Hardware Acceleration Opportunities in Homomorphic Encryption

Cryptography on Hardware Platform 2023 Sujoy Sinha Roy sujoy.sinharoy@iaik.tugraz.at

Privacy-Preserving Outsourcing of Computation

Diabetic Retinopathy [Chao et al., 2019]
User wants to compute foo(data) in the cloud without loosing privacy.

Fully Homomorphic Encryption (FHE)

FHE enables computation on encrypted data

Dec() gives foo(data)
Cloud homomorphically evaluates foo()

Tutorial outline

1. FHE concepts
2. Parallel processing opportunities in FHE (from high-level)
3. Hardware architecture design challenges and methods
4. Results

Definition: Homomorphic Encryption

An encryption scheme Enc(\cdot, \cdot) is homomorphic for an operation
\square on the message space iff

$$
\operatorname{Enc}\left(m_{1} \square m_{2}, k_{E}\right)=\operatorname{Enc}\left(m_{1}, k_{E}\right) \circ \operatorname{Enc}\left(m_{2}, k_{E}\right)
$$

with o operation on the ciphertext.

- If $\square=+$ then $\operatorname{Enc}(\cdot, \cdot)$ is additively homomorphic.
- If $\square=\times$ then Enc($\cdot, \cdot)$ is multiplicatively homomorphic.

Example: Textbook RSA is multiplicatively homomorphic

- You have encryption of two messages m_{1} and m_{2} where

$$
\begin{aligned}
& c_{1}=m_{1}{ }^{e} \bmod N \\
& c_{2}=m_{2}{ }^{e} \bmod N
\end{aligned}
$$

- By multiplying c_{1} and c_{2} you get

$$
c_{3}=c_{1} \cdot c_{2}=\left(m_{1} \cdot m_{2}\right)^{e} \bmod N
$$

- Hence, c_{3} is encryption of $m_{1} \cdot m_{2}$

Can we get 'Additive \& Multiplicative’ Homomorphic Encryption?

Popular constructions of FHE use augmented Ring-LWE public-key encryption

Recap -- Ring LWE Public-Key Encryption (PKE)

Encryption:

Input: $\mathrm{pk}=\left(\mathrm{p}_{0}, \mathrm{p}_{1}\right)$, message m
OOutput: ct $=\left(\mathrm{ct}_{0}, \mathrm{ct}_{1}\right)$

$$
\text { Encode Multiplication by } \mathrm{q} / 2
$$

Recap -- Ring LWE Public-Key Encryption (PKE)

\square Decryption:
\square Input: ct = $\left(\mathrm{ct}_{0}, \mathrm{ct}_{1}\right)$, $\mathrm{sk}=\mathrm{s}$
\square Output: m after decoding

$$
\begin{aligned}
\mathrm{ct}_{1} \longrightarrow
\end{aligned}
$$

Recap -- Ring LWE Public-Key Encryption (PKE)

\square Decryption:
\square Input: ct = $\left(\mathrm{ct}_{0}, \mathrm{ct}_{1}\right)$, $\mathrm{sk}=\mathrm{s}$
\square Output: m after decoding

$$
\begin{aligned}
\mathrm{ct}_{1} \longrightarrow
\end{aligned}
$$

Equivalently,

$$
\left\lceil\frac{\mathrm{ct}_{0}+\mathrm{ct}_{1} \cdot \mathrm{~s}}{\mathrm{q} / 2}\right\rfloor \bmod 2=\mathbf{m}
$$

Ring-LWE PKE - Written with different symbols

Let scale factor $\Delta=q / t$ and t be plaintext modulus, e.g., $t=2$.
Scalars are in red.
All polynomials are in blue.

