

Logic and Computability Predicate Logic aka. First-Order Logic

Bettina Könighofer bettina.koenighofer@iaik.tugraz.at

Stefan Pranger stefan.pranger@iaik.tugraz.at

https://xkcd.com/2497/

Time Line - Topics

Propositional Logic

- Syntax & Semantic
- Decide Satisfiability (DPLL)
- Data structures (BDDs)
- Natural Deduction
 - Perform proofs
- Equivalence Checking / Normal forms
- Introduction to Z3

Predicate Logic

- Syntax & Semantic
- Natural deduction
 - Perform proofs
- Satisfiability Modulo Theory (SMT)
- Decide Satisfiability (DPLL(T))
- Solving Problems via Z3

Limitations of Propositional Logic

• Example: Model the following sentence in propositional logic:

"Every person which is 18 years or older is eligible to vote."

- Solution: $\varphi \coloneqq p$
 - p ... "Every person which is 18 years or older is eligible to vote."
- Prop. logic cannot express quantified variables
 - E.g.: "for all cats..."
 - "there exists a person..."
- We need a more powerful logic \rightarrow Predicate Logic / First-Order Logic

Plan for Today

First Part – Predicate Logic

- Modelling Sentences
- Syntax
- Semantics, Models
 - Models
 - Satisfiability & Validity

Second Part – Z3

- Introduction to SMT solver Z3 Part 2
- Focus on solving formulas in predicate logic

After this lecture...

- 1. students can model declarative sentences with predicate logic.
- 2. students can explain the syntax and semantics of predicate logic.
- 3. students can explain what models in predicate logic are and what components they define.
- 4. for a given model, students can compute the semantics of a formula in predicate logic.

 $\forall x \exists y . P(x, f(x, y))$

Variables

- Variables over arbitrary domains
 - Integers, Reals, People...

 $\forall x \exists y . P(x, f(x, y))$ **Predicates**

- A predicate maps variables from an arbitrary domain to a Boolean value.
- Denoted by capital roman letters.
- Example: P(x, y) ... Returns true if x is smaller than y

 $\forall x \exists y . P(x, f(x, y))$

Functions

- A function maps variables from an arbitrary domain to a value in that domain
- Denoted by lowercase roman letters.
- Example: f(x, y) ...Returns the sum of x and y

 $\forall x \exists y . P(x, f(x, y))$

Universal Quantification

- ∀x P(x) ... P(x) is true for all possible values of x in a particular domain
- $\forall x P(x)$ is read as "for all x P(x)"

 $\forall x \exists y . P(x, f(x, y))$

Existential Quantification

- $\exists x P(x) \dots P(x)$ is true for at least one value of x in the domain.
- $\exists x P(x)$ is read as "there exists an x such that P(x)"

"Not all birds can fly"

- "Not all birds can fly"
 - $A = \{birds\}$
 - Predicates:
 - Fly(x) ... Returns true if x can fly
 - $\neg \forall x. (Fly(x))$

"All integers are either even or odd."

"All integers are either even or odd."

• $A = \mathbb{Z}$

- Predicates:
 - Even(x) ... Returns true if x is even
 - Odd(x) ... Returns true if x is odd

 $\forall x. (Even(x) \oplus Odd(x))$

"Alice has no sister."

- "Alice has no sister."
 - $A = \{\text{people}\}$
 - Predicates:
 - Alice(x) ... x is Alice
 - Sister(x) ... x has a sister

 $\forall x(Alice(x) \rightarrow \neg Sister(x))$

"Any person that wears a crown is either a king or a queen."

- "Any person that wears a crown is either a king or a queen."
 - $A = \{\text{people}\}$
 - Predicates:
 - WearsCrown(x) ... x wears a crown
 - *King*(*x*) ... *x is a king*
 - Queen(x) ... x is a queen

• $\forall x (WearsCrown(x) \rightarrow (King(x) \lor Queen(x)))$

• "For any two integers it holds that their sum is smaller than their product."

