Logic and Computability

S C I E N C E P A S S I O N T E C H N O L O G Y

Combinational Equivalence Checking

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

Bettina Könighofer bettina.koenighofer@iaik.tugraz.at

Stefan Pranger stefan.pranger@iaik.tugraz.at

https://xkcd.com/287/

CHOTCHKIES R	ESTAURANT
- APPETIZER	s
MIXED FRUIT	2.15
FRENCH FRIES	2.75
SIDE SALAD	3.35
HOT WINGS	3.55
MOZZARELLA STICKS	4.20
SAMPLER PLATE	5.80
- SANDWICHES	\sim
BARBECUE	6 55

WED LIKE EXACTLY \$ 15.05 WORTH OF APPETIZERS, PLEASE. ... EXACTLY? UHH ... HERE, THESE PAPERS ON THE KNAPSACK PROBLEM MIGHT HELP YOU OUT. LISTEN. I HAVE SIX OTHER TABLES TO GET TO -- AS FAST AS POSSIBLE, OF COURSE. WANT SOMETHING ON TRAVELING SALESMAN?

Recap - Topics we discussed so far

- Propositional Logic
 - Syntax and Semantics
- SAT Solving (DPLL)
 - (Efficiently) solve huge formulas
- BDDs
 - Data structure to efficiently store and manipulate formulas
- Natural Deduction
 - Prove that arguments in prop. logic are valid

Plan of Today

First Part – A few Basic Concepts of Propositional Logic

- Last lecture about propositional logic
 - Next week: predicate logic
- Several basic concepts
 - Relations between Satisfiability, Validity, and Equivalence
 - Normal Forms: CNF, DNF
 - Logical equivalences: Distributive laws, De Morgan's law...
- Tseitin Encoding
 - Computes equisatisfiable formula in CNF
- Equivalence checking via reduction to SAT

Second Part – Z3

- Introduction to SMT solver Z3
- Focus on solving formulas in propositional logic

- Algorithm Decide equivalence of combinational circuits
 Based on reduction to Satisfiability
- Relations between Satisfiability, Validity, and Equivalence
- Normal Forms
- Tseitin Encoding
 - Algorithm to translate formula in equisatisfiable formula in CNF

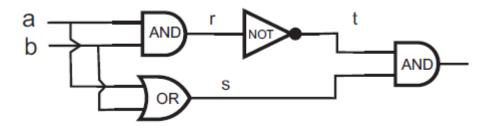
Learning Outcomes

After this lecture...

- 1. students can apply the algorithm to check for equivalence based on the reduction to SAT.
- 2. students can explain the relation between satisfiability, validity, and equivalence.
- 3. students can rewrite and simplify formulas by applying logical equivalences.
- 4. students can construct the CNF and DNF normal forms of formulas via truth tables.
- 5. students can apply Tseitin's algorithm to construct formulas in CNF.
- 6. students can explain the concept of equisatisfiability.

Combinational Equivalence Checking

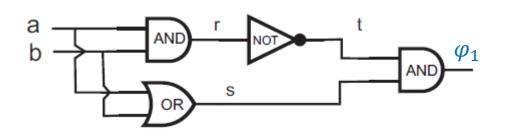
- Circuit Optimization and Synthesis Tools
 - Big Market
 - Tools can make mistakes!
 - Need to check for equivalence

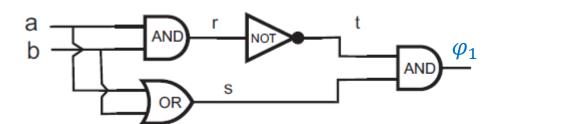


Algorithm - Circuit Equivalence via Truth Tables

- Using Truth Tables: Check for $\phi \models \psi$ and $\psi \models \phi$?
 - i.e., ϕ and ψ are true for the same models
 - Exponentially large
 - \rightarrow Not practicable!
- Better way: Reduction to SAT

Step 1: Encode C₁ and C₂ into formulas:





Step 1: Encode C₁ **and** C₂ **into formulas:**

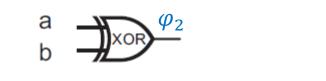
$$\begin{aligned} \varphi_1 &= t \wedge s \\ &= \neg r \wedge (a \lor b) \\ &= \neg (a \land b) \wedge (a \lor b) \end{aligned}$$

 $\varphi_2 = (\boldsymbol{a} \land \neg \boldsymbol{b}) \lor (\neg \boldsymbol{a} \land \boldsymbol{b})$

 φ_1

AND

Step 1: Encode C₁ and C₂ into formulas:



AND

s

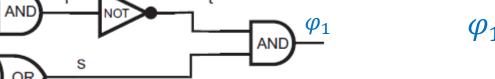
$$\varphi_2 = (\boldsymbol{a} \wedge \neg \boldsymbol{b}) \vee (\neg \boldsymbol{a} \wedge \boldsymbol{b})$$

Circuits are **equivalent** $\Leftrightarrow \varphi_1 \oplus \varphi_2$ is **unsatisfiable**.