Encryption

$$
\begin{aligned}
& e_{0}, e_{1}, u \leftarrow \text { error }() ; \\
& \mathrm{ct}_{0}=p_{0} \cdot u+e_{0}+\Delta \cdot m \\
& \mathrm{ct}_{1}=p_{1} \cdot u+e_{1}
\end{aligned}
$$

Decryption

$$
\mathrm{m}=\left\lceil\frac{\mathrm{ct}_{0}+\mathrm{ct}_{1} \cdot \mathrm{~s}}{\Delta}\right\rfloor \bmod \mathrm{t}
$$

Ring-LWE PKE shows Homomorphism

Encryption

Decryption

```
e
ct
ct 
```


Now consider two ciphertexts $\mathrm{Ct}_{\mathrm{A}}=\left\{\mathrm{ct}_{\mathrm{A} 0}, \mathrm{Ct}_{\mathrm{A} 1}\right\}$ and $\mathrm{Ct}_{\mathrm{B}}=\left\{\mathrm{ct}_{\mathrm{B} 0}, \mathrm{Ct}_{\mathrm{B} 1}\right\}$

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{A} 0}, \mathrm{e}_{\mathrm{A} 1}, \mathrm{u}_{\mathrm{A}} \leftarrow \operatorname{error}() \\
& \mathrm{ct}_{\mathrm{A} 0}=\mathrm{p}_{0} \cdot \mathrm{u}_{\mathrm{A}}+\mathrm{e}_{\mathrm{A} 0}+\Delta \cdot \mathrm{m}_{\mathrm{A}} \\
& \mathrm{ct}_{\mathrm{A} 1}=\mathrm{p}_{1} \cdot \mathrm{u}_{\mathrm{A}}+\mathrm{e}_{\mathrm{A} 1}
\end{aligned}
$$

$$
\begin{aligned}
& e_{B 0}, e_{B 1}, u_{B} \leftarrow \text { error(); } \\
& c t_{B 0}=p_{0} \cdot u_{B}+e_{B 0}+\Delta \cdot m_{B} \\
& c t_{B 1}=p_{1} \cdot u_{B}+e_{B 1}
\end{aligned}
$$

Ring-LWE PKE: Additive Homomorphism

Encryption

Decryption

```
e
ct}\mp@subsup{0}{0}{}=\mp@subsup{p}{0}{}\cdotu+\mp@subsup{e}{0}{}+\Delta\cdot
ct 
```

$\left\lceil\frac{\mathrm{ct}_{0}+\mathrm{ct}_{1} \cdot \mathrm{~s}}{\Delta}\right\rfloor \bmod t$

Now consider two ciphertexts $\mathrm{Ct}_{\mathrm{A}}=\left\{\mathrm{ct}_{\mathrm{A} 0}, \mathrm{Ct}_{\mathrm{A} 1}\right\}$ and $\mathrm{Ct}_{\mathrm{B}}=\left\{\mathrm{ct}_{\mathrm{B} 0}, \mathrm{ct}_{\mathrm{B} 1}\right\}$

Ring-LWE PKE: Multiplicative Homomorphism

Encryption

Decryption

```
e
ct}=\mp@subsup{p}{0}{}\cdotu+\mp@subsup{e}{0}{}+\Delta\cdot
ct = p p}\cdot\mp@code{u}+\mp@subsup{e}{1}{
```


Now consider two ciphertexts $\mathrm{Ct}_{\mathrm{A}}=\left\{\mathrm{Ct}_{\mathrm{A} 0}, \mathrm{Ct}_{\mathrm{A} 1}\right\}$ and $\mathrm{Ct}_{\mathrm{B}}=\left\{\mathrm{ct}_{\mathrm{B} 0}, \mathrm{Ct}_{\mathrm{B} 1}\right\}$

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{A} 0}, \mathrm{e}_{\mathrm{A} 1}, \mathrm{u}_{\mathrm{A}} \leftarrow \operatorname{error}() \\
& \mathrm{ct}_{\mathrm{A} 0}=\mathrm{p}_{0} \cdot \mathrm{u}_{\mathrm{A}}+\mathrm{e}_{\mathrm{A} 0}+\Delta \cdot \mathrm{m}_{\mathrm{A}} \\
& \mathrm{ct}_{\mathrm{A} 1}=\mathrm{p}_{1} \cdot \mathrm{u}_{\mathrm{A}}+\mathrm{e}_{\mathrm{A} 1}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{B} 0}, \mathrm{e}_{\mathrm{B} 1}, \mathrm{u}_{\mathrm{B}} \leftarrow \text { error(); } \\
& \mathrm{ct}_{\mathrm{B} 0}=\mathrm{p}_{0} \cdot \mathrm{u}_{\mathrm{B}}+\mathrm{e}_{\mathrm{B} 0}+\Delta \cdot \mathrm{m}_{\mathrm{B}} \\
& \mathrm{ct} t_{\mathrm{B} 1}=\mathrm{p}_{1} \cdot \mathrm{u}_{\mathrm{B}}+\mathrm{e}_{\mathrm{B} 1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Polynomial multiplication } \\
& \mathrm{ct}_{\mathrm{AO}} * \mathrm{ct}_{\mathrm{BO}} \rightarrow(\text { noisy crap })+\Delta^{2} \cdot\left(\mathrm{~m}_{\mathrm{A}} \times \mathrm{m}_{\mathrm{B}}\right)
\end{aligned}
$$

Ring-LWE PKE: Multiplicative Homomorphism

Encryption

Decryption

$$
\begin{aligned}
& e_{0}, e_{1}, u \leftarrow \text { error() } \\
& \mathrm{ct}_{0}=p_{0} \cdot u+e_{0}+\Delta \cdot m \\
& \mathrm{ct}_{1}=p_{1} \cdot u+e_{1}
\end{aligned}
$$

Now consider two ciphertexts $\mathrm{Ct}_{\mathrm{A}}=\left\{\mathrm{Ct}_{\mathrm{A} 0}, \mathrm{Ct}_{\mathrm{A} 1}\right\}$ and $\mathrm{Ct}_{\mathrm{B}}=\left\{\mathrm{ct}_{\mathrm{B} 0}, \mathrm{Ct}_{\mathrm{B} 1}\right\}$

Ring-LWE PKE: Multiplicative Homomorphism

Encryption

Decryption

```
e},\mp@subsup{e}{1}{},u\leftarrow error( ); 
ct}=\mp@subsup{p}{0}{}\cdotu+\mp@subsup{e}{0}{}+\Delta\cdot
ct
```


Now consider two ciphertexts $\mathrm{Ct}_{\mathrm{A}}=\left\{\mathrm{ct}_{\mathrm{A} 0}, \mathrm{Ct}_{\mathrm{A} 1}\right\}$ and $\mathrm{Ct}_{\mathrm{B}}=\left\{\mathrm{ct}_{\mathrm{B} 0}, \mathrm{Ct}_{\mathrm{B} 1}\right\}$

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{A} 0}, \mathrm{e}_{\mathrm{A} 1}, \mathrm{u}_{\mathrm{A}} \leftarrow \operatorname{error}() \\
& \mathrm{ct}_{\mathrm{A} 0}=\mathrm{p}_{0} \cdot \mathrm{u}_{\mathrm{A}}+\mathrm{e}_{\mathrm{A} 0}+\Delta \cdot \mathrm{m}_{\mathrm{A}} \\
& \mathrm{ct}_{\mathrm{A} 1}=\mathrm{p}_{1} \cdot \mathrm{u}_{\mathrm{A}}+\mathrm{e}_{\mathrm{A} 1}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{B} 0}, \mathrm{e}_{\mathrm{B} 1}, \mathrm{u}_{\mathrm{B}} \leftarrow \operatorname{error}() ; \\
& \mathrm{ct}_{\mathrm{B} 0}=\mathrm{p}_{0} \cdot \mathrm{u}_{\mathrm{B}}+\mathrm{e}_{\mathrm{B} 0}+\Delta \cdot \mathrm{m}_{\mathrm{B}} \\
& \mathrm{ct}_{\mathrm{B} 1}=\mathrm{p}_{1} \cdot \mathrm{u}_{\mathrm{B}}+\mathrm{e}_{\mathrm{B} 1}
\end{aligned}
$$

This looks like an encryption of

$$
\mathrm{ct}_{\mathrm{A} O} * \mathrm{ct}_{\mathrm{BO}} \rightarrow(\text { noisy crap })+\Delta^{2} \cdot\left(\mathrm{~m}_{\mathrm{A}} \times \mathrm{m}_{\mathrm{B}}\right)
$$ $\left(m_{A} \times m_{B}\right)$

Polynomial multiplication

After dividing the expression by Δ we get:

Ring-LWE PKE: Multiplicative Homomorphism

Encryption

Decryption

```
e}\mp@subsup{e}{0}{},\mp@subsup{e}{1}{},u\leqslant\operatorname{error( );
ct
ct
```


