

Logic and Computability

Natural Deduction for Predicate Logic

Bettina KönighoferStefan Prangerbettina.koenighofer@iaik.tugraz.atstefan.pranger@iaik.tugraz.at

https://xkcd.com/2497/

Extend Natural Deduction to Predicate Logic Richer Language More powerful proofs

Basis for "real proofs"

After this lecture...

1. students can explain the predicate-logic specific rules of natural deduction.

After this lecture...

- 1. students can explain the predicate-logic specific rules of natural deduction.
- 2. for valid sequents in predicate logic, students can construct natural deduction proofs to proof that the sequent is valid.

Learning Outcomes

After this lecture...

- 2. for valid sequents in predicate logic, students can construct natural deduction proofs to proof that the sequent is valid.
- 3. for invalid sequents in predicate logic, students can construct counter examples to show that the sequent is invalid.

Learning Outcomes

After this lecture...

- 2. for valid sequents in predicate logic, students can construct natural deduction proofs to proof that the sequent is valid.
- 3. for invalid sequents in predicate logic, students can construct counter examples to show that the sequent is invalid.
- 4. students can check given natural deduction proofs for correctness.

Plan for Today

- New Rules for Natural Deduction
 - ∀-Quantifier
 - Rules for introduction and elimination
 - ∃-Quantifier
 - Rules for introduction and elimination
- Construct natural deduction proofs
 - Many examples
- Counterexample to proof that sequents are invalid

 $\forall x \ \varphi$ is true, we are allowed to replace the x in φ with any term t.

• Reads: " φ with t for x"

 $\forall x \ \varphi$ is true, we are allowed to replace the x in φ with any term t.

- Reads: " φ with t for x"
- Examples:
 - $\varphi = P(f(x, y)) \vee Q(x)$

 $\forall x \ \varphi$ is true, we are allowed to replace the x in φ with any term t.

- Reads: " φ with t for x"
- Examples:
 - $\varphi = P(f(x, y)) \vee Q(x)$
 - $\varphi[a/x] =$

 $\forall x \ \varphi$ is true, we are allowed to replace the x in φ with any term t.

- Reads: " φ with t for x"
- Examples:
 - $\varphi = P(f(x,y)) \vee Q(x)$
 - $\varphi[a/x] = P(f(a, y)) \lor Q(a)$

 $\forall x \ \varphi$ is true, we are allowed to replace the x in φ with any term t.

Substitution $\varphi[t/x]$ Conditions for Substitution

 $\forall x \ \varphi$ is true, we are allowed to replace the x in φ with any term t.

Substitution $\varphi[t/x]$

Conditions for Substitution

Replace only *free* variables

 $\forall x \ \varphi$ is true, we are allowed to replace the x in φ with any term t.

Substitution $\varphi[t/x]$

Conditions for Substitution

- Replace only *free* variables
 - $\varphi = \exists y (P(x, y) \lor Q(y))$ bound
 - $\varphi[a/y] =$

 $\forall x \ \varphi$ is true, we are allowed to replace the x in φ with any term t.

Substitution $\varphi[t/x]$

Conditions for Substitution

- Replace only *free* variables
 - $\varphi = \exists y (P(x, y) \lor Q(y))$ bound

•
$$\varphi[a/y] = \varphi$$

 $\forall x \ \varphi$ is true, we are allowed to replace the x in φ with any term t.

Substitution $\varphi[t/x]$

Conditions for Substitution

• The term t must be free for a variable $x \rightarrow No$ capturing

 $\forall x \ \varphi$ is true, we are allowed to replace the x in φ with any term t.

Substitution $\varphi[t/x]$

Conditions for Substitution

- The term t must be free for a variable $x \rightarrow No$ capturing
 - $\varphi = \exists x (P(x) \lor Q(z))$

• $\varphi[f(x)/z] =$

 $\forall x \ \varphi$ is true, we are allowed to replace the x in φ with any term t.