а

b

Step 1: Encode C₁ and C₂ into formulas:



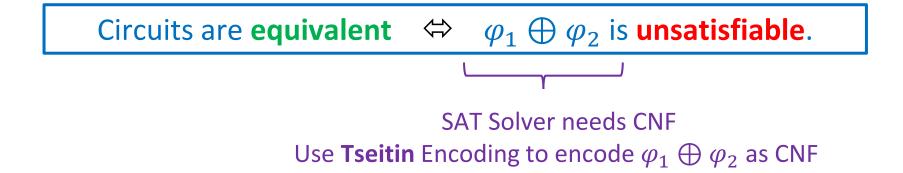
$$\varphi_1 = \neg(\boldsymbol{a} \wedge \boldsymbol{b}) \wedge (\boldsymbol{a} \vee \boldsymbol{b})$$

a b φ_2

а

b

$$\varphi_2 = (\boldsymbol{a} \wedge \neg \boldsymbol{b}) \vee (\neg \boldsymbol{a} \wedge \boldsymbol{b})$$



- 1. Encode C_1 and C_2 into two formulas φ_1 and φ_2
- 2. Compute the Conjunctive Normal Form (CNF) of $\varphi_1 \oplus \varphi_2$
 - Use Tseitin Encoding
- 3. Give $CNF(\varphi_1 \oplus \varphi_2)$ to a **SAT solver**
- 4. C_1 and C_2 are **equivalent** if and only if $\varphi_1 \oplus \varphi_2$ is **UNSAT**

- Algorithm Decide equivalence of combinational circuits
 Based on reduction to Satisfiability
- Relations between Satisfiability, Validity, and Equivalence
- Normal Forms
- Tseitin Encoding

Duality: Validity and Satisfiability

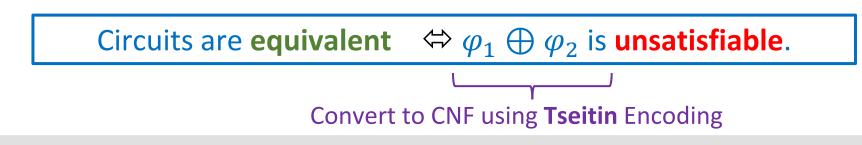
- ϕ is valid $\Leftrightarrow \neg \phi$ is not satisfiable ϕ is satisfiable $\Leftrightarrow \neg \phi$ is not valid
- Example:
 - $\phi = (x \lor \neg x)$ is valid. Truth Table: All rows **T**.
 - $\neg \phi = \neg (x \lor \neg x) \equiv \neg x \land x$ is not satisfiable. Truth Table: All rows **F**.
- Only one decision procedure needed

Reductions

Only one decision procedure needed

Solve using	ϕ satisfiable?	ϕ valid?	$\phi\equiv\psi$?
Satisfiability	\checkmark	<i>¬∲</i> not satisfiable?	$\phi \oplus \psi$ not satisfiable?
Validity	$\neg \phi$ not valid?		$\phi \leftrightarrow \psi$ valid?
Equivalence	$\phi ot\equiv \perp$?	$\phi \equiv op ?$	

- Algorithm Decide equivalence of combinational circuits
 Based on reduction to Satisfiability
- Relations between Satisfiability, Validity, and Equivalence
- Normal Forms
- Tseitin Encoding



Normal Forms

- Literal: propositional variable or its negation
 - Example: p, $\neg q$
- Disjunctive Normal Form (DNF)
 - Disjunction of conjunction of literals:

 $(a_1 \wedge a_2 \wedge \cdots \wedge a_n) \vee (b_1 \wedge \cdots \wedge b_m) \vee \cdots$

where each a_i , b_j is a literal

- Conjunctive Normal Form (CNF)
 - Conjunction of disjunctions of literals:

$$(a_1 \lor a_2 \lor \cdots \lor a_n) \land (b_1 \lor \cdots \lor b_m) \land \cdots$$

where each a_i , b_j is a literal

Ways to Obtain a CNF

- SAT Solvers require formula in CNF as input
- Obtain CNF via Truth Table
 - Exponential size
- Obtain CNF via logical equivalences (De Morgan's laws, Distributive laws...)
 Exponential size
- Tseitin Encoding
 - Use auxiliary variables
 - Linear blow-up
 - Produces equisatisfiable formula with linear blowup

DNF from Truth Table

S

Example:

19

p	q	r	$(r \lor q) \to (p \land \neg q)$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Example:

p	q	r	$(r \lor q) ightarrow (p \land \neg q)$		
0	0	0	1		$\neg r$
0	0	1	0	_	
0	1	0	0		
0	1	1	0	_	
1	0	0	1	(1
1	0	1	1		
1	1	0	0		
1	1	1	0		
_					

Enumerate satisfying models, connect satisfying models with disjunctions.

 $\neg p \land \neg q \land \neg r$

 $p \land \neg q \land \neg r$ $p \land \neg q \land r$

DNF: $(\neg p \land \neg q \land \neg r) \lor (p \land \neg q \land \neg r) \lor (p \land \neg q \land r)$

CNF from Truth Table

5

Example:

21

p	q	r	$(p \lor \neg q) ightarrow r$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

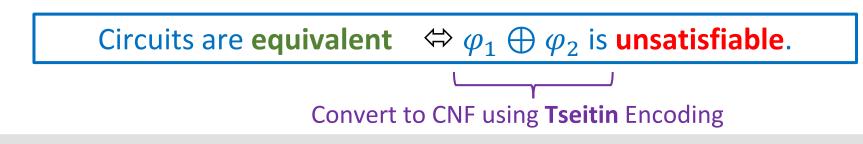
CNF from Truth Table

Exa	amp	ole:			connect with conju
p	q	r	$(p \lor \neg q) ightarrow r$		
0	0	0	0		$p \lor q \lor r$
0	0	1	1		
0	1	0	1		
0	1	1	1		
1	0	0	0		$\neg p \lor q \lor r$
1	0	1	1		
1	1	0	0	($\neg p \lor \neg q \lor r$
1	1	1	1		• •

Exclude falsifying models by requiring that at least one literal per falsifying model must be different, connect with conjunctions.

 $\mathsf{CNF}: (p \lor q \lor r) \land (\neg p \lor q \lor r) \land (\neg p \lor \neg q \lor r)$

- Algorithm Decide equivalence of combinational circuits
 Based on reduction to Satisfiability
- Relations between Satisfiability, Validity, and Equivalence
- Normal Forms
- Tseitin Encoding



Tseitin Encoding

- Produces equisatisfiable formula in CNF with linear blowup
- Trick: Use auxiliary variables
- Definition of equisatisfiability:

 ϕ and ψ are **equisatisfiable** \iff either both are satisfiable, or both are unsatisfiable

For equivalence checking, we only need the info SAT or UNSAT

Tseitin Encoding

- Step 1
 - Assign new variables to each sub-formula
- Step 2
 - Add explanation for each new variable
- Step 3
 - Apply Tseitin Rewrite Rules to obtain equisatisfiable CNF

$$\begin{split} \chi \leftrightarrow (\varphi \lor \psi) & \Leftrightarrow \quad (\neg \varphi \lor \chi) \land (\neg \psi \lor \chi) \land (\neg \chi \lor \varphi \lor \psi) \\ \chi \leftrightarrow (\varphi \land \psi) & \Leftrightarrow \quad (\neg \chi \lor \varphi) \land (\neg \chi \lor \psi) \land (\neg \varphi \lor \neg \psi \lor \chi) \\ \chi \leftrightarrow \neg \varphi & \Leftrightarrow \quad (\neg \chi \lor \neg \varphi) \land (\varphi \lor \chi) \end{split}$$

²⁶ Example – Tseitin Encoding

Use Tseitin encoding to compute the CNF of $\varphi = ((p \lor q) \land r) \lor \neg p$.

