TU

Grazm
SCIENCE

Logic and Computability
Lecture 5 PASSION

Introduction to Z3

Bettina Konighofer Stefan Pranger
bettina.koenighofer@iaik.tugraz.at stefan.pranger@iaik.tugraz.at

= What is Z3?

= Solver for Satisfiability Modulo Theories

= What is Z3?

= Solver for Satisfiability Modulo Theories
= we know how to check satisfiability v/

= What is Z3?

= Solver for Satisfiability Modulo Theories
= we know how to check satisfiability v/
= ... until now: Only propositional logic!

= What is Z3?

= Solver for Satisfiability Modulo Theories
= we know how to check satisfiability v/
= ... until now: Only propositional logic!

= 73 allows us to efficiently answer decision problems including
" |ntegers, Reals, Arithmetic
= BitVectors, uninterpreted Functions, Arrays,
" etc.

= What is Z3?

= Solver for Satisfiability Modulo Theories
= we know how to check satisfiability v/
= ... until now: Only propositional logic!

= 73 allows us to efficiently answer decision problems including
" |ntegers, Reals, Arithmetic
= BitVectors, uninterpreted Functions, Arrays,
" etc.

= More on Theories starting from next week

What is Z3?

= Solver for Satisfiability Modulo Theories
= we know how to check satisfiability v/
= ... until now: Only propositional logic!

= 73 allows us to efficiently answer decision problems including
" |ntegers, Reals, Arithmetic
= BitVectors, uninterpreted Functions, Arrays,
" etc.

= More on Theories starting from next week
" Today: Basics Principles of Z3 and First Problems

= Background

= Developed by Microsoft Research
" https://github.com/Z3Prover/z3

https://github.com/Z3Prover/z3

= Background

= Developed by Microsoft Research
= https://github.com/Z3Prover/z3

Christoph Lev Leonardo
Wintersteiger = Nachmanson de Moura

Contributors 281

Nikolaj

Bj@rner |~ a ‘é) & .

“900CE®

https://github.com/Z3Prover/z3

= Background

= Developed by Microsoft Research
= https://github.com/Z3Prover/z3

Christoph Lev Leonardo
Wintersteiger = Nachmanson de Moura

Contributors 281

Nikolaj

Bj@rner L a ‘5" & .

“900CE®

= SMT-LIB2 - Astandardized language for Problems in SMT

https://github.com/Z3Prover/z3

Principles

" s —a A (aV b) satisfiable?
* What do we need to describe a problem for the solver?

Principles

" s —a A (aV b) satisfiable?
* What do we need to describe a problem for the solver?

= Variables (of a specific Sort),

(declare-const a Bool)
(declare-const b Bool)

Principles

" s —a A (aV b) satisfiable?
* What do we need to describe a problem for the solver?

= Variables (of a specific Sort),
(declare-const a Bool)

(declare-const b Bool)
= Constraints, and

(assert (not a))
(assert (or a b))

Principles

" s —a A (aV b) satisfiable?
* What do we need to describe a problem for the solver?

= Variables (of a specific Sort),

(declare-const a Bool)
(declare-const b Bool)

= Constraints, and

(assert (not a))
(assert (or a b))

" Checking for Satisfiability
(check-sat)

= A Simple Example in SMT-LIB2

(declare-const a Bool)
(declare-const b Bool)
(assert (not a))
(assert (or a b))
(check-sat)
(get-model)

= Background

= Developed by Microsoft Research
= https://github.com/Z3Prover/z3

Christoph Lev Leonardo
Wintersteiger = Nachmanson de Moura

Contributors 281

Nikolaj

Bj@rner L a ‘5" & .