Substitution $\varphi[t/x]$

Conditions for Substitution

- The term t must be free for a variable $x \rightarrow No$ capturing
 - $\varphi = \exists x (P(x) \lor Q(z))$

•
$$\varphi[f(x)/z] = \exists x \left(P(x) \lor Q(f(x)) \right)$$

• bound

• $\forall x (\neg P(x) \rightarrow Q(x)), \neg Q(t) \vdash P(t)$

•
$$\forall x (\neg P(x) \rightarrow Q(x)), \neg Q(t) \vdash P(t)$$

$$\frac{\forall x \ \varphi}{\varphi \left[t/x \right]} \ \forall_e$$

1.
$$\forall x (\neg P(x) \rightarrow Q(x))$$
 prem.2. $\neg Q(t)$ prem.3. $\neg P(t) \rightarrow Q(t)$ 4. $\neg \neg P(t)$ 5. $P(t)$

• $\forall x P(x) \land \forall x (P(y) \rightarrow Q(x)) \vdash Q(z)$

• $\forall x P(x) \land \forall x (P(y) \rightarrow Q(x)) \vdash Q(z)$

If we can proof $\varphi[x_0/x]$ for a **fresh variable** x_0 , we can derive $\forall x \varphi$!

• $\forall x (P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x Q(x)$

• $\forall x (P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x Q(x)$

1.		$\forall x \ \left(P(x) \to Q(x) \right)$	prem.
2.		$\forall x \ P(x)$	prem.
3.	x_0	$P(x_0) \to Q(x_0)$	$\forall e 1$
4.		$P(x_0)$	$\forall e 2$
5.		$Q(x_0)$	$\rightarrow_e 3,4$
6.		$\forall x \ Q(x)$	∀i 3-5

• $\forall x P(x) \lor \forall x Q(x) \vdash \forall y (P(y) \lor Q(y))$

• $\forall x P(x) \lor \forall x Q(x) \vdash \forall y (P(y) \lor Q(y))$

1.	$\forall x \ P(x) \lor \forall x \ Q(x)$	prem.
2.	$\forall x P(x)$	ass.
3.	t P(t)	$\forall e 2$
4.	$P(t) \lor Q(t)$	$\vee i_1 3$
5.	$\forall y \ (P(y) \lor Q(y))$	∀i 3-4
6.	$\forall x \ Q(x)$	ass.
7.	s Q(s)	∀e 6
8.	$P(s) \lor Q(s)$	$\vee i_2 7$
9.	$\forall y \ (P(y) \lor Q(y))$	∀i 7-8
10.	$\forall y \ (P(y) \lor Q(y))$	ve $1,2-5,6-9$

$$\frac{\varphi\left[t/x\right]}{\exists x \; \varphi} \; \exists_i$$

- $\exists x$ only asks for φ to be true for some term t
- Side condition: that *t* be *free* for x in φ

• $\forall x (P(x) \rightarrow Q(y)), \forall y (P(y) \land R(x)) \vdash \exists x Q(x)$

• $\forall x (P(x) \rightarrow Q(y)), \forall y (P(y) \land R(x)) \vdash \exists x Q(x)$

1.	$\forall x \ (P(x) \to Q(y))$	prem.
2.	$\forall y \ (P(y) \land R(x))$	prem.
3.	$P(t) \to Q(y)$	$\forall e 1$
4.	$P(t) \wedge R(x)$	$\forall e 2$
5.	P(t)	$\wedge e_1 4$
6.	Q(y)	$\rightarrow e 3$
7.	$\exists x \ Q(x)$	∃i 6

From $\exists x \ \varphi$, we know that φ is true for at least one value of x

- From $\exists x \phi$, we know that ϕ is true for at least one value of x
- If we can proof χ without the exact knowledge of the value x_0 , then χ can be deduced simply from the fact that there exists an x_0 .

