b

There are no negated then-edges in this representation and we are therefore
done.
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