SCIENCE
PASSION TECHNOLOGY

Logic and Computability

Natural Deduction for Predicate Logic

Bettina Könighofer
Stefan Pranger
bettina.koenighofer@iaik.tugraz.at stefan.pranger@iaik.tugraz.at

Motivation

- Extend Natural Deduction to Predicate Logic
- Richer Language \rightarrow More powerful proofs
- Basis for "real proofs"

Learning Outcomes

After this lecture...

1. students can explain the predicate-logic specific rules of natural deduction.

Learning Outcomes

After this lecture...

1. students can explain the predicate-logic specific rules of natural deduction.
2. for valid sequents in predicate logic, students can construct natural deduction proofs to proof that the sequent is valid.

Learning Outcomes

After this lecture...

1. students can explain the predicate-logic specific rules of natural deduction.
2. for valid sequents in predicate logic, students can construct natural deduction proofs to proof that the sequent is valid.
3. for invalid sequents in predicate logic, students can construct counter examples to show that the sequent is invalid.

Learning Outcomes

After this lecture...

1. students can explain the predicate-logic specific rules of natural deduction.
2. for valid sequents in predicate logic, students can construct natural deduction proofs to proof that the sequent is valid.
3. for invalid sequents in predicate logic, students can construct counter examples to show that the sequent is invalid.
4. students can check given natural deduction proofs for correctness.

Plan for Today

- New Rules for Natural Deduction
- \forall-Quantifier
- Rules for introduction and elimination
- \exists-Quantifier
- Rules for introduction and elimination
- Construct natural deduction proofs
- Many examples
- Counterexample to proof that sequents are invalid

Proof Rules for Universal Quantification

$\forall x \varphi$ is true, we are allowed to replace the x in φ with any term t.

Substitution $\varphi[t / x]$
Term Variable

- Reads: „ φ with t for $x_{\text {, }}$,

Proof Rules for Universal Quantification

$\forall x \varphi$ is true, we are allowed to replace the x in φ with any term t.

Substitution $\varphi[t / x]$
Term Variable

- Reads: ${ }^{,} \varphi$ with t for $x_{\text {, }}$,
- Examples:
- $\quad \varphi=P(f(x, y)) \vee Q(x)$

Proof Rules for Universal Quantification

$\forall x \varphi$ is true, we are allowed to replace the x in φ with any term t.

Substitution $\varphi[t / x]$
Term Variable

- Reads:,φ with t for x,
- Examples:
- $\quad \varphi=P(f(x, y)) \vee Q(x)$
- $\varphi[a / x]=$

Proof Rules for Universal Quantification

$\forall x \varphi$ is true, we are allowed to replace the x in φ with any term t.

Substitution $\varphi[t / x]$
Term Variable

- Reads:,φ with t for x,
- Examples:
- $\quad \varphi=P(f(x, y)) \vee Q(x)$
- $\quad \varphi[a / x]=P(f(a, y)) \vee Q(a)$

Proof Rules for Universal Quantification

$\forall x \varphi$ is true, we are allowed to replace the x in φ with any term t.

Substitution $\varphi[t / x]$
Conditions for Substitution

Proof Rules for Universal Quantification

$\forall x \varphi$ is true, we are allowed to replace the x in φ with any term t.

Substitution $\varphi[t / x]$
Conditions for Substitution

- Replace only free variables

Proof Rules for Universal Quantification

$\forall x \varphi$ is true, we are allowed to replace the x in φ with any term t.

Substitution $\varphi[t / x]$
Conditions for Substitution

- Replace only free variables
- $\quad \varphi=\exists y(P(x, y) \vee Q(y))$ \longrightarrow bound
- $\varphi[a / y]=$

Proof Rules for Universal Quantification

$\forall x \varphi$ is true, we are allowed to replace the x in φ with any term t.

Substitution $\varphi[t / x]$
Conditions for Substitution

- Replace only free variables
- $\quad \varphi=\exists y(P(x, y) \vee Q(y))$
\longrightarrow bound
- $\varphi[a / y]=\varphi$

Proof Rules for Universal Quantification

$\forall x \varphi$ is true, we are allowed to replace the x in φ with any term t.

Substitution $\varphi[t / x]$
Conditions for Substitution

- The term t must be free for a variable $\mathrm{x} \rightarrow$ No capturing

Proof Rules for Universal Quantification

$\forall x \varphi$ is true, we are allowed to replace the x in φ with any term t.

Substitution $\varphi[t / x]$
Conditions for Substitution

- The term t must be free for a variable $\mathrm{x} \rightarrow$ No capturing
- $\varphi=\exists x(P(x) \vee Q(z))$

```
free
```

- $\varphi[f(x) / z]=$

Proof Rules for Universal Quantification

$\forall x \varphi$ is true, we are allowed to replace the x in φ with any term t.

Substitution $\varphi[t / x]$
Conditions for Substitution

- The term t must be free for a variable $\mathrm{x} \rightarrow$ No capturing
- $\varphi=\exists x(P(x) \vee Q(z))$
\longrightarrow free
- $\quad \varphi[f(x) / z]=\exists x(P(x) \vee Q(f(x)))$
\longleftrightarrow bound

Example 1

- $\forall x(\neg P(x) \rightarrow Q(x)), \neg Q(t) \vdash \quad P(t)$

$$
\frac{\forall x \varphi}{\varphi[t / x]} \forall_{e}
$$

Example 1

- $\forall x(\neg P(x) \rightarrow Q(x)), \neg Q(t) \vdash \quad P(t)$

$$
\frac{\forall x \varphi}{\varphi[t / x]} \forall_{e}
$$

1. $\forall x(\neg P(x) \rightarrow Q(x)) \quad$ prem.
2. $\neg Q(t)$ prem.
3. $\neg P(t) \rightarrow Q(t) \quad \forall \mathrm{e} 1$
4. $\neg \neg P(t)$

MT 3,2
5. $P(t)$
$\neg \neg 4$

Example 2

- $\forall x P(x) \wedge \forall x(P(y) \rightarrow Q(x)) \vdash \quad Q(z)$

$$
\frac{\forall x \varphi}{\varphi[t / x]} \forall_{e}
$$

Example 2

- $\forall x P(x) \wedge \forall x(P(y) \rightarrow Q(x)) \vdash \quad Q(z)$

1. $\forall x P(x) \wedge \forall x(P(y) \rightarrow Q(x)) \quad$ prem.
2. $\forall x P(x)$
$\wedge \mathrm{e}_{1} 1$
3. $\forall x(P(y) \rightarrow Q(x))$
$\wedge \mathrm{e}_{2} 1$
4. $P(y)$
\forall e 2
5. $\quad P(y) \rightarrow Q(z)$
6. $Q(z)$
\forall e 3
\rightarrow e 5,4

Proof Rules for Universal Quantification

- If we can proof $\varphi\left[x_{0} / x\right]$ for a fresh variable x_{0}, we can derive $\forall x \varphi$!

Example 3

- $\forall x(P(x) \rightarrow Q(x)), \quad \forall x P(x) \vdash \quad \forall x Q(x)$

$$
\frac{\forall x \varphi}{\varphi[t / x]} \forall_{e}
$$

Example 3

- $\forall x(P(x) \rightarrow Q(x)), \quad \forall x P(x) \vdash \quad \forall x Q(x)$

1.	$\forall x(P(x) \rightarrow Q(x))$	prem.
2.	$\forall x P(x)$	prem.
3.	x_{0}	$P\left(x_{0}\right) \rightarrow Q\left(x_{0}\right)$
4.	$P\left(x_{0}\right)$	$\forall \mathrm{e} 1$
5.	$Q\left(x_{0}\right)$	$\forall \mathrm{e} 2$
6.	$\forall x Q(x)$	$\rightarrow_{e} 3,4$
		$\forall \mathrm{i} 3-5$

Example 4

- $\forall x P(x) \vee \forall x Q(x) \vdash \forall y(P(y) \vee Q(y))$

$\forall x P(x) \vee \forall x Q(x) \vdash \forall y(P(y) \vee Q(y))$

,

\qquad


```
(x) \vdash \forally(P(y)\veeQ(y))
```


Example 4

- $\forall x P(x) \vee \forall x Q(x) \vdash \forall y(P(y) \vee Q(y))$

Proof Rules for Existential Quantification

$$
\frac{\varphi[t / x]}{\exists x \varphi} \exists_{i}
$$

- $\exists x$ only asks for φ to be true for some term t
- Side condition: that t be free for x in φ

Example 5

- $\forall x(P(x) \rightarrow Q(y)), \forall y(P(y) \wedge R(x)) \vdash \quad \exists x Q(x)$

8

Example 5

- $\forall x(P(x) \rightarrow Q(y)), \forall y(P(y) \wedge R(x)) \vdash \quad \exists x Q(x)$

1.	$\forall x(P(x) \rightarrow Q(y))$
2.	$\forall y(P(y) \wedge R(x))$
3.	$P(t) \rightarrow Q(y)$
4.	$P(t) \wedge R(x)$
5.	$P(t)$
6.	$Q(y)$
7.	$\exists x Q(x)$

Proof Rules for Existential Quantification

| $\left.\begin{array}{\|cc\|}\hline x_{0} & \\ & \varphi\left[x_{0} / x\right] \text { ass. } \\ \exists x \varphi & x_{0} \text { fresh } \\ \vdots \\ \chi & \\ \hline & \exists \\ \hline\end{array}\right]$ |
| :---: | :---: |

- From $\exists x \varphi$, we know that φ is true for at least one value of x

Proof Rules for Existential Quantification

- From $\exists x \varphi$, we know that φ is true for at least one value of x
- If we can proof χ without the exact knowledge of the value x_{0}, then χ can be deduced simply from the fact that there exists an x_{0}.

Proof Rules for Existential Quantification

- From $\exists x \varphi$, we know that φ is true for at least one value of x
- If we can proof χ without the exact knowledge of the value x_{0}, then χ can be deduced simply from the fact that there exists an x_{0}.
- If by assuming $\varphi\left[x_{0} / x\right]$, we can prove χ inside the box, then χ can be deduced outside of the box

Proof Rules for Existential Quantification

- From $\exists x \varphi$, we know that φ is true for at least one value of x
- If we can proof χ without the exact knowledge of the value x_{0}, then χ can be deduced simply from the fact that there exists an x_{0}.
- If by assuming $\varphi\left[x_{0} / x\right]$, we can prove χ inside the box, then χ can be deduced outside of the box
- Important: χ is not allowed to contain x_{0} !

xample

${ }^{35}$ Example 6

- $\exists x(P(x) \rightarrow Q(y)), \forall x P(x) \vdash \quad Q(y)$

6

$$
\exists x(P(x) \rightarrow Q(y)), \quad \forall x P(x) \vdash \quad Q(y)
$$

$$
1
$$

[
x_{0}
\square號

$$
\exists x(P(x) \rightarrow Q(y)),
$$

-

\square

$x(P(x) \rightarrow Q(y)), \forall x P(x) \vdash \quad Q(y)$

Example 6

- $\exists x(P(x) \rightarrow Q(y)), \forall x P(x) \vdash \quad Q(y)$

1.	$\exists x(P(x) \rightarrow Q(y))$	prem.
2.	$\forall x P(x)$	prem.
3.	x_{0}	$P\left(x_{0}\right) \rightarrow Q(y)$
4.	$P\left(x_{0}\right)$	ass.
5.	$Q(y)$	$\forall \mathrm{e} 2$
6.	$Q(y)$	$\rightarrow \mathrm{e} 3,4$
		$\exists \mathrm{e} 3-5$

Example 7

- $\forall x \neg(P(x) \wedge Q(x)) \vdash \neg \exists x(P(x) \wedge Q(x))$

Example 7

- $\forall x \neg(P(x) \wedge Q(x)) \vdash \neg \exists x(P(x) \wedge Q(x))$

1.	$\forall x \neg(P(x) \wedge Q(x))$	prem.
2.	$\exists x(P(x) \wedge Q(x))$	ass.
3.	$t \quad P(t) \wedge Q(t)$	ass.
4.	$\neg P(t) \wedge Q(t)$	$\forall \mathrm{e} 1$
5.	\perp	ᄀe 3,4
6.	\perp	$\exists \mathrm{e} 3-5$
7.	$\neg \exists x(P(x) \wedge Q(x))$	$\neg \mathrm{i} 2-6$

Example 8

- $\exists x \neg P(x), \quad \forall x \neg Q(x) \vdash \quad \exists x(\neg P(x) \wedge \neg Q(x))$

Example 8

- $\quad \exists x \neg P(x), \quad \forall x \neg Q(x) \vdash \quad \exists x(\neg P(x) \wedge \neg Q(x))$

Invalid Sequents

$$
\exists x(P(x) \rightarrow Q(y)), \quad \exists x P(x) \vdash \quad Q(y)
$$

Invalid Sequents

$$
\exists x(P(x) \rightarrow Q(y)), \quad \exists x P(x) \vdash \quad Q(y)
$$

- Model M:
- $A=\{a, b\}$
- $P^{M}=\{a\}$
- $Q^{M}=\{a\}$
- $y \leftarrow b$

Invalid Sequents

$$
\exists x(P(x) \rightarrow Q(y)), \quad \exists x P(x) \vdash \quad Q(y)
$$

- Model M:
- $A=\{a, b\}$
- $P^{M}=\{a\}$
- $Q^{M}=\{a\}$
- $y \leftarrow b$
- $M \vDash \exists x(P(x) \rightarrow Q(y)), \exists x P(x)$
- $M \nRightarrow Q(y)$

Invalid Sequents

$$
\exists x(P(x) \rightarrow Q(y)), \quad \exists x P(x) \vdash \quad Q(y)
$$

- Model M:
- $A=\{a, b\}$
- $P^{M}=\{a\}$
- $Q^{M}=\{a\}$
- $y \leftarrow b$
- $M \vDash \exists x(P(x) \rightarrow Q(y)), \exists x P(x)$
- $M \nRightarrow Q(y)$
M is a counterexample

Example 9

6.1.33 Consider the following natural deduction proof for the sequent

$$
\exists x P(x) \vee \exists x Q(x) \quad \vdash \quad \exists x(P(x) \vee Q(x))
$$

Is the proof correct? If not, explain the error in the proof and either show how to correctly prove the sequent, or give a counterexample that proves the sequent invalid.

1.	$\exists x P(x) \vee \exists x Q(x)$	prem.
2.	$\exists x P(x)$	ass.
3.	$x_{0} \quad P\left(x_{0}\right)$	ass.
4.	$P\left(x_{0}\right) \vee Q\left(x_{0}\right)$	$\mathrm{Vi}_{1} 3$
5.	$\exists x(P(x) \vee Q(x))$	ヨe 2,3-4
6.	$\exists x Q(x)$	ass.
7.	$x_{0} \quad Q\left(x_{0}\right)$	ass.
8.	$P\left(x_{0}\right) \vee Q\left(x_{0}\right)$	$\vee \mathrm{i}_{2} 7$
9.	$\exists x(P(x) \vee Q(x))$	$\exists \mathrm{e}$ 6,7-8
10.	$\exists x(P(x) \vee Q(x))$	Ve 1,2-5,6-9

Example 9

6.1.33 Consider the following natural deduction proof for the sequent

$$
\exists x P(x) \vee \exists x Q(x) \quad \vdash \quad \exists x(P(x) \vee Q(x))
$$

Is the proof correct? If not, explain the error in the proof and either show how to correctly prove the sequent, or give a counterexample that proves the sequent invalid.

Example 9

1.	$\exists x P(x) \vee \exists x Q(x)$	premise
2.	$\exists x P(x)$	assumption
3.	$P\left(x_{0}\right)$	assumption fresh x_{0}
4.	$P\left(x_{0}\right) \vee Q\left(x_{0}\right)$	$\vee_{i} 3$
5.	$\exists x(P(x) \vee Q(x))$	$\exists_{i} 4$
6.	$\exists x(P(x) \vee Q(x))$	$\exists_{e} 2,3-5$
7.	$\exists x Q(x)$	assumption
8.	$Q\left(x_{0}\right)$	assumption fresh x_{0}
9.	$P\left(x_{0}\right) \vee Q\left(x_{0}\right)$	$\vee_{i} 8$
10.	$\exists x(P(x) \vee Q(x))$	$\exists_{i} 9$
11.	$\exists x(P(x) \vee Q(x))$	$\exists_{e} 7,8-10$
12.	$\exists x(P(x) \vee Q(x))$	$\vee_{e} 1,2-6,7-11$

Example 10

6.1.7 Consider the following natural deduction proof for the sequent

$$
\forall x(P(x) \rightarrow Q(x)), \quad \exists x P(x) \quad \vdash \quad \forall x Q(x) .
$$

Is the proof correct? If not, explain the error in the proof and either show how to correctly prove the sequent, or give a counterexample that proves the sequent invalid.

	1.	$\begin{aligned} & \forall x(P(x) \rightarrow Q(x)) \\ & \exists x P(x) \end{aligned}$	prem. prem.
(2)	3.	x_{0}	
	4.	$P\left(x_{0}\right)$	ass.
\cdots	5.	$P\left(x_{0}\right) \rightarrow Q\left(x_{0}\right)$	$\forall \mathrm{e} 1$
4	6.	$Q\left(x_{0}\right)$	$\rightarrow \mathrm{e}, 4,5$
Λ	7.	$\forall x Q(x)$	$\forall \mathrm{i}$ 4-6
	8.	$\forall x Q(x)$	$\exists \mathrm{e} 2,3-7$

Example 10

$$
\forall x(P(x) \rightarrow Q(y)), \quad \exists x P(x) \quad \vdash \quad \forall x Q(x)
$$

- Model M :
- $A=\{a, b\}$
- $P^{M}=\{a\}$
- $Q^{M}=\{a\}$
- $y \leftarrow b$
- $M \vDash \forall x(P(x) \rightarrow Q(y)), \exists x P(x)$
- $M \nRightarrow Q(y)$
M is a counterexample

Thank You