“900CE®

= SMT-LIB2 - Astandardized language for Problems in SMT
= AP| for C++, Python, Julia, etc.

https://github.com/Z3Prover/z3

Installing

= We will use the Python API:
" plip 1nstall z3-solver

Installing

= We will use the Python API:
" plip 1nstall z3-solver

= Optionally, you may install z3 natively:
= sudo apt—-get 1nstall z3 (Viaaptitude for Ubuntu, etc.)
» https://www.nuget.org/packages/Microsoft.Z3/ (windows)
= https://ifmc.github.io/z3-play (online)

https://www.nuget.org/packages/Microsoft.Z3/
https://jfmc.github.io/z3-play

= Python API

= User-friendly interface for SMT-LIB?2
= Used in the Programming Assignment

= Variables (of a specific Sort),

(declare-const a Bool)
(declare-const b Bool)

= Constraints, and
(assert (not a))
(assert (or a b))

= Checking for Satisfiability
(check-sat)

= Python API

= User-friendly interface for SMT-LIB?2
= Used in the Programming Assignment

= Variables (of a specific Sort),

Bool ("a")
Bool ("b")

(declare-const a Bool) | a
(declare-const b Bool) b

= Constraints, and
(assert (not a))
(assert (or a b))

= Checking for Satisfiability
(check-sat)

= Python API

= User-friendly interface for SMT-LIB?2
= Used in the Programming Assignment

= Variables (of a specific Sort),
(declare-const a Bool)
(declare-const b Bool)
= Constraints, and
(assert (not a))
(assert (or a b))

= Checking for Satisfiability
(check-sat)

m—)

m—)

a
b

Bool ("a")
Bool ("b")

solver = Solver ()
solver.add (Not(a))
solver.add (Or (a,b))

= Python API

= User-friendly interface for SMT-LIB?2
= Used in the Programming Assignment

= Variables (of a specific Sort),
(declare-const a Bool)
(declare-const b Bool)
= Constraints, and
(assert (not a))
(assert (or a b))

= Checking for Satisfiability
(check-sat)

m—)

m—)
—)

a
b

Bool ("a")
Bool ("b")

solver = Solver ()
solver.add (Not(a))
solver.add (Or (a,b))

solver.check ()

Python API

from z3 import *
a, b = Bools("a b")

solver = Solver ()
solver.add (Not (b))
solver.add (Or(a,b))

print (solver.sexpr())
result = solver.check ()
model = solver.model ()
print (result)

print (model)

= Python API

= Constraints

(assert (not a)) solver.add (Not(a))
(assert (or a b)) ‘ solver.add (Or (a,b))

= Provides Methods for Connectives:
= And(),Or (), Not (), Implies (), == A, etc.

= Python API

= Constraints

(assert (not a)) solver.add (Not(a))
(assert (or a b)) ‘ solver.add (Or (a,b))

= Provides Methods for Connectives:
= And(),Or (), Not (), Implies (), == A, etc.

= Method to check whether two statements can be distinct:
= Distinct(a,b)

= Python API

= Constraints

(assert (not a)) solver.add (Not(a))
(assert (or a b)) ‘ solver.add (Or (a,b))

= Provides Methods for Connectives:
= And(),Or (), Not (), Implies (), == A, etc.

= Method to check whether two statements can be distinct:
= Distinct(a,b)

= Operator overloading:
=+ - >> <<, etc.

Python API

= Constraints

(assert (not a)) solver.add (Not(a))
(assert (or a b)) ‘ solver.add (Or (a,b))

= Provides Methods for Connectives:
= And(),Or (), Not (), Implies (), == A, etc.

= Method to check whether two statements can be distinct:
= Distinct(a,b)

= Operator overloading:
=+ - >> <<, etc.

= Reference: https://z3prover.github.io/api/html/namespacez3py.html

https://z3prover.github.io/api/html/namespacez3py.html

A First Example

= We want to show that the following formulas are equal:
P —q
"pVq

A First Example

"pP 2q==-pVvVq’

from z3 import *

solver = Solver()
a, b = Bools("a b")
l, r = Bools("1 ")

solver.add (1l == Implies(a, b))
solver.add(r == Or (Not(a), b))
solver.add (Distinct(r,1l))

result = solver.check()
print (result)

= Back to SMT-LIB2

"pP 2 q=="pAq?

from z3 import *

solver = Solver ()
a, b = Bools("a b")
l, r = Bools("1 ")

solver.add (1l == Implies(a, b))
solver.add(r == Or (Not(a), b))
solver.add (Distinct(r, 1))
print (solver.sexpr())

result = solver.check()
print (result)