Note: + and · are functions, and < is a predicate.

- "For any two integers it holds that their sum is smaller than their product."
 - $A = \mathbb{Z}$
 - x + y ... returns the sum of x and y
 - $x \cdot y$... returns the sum of x and y
 - x < y returns true if x is smaller than y

	Note:
	+ and \cdot are functions, and
	< is a predicate.
ŀ	

 $\forall x \forall y ((x + y) < (x \cdot y))$

"Every even integer greater than 2 is equal to the sum of two prime numbers."
 (Goldbach's Conjecture)

- "Every even integer greater than 2 is equal to the sum of two prime numbers."
 (Goldbach's Conjecture)
 - $A = \mathbb{Z}$
 - E(x) ... true if x is even
 - G(x) ... true if x is greater than 2
 - P(x) ... true if x is prime
 - x = y ... true if x is equal to y
 - x + y ... returns the sum of x and y

 $\forall x \ (E(x) \land G(x) \rightarrow \exists a, b(P(a) \land P(b) \land (x = a + b)))$

Plan for Today

First Part – Predicate Logic

Modelling Sentences

Syntax

- Semantics, Models
 - Models
 - Satisfiability & Validity

Syntax of Predicate Logic

Two types of *sorts:*

Terms

- Refer to objects of the domain:
 - Constants represent individual objects, e.g., Alice, Bob, 5, 3, 3.45...
 - *variables* like *x*, *y* represent objects
 - *functions symbols* refer to objects like $x \cdot y$, f(x) ...

Formulas

- Have a truth value
- E.g., $x \cdot y == 1$ is a formula

Syntax of Predicate Logic - Notation

- Set of variable symbols ${\mathbb V}$
 - E.g., *x*, *y*, *z*, ...
- ${\hfill \ }$ Set of function symbols ${\mathbb F}$
 - *f*,*g*,*h*,... (arity > 0)
 - constants (arity = 0)
- Set of predicate symbols ${\mathbb P}$
 - *P*, *Q*, *R*, ... (arity > 0)
 - Prop. constants (arity = 0)

Syntax of Predicate Logic - Terms

- Recursive Definition
 - Any **variable v** ∈ **V** is a term.
 - If $c \in \mathbb{F}$ is a **nullary function**, then c is a term.
 - Given terms $t_1, t_2, ..., t_n$, and an *n*-ary function symbol $f \in \mathbb{F}$, then $f(t_1, t_2, ..., t_n)$ is a term.

Syntax of Predicate Logic - Formulas

Recursive Definition

- Given terms $t_1, t_2, ..., t_n$, and an *n*-ary predicate symbol $P \in \mathbb{P}$, then $P(t_1, t_2, ..., t_n)$ is a formula.
- If φ and ψ are formulas, then $\neg \varphi, (\varphi \land \psi), (\varphi \lor \psi), \text{ and } (\varphi \rightarrow \psi) \text{ are formulas.}$
- If φ is a formula and x ∈ V is a variable, then
 (∀x φ) and (∃x φ) are formulas.

 $\forall x \text{ and } \exists x \text{ are binding as strong as } \neg$

- ∀, ∃, ¬
 ∧
 ∨
- **4.** →
 - Right-associative

Syntax Tree

- Same as for formulas in prop. logic
- Additional sorts of nodes for quantifiers, functions, and predicates
- Example: Syntax tree for $\varphi \coloneqq \forall x((P(x, y) \rightarrow P(x, y)) \lor (Q(y, z) \land \exists y R(x, y, z)))$

Free and Bound Variables

Scope of Quantifiers

- For a formula $\forall x \varphi$, it holds that φ is the scope of $\forall x$
- For a formula $\exists x \ \varphi$, it holds that φ is the scope of $\exists x$

Free and bound variables

- An instance of x in φ is called free if its node has no path upwards to any node labeled with ∀x or ∃x.
- Otherwise, the variable is called bound.