- From $\exists x \ \varphi$, we know that φ is true for at least one value of x
- If we can proof χ without the exact knowledge of the value x_0 , then χ can be deduced simply from the fact that there exists an x_0 .
 - If by assuming $\varphi[x_0/x]$, we can prove χ inside the box, then χ can be deduced outside of the box

- From $\exists x \ \varphi$, we know that φ is true for at least one value of x
- If we can proof χ without the exact knowledge of the value x_0 , then χ can be deduced simply from the fact that there exists an x_0 .
 - If by assuming $\varphi[x_0/x]$, we can prove χ inside the box, then χ can be deduced outside of the box
- Important: χ is not allowed to contain $x_0!$

• $\exists x (P(x) \rightarrow Q(y)), \forall x P(x) \vdash Q(y)$

36

• $\exists x (P(x) \rightarrow Q(y)), \forall x P(x) \vdash Q(y)$

1.	$\exists x \ (P(x) \to Q(y))$	prem.
2.	$\forall x \ P(x)$	prem.
3.	$x_0 P(x_0) \to Q(y)$	ass.
4.	$P(x_0)$	$\forall e 2$
5.	Q(y)	$\rightarrow {\rm e}$ 3,4
<mark>6</mark> .	Q(y)	$\exists e 3-5$

 $= \forall x \neg (P(x) \land Q(x)) \vdash \neg \exists x (P(x) \land Q(x))$

 $= \forall x \neg (P(x) \land Q(x)) \vdash \neg \exists x (P(x) \land Q(x))$

1.	$\forall x \neg (P(x) \land Q(x))$	prem.
2.	$\exists x \ (P(x) \land Q(x))$	ass.
3.	$t P(t) \land Q(t)$	ass.
4.	$\neg P(t) \land Q(t)$	$\forall e 1$
5.	1	¬e 3,4
6.	1	∃e 3-5
7.	$\neg \exists x \ (P(x) \land Q(x))$	¬i 2-6

• $\exists x \neg P(x), \forall x \neg Q(x) \vdash \exists x (\neg P(x) \land \neg Q(x))$

 $\exists x \neg P(x), \quad \forall x \neg Q(x) \vdash \quad \exists x (\neg P(x) \land \neg Q(x))$

1.		$\exists x \neg P(x)$	prem .
2.		$\forall x \neg Q(x)$	prem.
3.	x_0	$\neg P(x_0)$	ass.
4.		$\neg Q(x_0)$	$\forall e \ 2$
5.		$\neg P(x_0) \land \neg Q(x_0)$	∧i 3,4
6.		$\exists x \ (\neg P(x) \land \neg Q(x))$	$\exists i 5$
7.		$\exists x \ (\neg P(x) \land \neg Q(x))$	∃e 1, 3-6

 $\exists x (P(x) \to Q(y)), \quad \exists x P(x) \vdash Q(y)$

 $\exists x (P(x) \to Q(y)), \quad \exists x P(x) \vdash Q(y)$

- Model *M*:
 - $A = \{a, b\}$
 - $P^M = \{a\}$
 - $Q^M = \{a\}$
 - $y \leftarrow b$

 $\exists x (P(x) \to Q(y)), \quad \exists x P(x) \vdash Q(y)$

- Model *M*:
 - $A = \{a, b\}$
 - $P^M = \{a\}$
 - $Q^M = \{a\}$
 - $y \leftarrow b$
- $M \models \exists x (P(x) \rightarrow Q(y)), \exists x P(x)$
- $M \not\models Q(y)$

 $\exists x (P(x) \to Q(y)), \quad \exists x P(x) \vdash Q(y)$

- Model *M*:
 - $A = \{a, b\}$
 - $P^M = \{a\}$
 - $Q^M = \{a\}$
 - $y \leftarrow b$
- *M* ⊨ ∃*x*(*P*(*x*) → *Q*(*y*)), ∃*x P*(*x*) *M* ⊨ *Q*(*y*) *M* ⊨ *Q*(*y*)

6.1.33 Consider the following natural deduction proof for the sequent

 $\exists x \ P(x) \lor \exists x \ Q(x) \qquad \vdash \qquad \exists x \ (P(x) \lor Q(x)).$

Is the proof correct? If not, explain the error in the proof and either show how to correctly prove the sequent, or give a counterexample that proves the sequent invalid.