Now consider two ciphertexts $\mathrm{Ct}_{\mathrm{A}}=\left\{\mathrm{ct}_{\mathrm{A} 0}, \mathrm{Ct}_{\mathrm{A} 1}\right\}$ and $\mathrm{Ct}_{\mathrm{B}}=\left\{\mathrm{ct}_{\mathrm{B} 0}, \mathrm{Ct}_{\mathrm{B} 1}\right\}$

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{A} 0}, \mathrm{e}_{\mathrm{A} 1}, \mathrm{u}_{\mathrm{A}} \leftarrow \operatorname{error}() \\
& \mathrm{ct}_{\mathrm{A} 0}=\mathrm{p}_{0} \cdot \mathrm{u}_{\mathrm{A}}+\mathrm{e}_{\mathrm{A} 0}+\Delta \cdot \mathrm{m}_{\mathrm{A}} \\
& \mathrm{ct}_{\mathrm{A} 1}=\mathrm{p}_{1} \cdot \mathrm{u}_{\mathrm{A}}+\mathrm{e}_{\mathrm{A} 1}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{B} 0}, \mathrm{e}_{\mathrm{B} 1}, \mathrm{u}_{\mathrm{B}} \leftarrow \operatorname{error}() \\
& \mathrm{ct}_{\mathrm{B} 0}=\mathrm{p}_{0} \cdot \mathrm{u}_{\mathrm{B}}+\mathrm{e}_{\mathrm{B} 0}+\Delta \cdot \mathrm{m}_{\mathrm{B}} \\
& \mathrm{ct}_{\mathrm{B} 1}=\mathrm{p}_{1} \cdot \mathrm{u}_{\mathrm{B}}+\mathrm{e}_{\mathrm{B} 1}
\end{aligned}
$$

Polynomial multiplication
$\mathrm{ct}_{\mathrm{AO}} * \mathrm{ct}_{\mathrm{BO}} \rightarrow$ (noisy crap) $+\Delta^{2} \cdot\left(\mathrm{~m}_{\mathrm{A}} \times \mathrm{m}_{\mathrm{B}}\right)$
After dividing the expression by Δ we get:
$($ noisy crap $) / \Delta+\Delta \cdot\left(m_{A} \times m_{B}\right)$

That is the basic idea only.

Actual Mult is a lot more complex!

The Biggest Problem in FHE

foo(data)
Takes 1s
foo(Enc(data))
Takes 10^{4} to $10^{5} \mathrm{~s}$

Polynomial size

Post-quantum crypto

FHE does lots of (large) polynomial arithmetic.

How to accelerate FHE?

Tutorial outline

1. FHE concepts
2. Parallel processing opportunities in FHE (from high-level)
3. Hardware architecture design challenges and methods
4. Results

What makes acceleration of FHE very challenging?

- Lots of polynomial arithmetic operations
- Large degree polynomial arithmetic
- Long integer arithmetic
- Memory management
- Ciphertexts could be several MBs
- On-Chip memory is limited
- Off-Chip data transfer is very slow

What makes acceleration of FHE very challenging?

- Lots of polynomial arithmetic operations
- Large degree polynomial arithmetic
- Long integer arithmetic This problem is solved using CRT
- Memory management
- Ciphertexts could be several MBs
- On-Chip memory is limited
- Off-Chip data transfer is very slow

Dealing with long-int coefficients using RNS

1. Take a modulus $Q=\prod_{0}^{L-1} q_{i}$ where q_{i} are coprime.
2. Use Residue Number System (RNS).

E.g., Parallel computation flow with CRT

Ciphertexts are polynomials in $R_{\mathrm{Q}}=Z_{\mathrm{Q}} /<\mathrm{X}^{\mathrm{n}}+1>$ E.g., $\log (Q)=500, \quad n=2^{15}$

Let $Q=\Pi q_{i}$ where q_{i} are NTT primes.
Apply Residue Number System (RNS)

Chinese Remainder Theorem (CRT) to obtain R_{Q} (Used during modulus switching steps)

(1) Residue polynomial arithmetic layer

Data flow diagram

Hardware acceleration
*RPAU stands for 'Residue Polynomial Arithmetic Unit'

(2) Residue polynomial layer \leftrightarrow CRT layer

Each thread in CRT layer combines all threads from previous layer.