Rewrite Rules

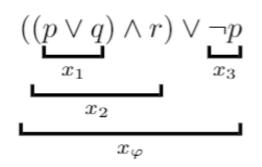
$\chi \leftrightarrow (\varphi \lor \psi)$	\Leftrightarrow	$(\neg \varphi \lor \chi) \land (\neg \psi \lor \chi) \land (\neg \chi \lor \varphi \lor \psi)$
$\chi \leftrightarrow (\varphi \wedge \psi)$	\Leftrightarrow	$(\neg \chi \lor \varphi) \land (\neg \chi \lor \psi) \land (\neg \varphi \lor \neg \psi \lor \chi)$
$\chi\leftrightarrow\neg\varphi$	\Leftrightarrow	$(\neg \chi \lor \neg \varphi) \land (\varphi \lor \chi)$

²⁷ Example – Tseitin Encoding

Use Tseitin encoding to compute the CNF of $\varphi = ((p \lor q) \land r) \lor \neg p$.

Rewrite Rules

$\chi \leftrightarrow (\varphi \lor \psi)$	\Leftrightarrow	$(\neg \varphi \lor \chi) \land (\neg \psi \lor \chi) \land (\neg \chi \lor \varphi \lor \psi)$
$\chi \leftrightarrow (\varphi \wedge \psi)$	\Leftrightarrow	$(\neg \chi \lor \varphi) \land (\neg \chi \lor \psi) \land (\neg \varphi \lor \neg \psi \lor \chi)$
$\chi\leftrightarrow\neg\varphi$	\Leftrightarrow	$(\neg \chi \lor \neg \varphi) \land (\varphi \lor \chi)$



$$CNF(\varphi) = (\neg p \lor x_1) \land (\neg q \lor x_1) \land (\neg x_1 \lor p \lor q)$$

$$\land (\neg x_2 \lor x_1) \land (\neg x_2 \lor r) \land (\neg x_1 \lor \neg r \lor x_2)$$

$$\land (\neg x_3 \lor \neg p) \land (p \lor x_3)$$

$$\land (\neg x_2 \lor x_{\varphi}) \land (\neg x_3 \lor x_{\varphi}) \land (\neg x_{\varphi} \lor x_2 \lor x_3)$$

$$\land x_{\varphi}$$

²⁸ Example – Tseitin Encoding

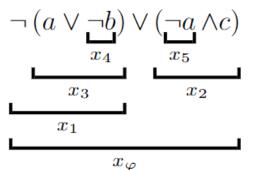
Use Tseitin encoding to compute the CNF of $\varphi = \neg(a \lor \neg b) \lor (\neg a \land c)$.

Rewrite Rules

$\chi \leftrightarrow (\varphi \lor \psi)$	\Leftrightarrow	$(\neg \varphi \lor \chi) \land (\neg \psi \lor \chi) \land (\neg \chi \lor \varphi \lor \psi)$
$\chi \leftrightarrow (\varphi \wedge \psi)$	\Leftrightarrow	$(\neg \chi \lor \varphi) \land (\neg \chi \lor \psi) \land (\neg \varphi \lor \neg \psi \lor \chi)$
$\chi\leftrightarrow\neg\varphi$	\Leftrightarrow	$(\neg \chi \lor \neg \varphi) \land (\varphi \lor \chi)$

²⁹ Example – Tseitin Encoding

Use Tseitin encoding to compute the CNF of $\varphi = \neg(a \lor \neg b) \lor (\neg a \land c)$.



 $\chi \leftrightarrow (\varphi \lor \psi) \quad \Leftrightarrow \quad (\neg \varphi \lor \chi) \land (\neg \psi \lor \chi) \land (\neg \chi \lor \varphi \lor \psi)$ $\chi \leftrightarrow (\varphi \land \psi) \quad \Leftrightarrow \quad (\neg \chi \lor \varphi) \land (\neg \chi \lor \psi) \land (\neg \varphi \lor \neg \psi \lor \chi)$ $\chi \leftrightarrow \neg \varphi \quad \Leftrightarrow \quad (\neg \chi \lor \neg \varphi) \land (\varphi \lor \chi)$

$$CNF(\varphi) = x_{\varphi} \land (\neg x_1 \lor x_{\varphi}) \land (\neg x_2 \lor x_{\varphi}) \land (\neg x_{\varphi} \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_3) \land (x_1 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_4 \lor x_3) \land (\neg x_3 \lor a \lor x_4) \land (\neg x_2 \lor x_3) \land (\neg x_2 \lor c) \land (\neg x_5 \lor \neg c \lor x_2) \land (\neg x_4 \lor \neg b) \land (x_4 \lor b) \land (\neg x_5 \lor \neg a) \land (x_5 \lor a)$$

³⁰ Derive Rewrite Rules

• $\mathbf{r} \leftrightarrow (\mathbf{p} \land \mathbf{q})$... rewrite it to a CNF

De-Morgan

 $\neg (a \land b) \equiv \neg a \lor \neg b$ $\neg (a \lor b) \equiv \neg a \land \neg b$

Distributive Law

31 **Derive Rewrite Rules**

- $\mathbf{r} \leftrightarrow (\mathbf{p} \land \mathbf{q})$... rewrite it to a CNF
- $(r \rightarrow p \land q) \land (p \land q \rightarrow r)$
- $(\neg r \lor (p \land q)) \land (\neg (p \land q) \lor r)$
- $(\neg r \lor p) \land (\neg r \lor q) \land (\neg p \lor \neg q \lor r)$

De-Morgan

 $\neg (a \land b) \equiv \neg a \lor \neg b$ $\neg(a \lor b) \equiv \neg a \land \neg b$

Distributive Law

³² Derive Rewrite Rules

• $r \leftrightarrow (p \lor q)$... rewrite it to a CNF

De-Morgan

 $\neg (a \land b) \equiv \neg a \lor \neg b$ $\neg (a \lor b) \equiv \neg a \land \neg b$

Distributive Law

Derive Rewrite Rules

- $r \leftrightarrow (p \lor q)$... rewrite it to a CNF
- $((p \lor q) \rightarrow r) \land (r \rightarrow p \lor q)$
- $(\neg(p \lor q) \lor r) \land (\neg r \lor p \lor q)$
- $((\neg p \land \neg q) \lor r) \land (\neg r \lor p \lor q)$
- $(\neg p \lor r) \land (\neg q \lor r) \land (\neg r \lor p \lor q)$

De-Morgan

 $\neg (a \land b) \equiv \neg a \lor \neg b$ $\neg (a \lor b) \equiv \neg a \land \neg b$

Distributive Law

Derive the rewrite rule for $x \leftrightarrow (p \rightarrow q)$.

 $a \to b \equiv \neg a \lor b$ De-Morgan

 $\neg (a \land b) \equiv \neg a \lor \neg b$ $\neg (a \lor b) \equiv \neg a \land \neg b$

Distributive Law

³⁵ Example

Derive the rewrite rule for $x \leftrightarrow (p \rightarrow q)$.

$$\begin{aligned} x \leftrightarrow (p \rightarrow q) \Leftrightarrow x \leftrightarrow (p \rightarrow q) \\ \Leftrightarrow (x \rightarrow (p \rightarrow q)) \land ((p \rightarrow q) \rightarrow x) \\ \Leftrightarrow (x \rightarrow (\neg p \lor q)) \land ((\neg p \lor q) \rightarrow x) \\ \Leftrightarrow (\neg x \lor (\neg p \lor q)) \land (\neg (\neg p \lor q) \lor x) \\ \Leftrightarrow (\neg x \lor \neg p \lor q) \land ((\neg \neg p \land \neg q) \lor x) \\ \Leftrightarrow (\neg x \lor \neg p \lor q) \land ((p \land \neg q) \lor x) \\ \Leftrightarrow (\neg x \lor \neg p \lor q) \land ((p \lor x) \land (\neg q \lor x)) \\ \Leftrightarrow (\neg x \lor \neg p \lor q) \land (p \lor x) \land (\neg q \lor x) \end{aligned}$$

 $a \rightarrow b \equiv \neg a \lor b$ De-Morgan $\neg (a \land b) \equiv \neg a \lor \neg b$

 $\neg(a \lor b) \equiv \neg a \land \neg b$

Distributive Law

 $a \lor (b \land c) \equiv (a \lor b) \land (a \lor c)$

 $a \land (b \lor c) \equiv (a \land b) \lor (a \land c)$

³⁶ CEC Example

Check whether $\varphi_1 = a \land \neg b$ and $\varphi_2 = \neg(\neg a \lor b)$ are equivalent using the reduction to SAT.

CEC Example

Check whether $\varphi_1 = a \land \neg b$ and $\varphi_2 = \neg(\neg a \lor b)$ are equivalent using the reduction to SAT.

Step 1) Build
$$\varphi = \varphi_1 \bigoplus \varphi_2$$

 $\varphi = \varphi_1 \oplus \varphi_2$
 $= [\varphi_1 \lor \varphi_2] \land \neg [\varphi_1 \land \varphi_2] =$
 $= [(a \land \neg b) \lor (\neg (\neg a \lor b))] \land \neg [(a \land \neg b) \land (\neg (\neg a \lor b))]$

Step 2) Compute CNF of φ via Tseitin $\begin{bmatrix} \left(a \land \neg b\right) \lor \left(\neg (\neg a \lor b)\right) \end{bmatrix} \land \neg \begin{bmatrix} \left(a \land \neg b\right) \lor \left(\neg (\neg a \lor b)\right) \end{bmatrix} \\ \downarrow \qquad x_7 \qquad x_8 \qquad x_7 \qquad x_8 \\ \downarrow \qquad x_7 \qquad x_8 \qquad x_6 \\ \downarrow \qquad x_7 \qquad x_8 \\ \downarrow \qquad x_8 \\ \downarrow \qquad x_7 \qquad x_8 \\ \downarrow \qquad x_8 \\ \downarrow \qquad x_7 \qquad x_8 \\ \downarrow \qquad x_8 \\ \end{matrix}$

$$CNF(\varphi) = x_{\varphi} \land \\ (\neg x_{\varphi} \lor x_{1}) \land (\neg x_{\varphi} \lor x_{2}) \land (\neg x_{1} \lor \neg x_{2} \lor x_{\varphi}) \land \\ (\neg x_{1} \lor \neg x_{2}) \land (x_{1} \lor x_{2}) \land \\ (\neg x_{3} \lor x_{1}) \land (\neg x_{4} \lor x_{1}) \land (\neg x_{1} \lor x_{3} \lor x_{4}) \land \\ (\neg x_{3} \lor a) \land (\neg x_{3} \lor x_{7}) \land (\neg a \lor \neg x_{7} \lor x_{3}) \land \\ (\neg x_{4} \lor \neg x_{6}) \land (x_{4} \lor x_{6}) \land \\ (\neg x_{8} \lor x_{6}) \land (\neg b \lor x_{6}) \land (\neg x_{6} \lor x_{8} \lor b) \land \\ (\neg x_{7} \lor \neg b) \land (x_{7} \lor b) \land \\ (\neg x_{8} \lor \neg a) \land (x_{8} \lor a)$$

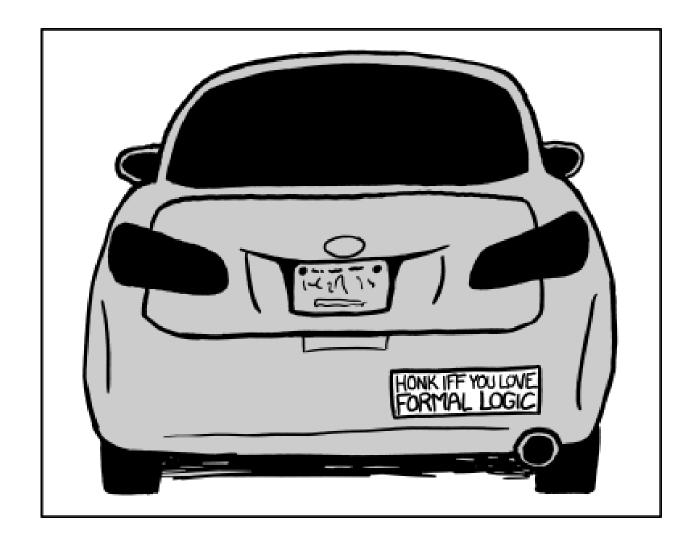
Step 3) Check via SAT Solver: Is the CNF of φ satisfiable? Step 4) Interpret result: φ_1 and φ_2 are **equivalent** if and only if $\varphi_1 \bigoplus \varphi_2$ is **UNSAT**

Learning Outcomes

After this lecture...

- 1. students can apply the algorithm to check for equivalence based on the reduction to SAT.
- 2. students can explain the relation between satisfiability, validity, and equivalence.
- 3. students can rewrite and simplify formulas by applying logical equivalences.
- 4. students can construct the CNF and DNF normal forms of formulas via truth tables.
- 5. students can apply Tseitin's algorithm to construct formulas in CNF.
- 6. students can explain the concept of equisatisfiability.

Thank You



https://xkcd.com/1033/