ﬂ BitVectors

= 73 allows us to use so-called theories
= \We have a first look at BitVectors

ﬂ BitVectors

= 73 allows us to use so-called theories
= \We have a first look at BitVectors

= Syntax:
" bv = BitVector ("bv", <size>)

ﬂ BitVectors

= 73 allows us to use so-called theories
= \We have a first look at bitvectors

= Syntax:
" bv = BitVector ("bv", <size>)

= BitVectors respect under-/overflow behaviour!
" |n contrast to Z3’s integers

Operations on BitVectors

= The BitVector Sort respects overloaded operators:

Operations on BitVectors

= The BitVector Sort respects overloaded operators:
" <;>r <=) +) W, <<) >>; /; etc.

Operations on BitVectors

= The BitVector Sort respects overloaded operators:
" <;>r <=) +1) <<) >>1 /; etc.
= Caution: These are signed interpretations

Operations on BitVectors

= The BitVector Sort respects overloaded operators:
"> <=+, -, <<, >> /) etc.
= Caution: These are signed interpretations
" Use ULT, UGT, ULE for unsigned interpretations

Equivalence Checking for BitVectors

= We want to prove the equivalence of the following
" (((y & x)*=2) + (y + x))
[| X @ y

= Weird XOR

from z3 import *

X = BitVec('x', 32)

y = BitVec('y', 32)

output = BitVec('output ', 32)
s = Solver ()

s .add (x*y==output)
s.add (Distinct(((y & x)* -2) + (y + x) ,output))

print (s.check())

Overflow Behaviour

= We want to check whether z3 can find a model for the following
" x = BitVector ("x", 8)
" (x + 1 < x = 1)

Operations on BitVectors

= The BitVector Sort respects overloaded operators:
"< > <=, +, -, etc.
= Caution: These are signed interpretations
" Use ULT, UGT, ULE for unsigned interpretations

= Overflow and Underflow
" BVAddNoOverflow, BVAddNoUnderflow
" BVMulNoOverflow, BVMulNoUnderflow

Variables in a Satisfying Model

= Variables and Expressions are stored in z3-specific classes

" We can use solver.model () .decls () toiterate through all

declared variables
" Use .as long () toconverta BitVector to a Python Integer

model = solver.model ()
for var in solver.model.decls () :
print (f"{var}: {model[var]} (:{type (model[var])})")

Overflow Behaviour

= \We want to check whether the statement TODO
" x + 1 < x = 1)

= We need to add
" BVNoOverflow(x,1l, True)
" BVNoUnderflow(x,1l, True)

= Functions that evaluate to False when Over-/Underflow would
occur in the model

Assighment Sheet

= 4 Exercises + 1 Bonus Exercise

Assighment Sheet

= 4 Exercises + 1 Bonus Exercise

" You are allowed to work in groups of 2
= |f you do so, please add your information into the README

Assighment Sheet

= 4 Exercises + 1 Bonus Exercise

" You are allowed to work in groups of 2
= |f you do so, please add your information into the README

= Deadline: 05. 06. 2024

	Slide 1
	Slide 2:
	Slide 3:
	Slide 4:
	Slide 5:
	Slide 6:
	Slide 7:
	Slide 8:
	Slide 9:
	Slide 10:
	Slide 11:
	Slide 12:
	Slide 13:
	Slide 14:
	Slide 15:
	Slide 16:
	Slide 17:
	Slide 18:
	Slide 19:
	Slide 20:
	Slide 21:
	Slide 22:
	Slide 23:
	Slide 24:
	Slide 25:
	Slide 26:
	Slide 27:
	Slide 28:
	Slide 29:
	Slide 30:
	Slide 31:
	Slide 32:
	Slide 33:
	Slide 34:
	Slide 35:
	Slide 36:
	Slide 37:
	Slide 38:
	Slide 39:
	Slide 40:
	Slide 41:
	Slide 42:
	Slide 43:
	Slide 44:
	Slide 45:
	Slide 46:

