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History



First FPGA in space

• Used in data processing unit of

SAMPEX spacecraft in 1992

• Six A1020 chips for redundancy

• 547 logic cells

Figure 1: Sampex data processing unit [2]
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Why use FPGA in space?

• Space missions are getting more and more complex

• Comparison to microcontrollers:

• More efficient in energy and space consumption

• Higher computing power (parallelism)

• More expensive, longer development times

• Comparison to ASICs:

• Less efficient in energy and space consumption

• Less computing power

• Less expensive, shorter time to launch

• Conclusion: FPGAs are the sweet-spot between ASICs and µCs
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FPGA vs. ASIC per mission

• Immarsat 4: Communication satellite, launched in 2008

• Bepicolombo: Orbiter, launched in 2018

Figure 2: ICs per space mission [1]

5



FPGA vs. ASIC over time

Figure 3: IC overview vs. launch date [1]
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IC usage vs. cost

Figure 4: IC usage vs. cost [1]
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Challenges in space



Challenges in space

• Exposure to radiation

• Temperature

• Weight and space limits

• Power consumption
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Radiation

• Emitted by the sun

• Non-ionizing radiation can be shielded by the right materials

• Ionizing radiation can’t be shielded, charged particles travel through substances

• Change in behaviour of semiconductors
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Problems caused by radiation



Long term effects

• High-energy ionizing radiation creates

electron holes within the oxide of

MOS transistors.

• Charge is built up within the oxide

• Changes in threshold voltage and

timing

• Might lead to total failure Figure 5: Radiation in MOS oxide [3]
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Single event latchup (SEL)

• CMOS has intrinsic transistors in substrate

• Creates latch-up circuit

• Radiation might trigger the latch-up

• Low impedance connection between Vdd and gnd leads to permanent damage

Figure 6: Latch-up circuit in CMOS [4]
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Single event upset (SEU)

• When radiation passes through device, charge is transferred between nodes

• If critical charge is exceeded, a change in voltage level happens

• This results in a bitflip

• Temporal error

Figure 7: Example of SEU in combinational logic [5]
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FPGA architecture vulnerabilities

• Because of its large space consumption, memory is very vulnerable to bitflips

• Especially upsets in configuration memory, which takes most of the memory

space, will lead to different logic behaviour

• Types of configuration memory:

• Antifuse: only programable once, immune to SEU

• Flash: limited programming cycles, immune to SEU

• SRAM: unlimited programming cycles, vulnerable to SEU
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FPGA Architecture Vulnerabilities

• Example bitflip in configuration memory:

Figure 8: Bitflip example [6]
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Mitigations



Triple modular redundancy (TMR)

• Can be realized within single FPGA or

on three seperate FPGAs

• Single SEU allowed in one branch

• Big overhead in space and power

consumption

Figure 9: Triple modular redundancy [6]
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Configuration scrubbing

• Frequently check integrity of configuration in SRAM by comparing to source

memory

• Repair upsets when difference is noticed

• No guarantee for protection against temporal errors

• Often used in combination with TMR

Figure 10: Hybrid scrubbing [7]
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Protection on physical level

• Special manufacturing processes for MOS technology

• Thinner oxide to reduce probability of electron holes

• Isolating wells from the substrate to prevent latch-up

• Different transistor shapes and sizes
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Manufacturers of space FPGAs



Overview of Space Graded IC Manufacturers

Figure 11: IC manufacturers for space application [1]
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Xilinx

• Radiation Tolerant (RT) Kintex UltraScale XQRKU060

• First 20nm (predecessor was 65nm) FPGA for space applications

• 726000 (predecessor had 81900) logic cells

• 38Mb (predecessor had 12Mb) of memory

• Uses TMR and external scrubbing

Figure 12: Radio tolerance of QRKU060 [8]

19



Microchip

• RT PolarFire

• 28nm process technology

• 481000 logic cells

• 33Mb of memory

• Synthesis support for TMR and scrubbing

• Radiation tolerance:

• 100 Krad total ionizing dose

• No SEUs in configuration memory

• Data upset rate of 10−10errors/bit/day
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Lessons learned



The WIRE power-up mishap [9]

• NASA Wide Field Infrared Explorer (WIRE) spacecraft was launched in 1999

• Synchronous reset to force FPGA logic into a safe state

• Start-up time of crystal oscillator was not considered

• Circuit was in non-deterministic state during this time

• Problem: lack of documentation of FPGA behaviour, default states were not

considered

• WIRE went out of hydrogen and could not perform operations
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ESA FPGA Task Force [10]

• In 2001 European Space Agency (ESA) set up task force to perform investigations

on FPGA implantations

• Results:

• Designers unaware of how synthesis tools work

• Little effort in testing of SEU correction implementation

• Lack of documentation for FPGA behaviour

• Reviews on completed designs are extremely costly
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Conclusion

• FPGAs have been in space since 1990s

• Trends show rise in FPGA vs. ASIC use

• FPGA chips need to be protected against radiation:

• On physical level (transistors, shielding)

• Single event correction: TMR, scrubbing, ECC

• Manufacturers improving technologies

• Mistakes made in the past
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