1.	$\exists x \ P(x)$	$x) \lor \exists x \ Q(x)$	prem.
2.	$\exists x \ P(x) = \sum_{i=1}^{n} P(x) $	x)	ass.
3.	$x_0 P(x_0)$		ass.
4.	$P(x_0)$	$\lor Q(x_0)$	$\forall i_1 3$
5.	$\exists x \ (P$	$(x) \lor Q(x))$	∃e 2,3-4
6.	$\exists x \ Q(x)$	x)	ass.
7.	$x_0 Q(x_0)$		ass.
8.	$P(x_0)$	$\lor Q(x_0)$	$\forall i_2 7$
9.	$\exists x \ (P$	$(x) \lor Q(x))$	∃e 6,7-8
10.	$\exists x \ (P$	$(x) \lor Q(x))$	∨e 1,2-5,6-9

6.1.33 Consider the following natural deduction proof for the sequent

 $\exists x \ P(x) \lor \exists x \ Q(x) \qquad \vdash \qquad \exists x \ (P(x) \lor Q(x)).$

Is the proof correct? If not, explain the error in the proof and either show how to correctly prove the sequent, or give a counterexample that proves the sequent invalid.

1.		$\exists x \ P(x) \lor \exists x \ Q(x)$	prem.		
2.		$\exists x \ P(x)$	ass.		
3.	x_0	$P(x_0)$	ass.]	<i>⊐i</i> missing
4.		$P(x_0) \lor Q(x_0) \checkmark$	∨i₁ 3		
5.		$\exists x \ (P(x) \lor Q(x))$	$\exists e 2,3-4$		
6.		$\exists x \ Q(x)$	ass.		
7.	x_0	$Q(x_0)$	ass.]	
8.		$P(x_0) \lor Q(x_0) \checkmark$	Via 7		∃ <i>i</i> missing
9.		$\exists x \ (P(x) \lor Q(x))$	∃e 6,7-8		
10.		$\exists x \ (P(x) \lor Q(x))$	$\lor e \ 1,2-5,6-9$		

 $\exists x \ P(x) \lor \exists x \ Q(x)$ 1. premise $\exists x \ P(x)$ 2.assumption 3. $P(x_0)$ assumption fresh x_0 $P(x_0) \lor Q(x_0)$ $\vee_i 3$ 4. 5. $\exists x \ (P(x) \lor Q(x)) \qquad \exists_i 4$ $\exists x \ (P(x) \lor Q(x))$ 6. $\exists_e 2, 3-5$ 7. $\exists x \ Q(x)$ assumption 8. $Q(x_0)$ assumption fresh x_0 $P(x_0) \lor Q(x_0)$ 9. $\vee_i 8$ $\exists x \ (P(x) \lor Q(x))$ $\exists_i 9$ 10. $\exists x \ (P(x) \lor Q(x)) \qquad \exists_e 7, 8-10$ 11. $\exists x \ (P(x) \lor Q(x)) \lor \lor_e 1, 2 - 6, 7 - 11$ 12.

 $6.1.7\,$ Consider the following natural deduction proof for the sequent

$$\forall x \ (P(x) \to Q(x)), \quad \exists x \ P(x) \qquad \vdash \qquad \forall x Q(x).$$

Is the proof correct? If not, explain the error in the proof and either show how to correctly prove the sequent, or give a counterexample that proves the sequent invalid.

 $\forall x (P(x) \rightarrow Q(y)), \quad \exists x P(x) \vdash \forall x Q(x)$

- Model *M*:
 - $A = \{a, b\}$
 - $P^M = \{a\}$
 - $Q^M = \{a\}$
 - $y \leftarrow b$
- *M* ⊨ ∀*x*(*P*(*x*) → *Q*(*y*)), ∃*x P*(*x*) *M* is a counterexample *M* ⊭ *Q*(*y*)

https://xkcd.com/1033/