Example: Free and Bound Variables

Construct a syntax tree for φ. Determine the scope of its quantifiers.
 Indicate which variables are free and which are bound.

 $\varphi \coloneqq P(x, y) \lor \exists y \forall x (Q(x, y) \land R(y, z))$

Example: Free and Bound Variables

Construct a syntax tree for φ. Determine the scope of its quantifiers.
 Indicate which variables are free and which are bound.

 $\varphi \coloneqq P(x, y) \lor \exists y \forall x (Q(x, y) \land R(y, z))$

Outline

- Modelling Sentences
- Syntax
- Semantics, Models
 - Models
 - Satisfiability & Validity

Recap: Model *M* for Formulas in Prop. Logic

- We want to know if *M* satisfies φ (i.e., $M \vDash \varphi$?)
 - What does *M* need to define?

Recap: Model *M* for Formulas in Prop. Logic

- Assignment: $\{Atomic \ propositions\} \mapsto \{\top, \bot\}$
- Example
 - $\varphi = (p \lor y \lor \neg r) \land (\neg x \lor \neg q \lor z)$

Recap: Model *M* for Formulas in Prop. Logic

- $\varphi^{\mathcal{M}}$... φ is evaluated under \mathcal{M}
- Satisfying Model: $\mathcal{M} \vDash \varphi$
 - $\mathcal M$ satisfies φ , or
 - φ evaluates to true under \mathcal{M}
 - Example
 - $\varphi = a \lor b$
 - $\mathcal{M}: \{a \to \top, b \to \bot\}$
 - $\mathcal{M} \models \varphi$ or $\varphi^{\mathcal{M}} = \mathsf{T}$

- Falsifying Model: $\mathcal{M} \nvDash \varphi$
 - $\mathcal M$ does not satisfies φ , or
 - φ evaluates to false under $\mathcal M$
 - Example
 - $\varphi = a \lor b$
 - $\mathcal{M}: \{a \to \bot, b \to \bot\}$

•
$$\mathcal{M} \not\models \varphi$$
 or $\varphi^{\mathcal{M}} = \bot$

Model *M* for Formulas in Predicate Logic

E.g.,
$$\varphi \coloneqq S \land R(x) \land \forall x \exists y. P(x, f(x, y))$$

We want to know if *M* satisfies φ (i.e., $M \vDash \varphi$?)

- What does *M* need to define?
- Models for predicate logic formulas need to define:
 - Domain of variables
 - Values for free variables
 - Values for nullary functions
 - Truth values for nullary predicates
 - Concrete instances for any function and predicate

Model *M* for Formulas in Predicate Logic

- Domain *A*
- For each nullary $f \in \mathbb{F}$: concrete element $f^M \in A$
- For each nullary $P \in \mathbb{P}$: true or false
- For each f ∈ F with arity n > 0 : concrete function f^M: Aⁿ → A
 Defined by e.g. function table
- For each P ∈ P with arity n > 0: concrete predicate P^M ⊆ Aⁿ
 Set of tuples which make P true
- For any free variable x : concrete value $x \to A$
 - Lookup table

Example: Models in Predicate Logic

• Give a model *M* for the following formula:

 $\varphi \coloneqq \exists x \forall y P(x, y)$

- Model *M*:
 - $A = \{a, b\}$
 - $P^M \coloneqq \{(a, a), (a, b)\}$

Semantics of Predicate Logic

- We want to know if M satisfies φ
 - $M \vDash \varphi$?

