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What is Z3?

= Solver for Satisfiability Modulo Theories
= we know how to check satisfiability v/
= ... until now: Only propositional logic!

= 73 allows us to efficiently answer decision problems including
" |ntegers, Reals, Arithmetic
= BitVectors, uninterpreted Functions, Arrays,
" etc.

= More on Theories starting from next week
" Today: Basics Principles of Z3 and First Problems
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* What do we need to describe a problem for the solver?

= Variables (of a specific Sort),

(declare-const a Bool)
(declare-const b Bool)

= Constraints, and

(assert (not a) )
(assert (or a b) )

" Checking for Satisfiability
(check-sat)



= A Simple Example in SMT-LIB2

(declare-const a Bool)
(declare-const b Bool)
(assert (not a) )
(assert (or a b) )
(check-sat)
(get-model)



= Background

= Developed by Microsoft Research
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= SMT-LIB2 - Astandardized language for Problems in SMT
= AP| for C++, Python, Julia, etc.
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Installing

= We will use the Python API:
" plip 1nstall z3-solver

= Optionally, you may install z3 natively:
= sudo apt—-get 1nstall z3 (Viaaptitude for Ubuntu, etc.)
» https://www.nuget.org/packages/Microsoft.Z3/ (windows)
= https://ifmc.github.io/z3-play (online)
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= Python API

= User-friendly interface for SMT-LIB?2
= Used in the Programming Assignment

= Variables (of a specific Sort),
(declare-const a Bool)
(declare-const b Bool)
= Constraints, and
(assert (not a) )
(assert (or a b) )

= Checking for Satisfiability
(check-sat)

m—)
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Bool ("a")
Bool ("b")

solver = Solver ()
solver.add (Not(a))
solver.add (Or (a,b))

solver.check ()



Python API

from z3 import *
a, b = Bools("a b")

solver = Solver ()
solver.add (Not (b))
solver.add (Or(a,b))

print (solver.sexpr())
result = solver.check ()
model = solver.model ()
print (result)

print (model)
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Python API

= Constraints

(assert (not a) ) solver.add (Not(a))
(assert (or a b) ) ‘ solver.add (Or (a,b))

= Provides Methods for Connectives:
= And(),Or (), Not (), Implies (), == A, etc.

= Method to check whether two statements can be distinct:
= Distinct(a,b)

= Operator overloading:
=+ - >> <<, etc.

= Reference: https://z3prover.github.io/api/html/namespacez3py.html
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A First Example

= We want to show that the following formulas are equal:
P —q
"pVq



A First Example

"pP 2q==-pVvVq’

from z3 import *

solver = Solver()
a, b = Bools("a b")
l, r = Bools("1 ")

solver.add (1l == Implies(a, b))
solver.add(r == Or (Not(a), b))
solver.add (Distinct(r,1l) )

result = solver.check()
print (result)



= Back to SMT-LIB2

"pP 2 q=="pAq?

from z3 import *

solver = Solver ()
a, b = Bools("a b")
l, r = Bools("1 ")

solver.add (1l == Implies(a, b))
solver.add(r == Or (Not(a), b))
solver.add (Distinct(r, 1))
print (solver.sexpr())

result = solver.check()
print (result)
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ﬂ BitVectors

= 73 allows us to use so-called theories
= \We have a first look at bitvectors

= Syntax:
" bv = BitVector ("bv", <size>)

= BitVectors respect under-/overflow behaviour!
" |n contrast to Z3’s integers
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= The BitVector Sort respects overloaded operators:
"> <=+, -, <<, >> /) etc.
= Caution: These are signed interpretations
" Use ULT, UGT, ULE for unsigned interpretations



Equivalence Checking for BitVectors

= We want to prove the equivalence of the following
" (((y & x)*=2) + (y + x))
[ | X @ y



= Weird XOR

from z3 import *

X = BitVec('x', 32)

y = BitVec('y', 32)

output = BitVec('output ', 32)
s = Solver ()

s .add (x*y==output)
s.add (Distinct(((y & x)* -2) + (y + x) ,output))

print (s.check())



Overflow Behaviour

= We want to check whether z3 can find a model for the following
" x = BitVector ("x", 8)
" (x + 1 < x = 1)



Operations on BitVectors

= The BitVector Sort respects overloaded operators:
"< > <=, +, -, etc.
= Caution: These are signed interpretations
" Use ULT, UGT, ULE for unsigned interpretations

= Overflow and Underflow
" BVAddNoOverflow, BVAddNoUnderflow
" BVMulNoOverflow, BVMulNoUnderflow



Variables in a Satisfying Model

= Variables and Expressions are stored in z3-specific classes

" We can use solver.model () .decls () toiterate through all

declared variables
" Use .as long () toconverta BitVector to a Python Integer

model = solver.model ()
for var in solver.model.decls () :
print (f"{var}: {model[var]} (:{type (model[var])})")



Overflow Behaviour

= \We want to check whether the statement TODO
" x + 1 < x = 1)

= We need to add
" BVNoOverflow(x,1l, True)
" BVNoUnderflow(x,1l, True)

= Functions that evaluate to False when Over-/Underflow would
occur in the model
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Assighment Sheet

= 4 Exercises + 1 Bonus Exercise

" You are allowed to work in groups of 2
= |f you do so, please add your information into the README

= Deadline: 05. 06. 2024
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