Semantics of Predicate Logic

- We want to know if M satisfies φ
 M ⊨ φ?
- For φ of the form $P(t_1, t_2, ..., t_n)$
 - Interpret all terms t_1, \dots, t_n via M
 - Obtain (a_1, a_2, \dots, a_n) with $a_i \in A$
 - $M \models P(t_1, t_2, \dots, t_n)$ iff $(a_1, a_2, \dots, a_n) \in P^M$

Semantics of Predicate Logic

- For φ of the form $\forall x \psi$
 - $M \models \forall x \psi$ iff $M \models_{[x \leftarrow a]} \psi$, for all $a \in A$

 $[x \leftarrow a]$ means that x is mapped to a

- For φ of the form ∃x ψ
 M ⊨ ∃x ψ iff M ⊨_[x←a] ψ, for at least one a ∈ A
- For φ of the form ¬ψ, ψ₁ ∧ ψ₂, ψ₁ ∨ ψ₂, ψ₁ → ψ₂
 Like in propositional logic

- Given
 - $\phi = \forall x \exists y. P(x, y)$
 - *M*:
 - $A = \{a, b\}$ • $P^M = \{(a, b), (b, a)\}$
- $M \vDash \varphi$?

- Given
 - $\phi = \forall x \exists y. P(x, y)$
 - *M*:
 - $A = \{a, b\}$ • $P^M = \{(a, b), (b, a)\}$
- $M \vDash \phi$?

- Given
 - $\phi = \forall x \exists y. P(x, y)$ • M:
 - $A = \{a, b\}$ • $P^M = \{(a, b), (b, a)\}$

- Given
 - $\phi = \forall x \exists y. P(x, y)$
 - *M*:
 - $A = \{a, b\}$ • $P^M = \{(a, b), (b, a)\}$

- Given
 - $\phi = \forall x \exists y. P(x, y)$
 - *M*:
 - $A = \{a, b\}$ • $P^M = \{(a, b), (b, a)\}$

- Given
 - $\phi = \forall x \exists y. P(x, y)$
 - *M*:
 - $A = \{a, b\}$ • $P^M = \{(a, b), (b, a)\}$

X

• $M \vDash \phi$?

y = aP $\exists y$ а a y = bР Ρ x = ab y a a $\forall x$ ∃у Ρ ν

- Given
 - $\phi = \forall x \exists y. P(x, y)$
 - *M*:
 - $A = \{a, b\}$ • $P^M = \{(a, b), (b, a)\}$

X

• $M \vDash \phi$?

y = aP $\exists y$ а a y = bР P x = ab y a a $\forall x$ ∃у Ρ ν

- Given
 - $\phi = \forall x \exists y. P(x, y)$
 - *M*:
 - $A = \{a, b\}$ • $P^M = \{(a, b), (b, a)\}$

X

• $M \vDash \phi$?

y = aP $\exists y$ а a y = bР P x = ab y a a $\forall x$ ∃у Ρ ν

- Given
 - $\phi = \forall x \exists y. P(x, y)$
 - *M*:
 - $A = \{a, b\}$ • $P^M = \{(a, b), (b, a)\}$

- Given
 - $\phi = \forall x \exists y. P(x, y)$
 - *M*:
 - $A = \{a, b\}$ • $P^M = \{(a, b), (b, a)\}$

- Given
 - $\phi = \forall x \exists y. P(x, y)$
 - *M*:
 - $A = \{a, b\}$ • $P^M = \{(a, b), (b, a)\}$

- Given
 - $\phi = \forall x \exists y. P(x, y)$
 - *M*:
 - $A = \{a, b\}$ • $P^M = \{(a, b), (b, a)\}$

- Given
 - $\phi = \forall x \exists y. P(x, y)$
 - *M*:
 - $A = \{a, b\}$ • $P^M = \{(a, b), (b, a)\}$

Does the following model M satisfy the formula φ ?

$$\varphi = \exists x \forall y (P(x, y) \rightarrow (Q(x, y) \lor R(x, y)))$$

 $\mathcal{A} = \{a, b\} \\ P^{\mathcal{M}} = \{(a, a), (a, b)\} \\ Q^{\mathcal{M}} = \{(a, a), (b, a)\} \\ R^{\mathcal{M}} = \{(a, a), (b, b)\}$

Does the following model M satisfy the formula φ ?

$$\varphi = \exists x \forall y (P(x, y) \to (Q(x, y) \lor R(x, y)))$$

 $\mathcal{A} = \{a, b\} \\ P^{\mathcal{M}} = \{(a, a), (a, b)\} \\ Q^{\mathcal{M}} = \{(a, a), (b, a)\} \\ R^{\mathcal{M}} = \{(a, a), (b, b)\}$

Does the following model M satisfy the formula φ ?

$$\varphi = \exists x \forall y (P(x, y) \to (Q(x, y) \lor R(x, y)))$$

$$\mathcal{A} = \{a, b\} \\ P^{\mathcal{M}} = \{(a, a), (a, b)\} \\ Q^{\mathcal{M}} = \{(a, a), (b, a)\} \\ R^{\mathcal{M}} = \{(a, a), (b, b)\}$$

Does the following model M satisfy the formula φ ?

$$\varphi = \exists x \forall y (P(x, y) \to (Q(x, y) \lor R(x, y)))$$

$$\mathcal{A} = \{a, b\} \\ P^{\mathcal{M}} = \{(a, a), (a, b)\} \\ Q^{\mathcal{M}} = \{(a, a), (b, a)\} \\ R^{\mathcal{M}} = \{(a, a), (b, b)\}$$

Does the following model M satisfy the formula φ ?

$$\varphi = \exists x \forall y (P(x, y) \to (Q(x, y) \lor R(x, y)))$$

$$\mathcal{A} = \{a, b\} \\ P^{\mathcal{M}} = \{(a, a), (a, b)\} \\ Q^{\mathcal{M}} = \{(a, a), (b, a)\} \\ R^{\mathcal{M}} = \{(a, a), (b, b)\}$$

Learning Outcomes

After this lecture...

- 1. students can model declarative sentences with predicate logic.
- 2. students can explain the syntax and semantics of predicate logic.
- 3. students can explain what models in predicate logic are and what components they define.
- 4. for a given model, students can compute the semantics of a formula in predicate logic.

Does the following model M satisfy the formula φ ?

 $\varphi = \forall x \; \forall y \; ((P(x, f(y)) \land Q(y, z)) \rightarrow R(f(z)))$

Model *M*:

Domain:

 $A = \{a, b\}$ Definition of functions: $f^{M}(a) = b$ $f^{M}(b) = a$ Definition of predicates: $P^{M} = \{(a, a), (a, b)\}$ $Q^{M} = \{(a, b)\}$ $R^{M} = \{b\}$ Lockup table for free variable:

 $z \rightarrow b$

Does the following model M satisfy the formula φ ?

 $\varphi = \forall x \; \forall y \; ((P(x, f(y)) \land Q(y, z)) \rightarrow R(f(z)))$

Model M:

Domain:

 $A = \{a, b\}$ Definition of functions: $f^{M}(a) = b$ $f^{M}(b) = a$ Definition of predicates: $P^{M} = \{(a, a), (a, b)\}$ $Q^{M} = \{(a, b)\}$ $R^{M} = \{b\}$ Lockup table for free variable: $z \rightarrow b$

Does the following model M satisfy the formula φ ?

 $\varphi = \forall x \; \forall y \; ((P(x, f(y)) \land Q(y, z)) \rightarrow R(f(z)))$

Model *M*:

Domain:

 $A = \{a, b\}$ Definition of functions: $f^{M}(a) = b$ $f^{M}(b) = a$ Definition of predicates: $P^{M} = \{(a, a), (a, b)\}$ $Q^{M} = \{(a, b)\}$ $R^{M} = \{b\}$ Lockup table for free variable: $z \rightarrow b$

 $M \not\models \varphi$

https://xkcd.com/1033/