... (3) Residue polynomial layer \longleftrightarrow CRT layer

Therefore, threads or RPAUs need to exchange data with each other.

Example

Tutorial outline

1. FHE concepts
2. Parallel processing opportunities in FHE (from high-level)
3. Hardware architecture design challenges and methods
4. Results

System-level view

System-level view: Main challenges
Off-Chip
Storage
Ciphertexts,
Keys,
Constants,
etc.

How to multiply two very large polynomials?

- Schoolbook multiplication: $O\left(n^{2}\right)$
- Karatsuba multiplication: $O\left(n^{1.585}\right)$
- Toom-Cook (generalization of Karatsuba)
- Fast Fourier Transform (FFT) multiplication: $O(n \log n)$

NTT-based Polynomial Multiplication

NTT or Number Theoretic Transform is special FFT with integers.

Let's consider an application example.

Polynomial size $\mathrm{n}=2^{15}$
And $\log \left(q_{i}\right)=60$

NTT and of a polynomial A[]

Simplified NTT loops

NTT and Memory access

Simplified NTT loops

A[2]
A[1]
$\mathrm{A}[0]$
NTT starts with $m=2$
Butterfly(A[0], A[1])

NTT and Memory access

Simplified NTT loops

NTT and Memory access

Simplified NTT loops

A[2]
A[1]
$\mathrm{A}[0]$
... with $\mathrm{m}=2$, finally
Butterfly(A[n-2], A[n-1])

NTT and Memory access

Simplified NTT loops

for(m=2; m<=n; m=2m){
for(m=2; m<=n; m=2m){
for(j=0; j<=m/2-1; j++){
for(j=0; j<=m/2-1; j++){
for(k=0; j<n; k=k+m) {
for(k=0; j<n; k=k+m) {
index = f(m, j, k);
index = f(m, j, k);
Butterfly(A[index],A[index+m/2]);
Butterfly(A[index],A[index+m/2]);
}
}
}
}
}
}

A[2]
A[1]
$\mathrm{A}[0]$

Next, m increments to $m=4$.
Butterfly(A[0], A[2]), Butterfly(A[4], A[6]) ...

NTT and Memory access

Simplified NTT loops

A[2]
A[1]
$\mathrm{A}[0]$
for(m=2; m<=n; m=2m){
for(m=2; m<=n; m=2m){
for(j=0; j<=m/2-1; j++){
for(j=0; j<=m/2-1; j++){
for(k=0; j<n; k=k+m) {
for(k=0; j<n; k=k+m) {
index = f(m, j, k);
index = f(m, j, k);
Butterfly(A[index],A[index+m/2]);
Butterfly(A[index],A[index+m/2]);
}
}
}
}
}
}

Next, m increments to $m=4$.
Butterfly(A[1], A[3]), Butterfly(A[5], A[7]) ...

Can we speedup polynomial multiplication using several NTT cores in parallel?

Answer: Yes

Can we speedup polynomial multiplication using several NTT cores in parallel?

Answer: Yes
Is parallel NTT easy to implement?
Answer: Complexity of implementation increases with number of cores

Parallel NTT
 Challenge 1: Port limitation in BRAM or SRAM

Problem:

- One BRAM has only two ports.
- Each NTT core needs two ports

Parallel NTT
 Challenge 1: Port limitation in BRAM or SRAM

Problem:

- One BRAM has only two ports.
- Each NTT core needs two ports

Solution: Use BRAMs in parallel.
New problem: How to distribute data?

Parallel NTT

Challenge 2: Memory access conflicts

Two or more cores try to read/write the same BRAM element. But BRAM has a limited number of ports to satisfy one core.

Parallel NTT

Challenge 2: Memory access conflicts

Two or more cores try to read/write the same BRAM element. But BRAM has a limited number of ports to satisfy one core.

Problem:

Two cores are trying to access the same BRAM.

Solution: Make BRAM accesses mutually exclusive.

Parallel NTT

Challenge 3: Data routing

Core requires data from distant BRAM memory

- Long routing of data wires \rightarrow slow clock frequency

Parallel NTT

Challenge 3: Data routing

Core requires data from distant BRAM memory

- Long routing of data wires \rightarrow slow clock frequency

Problem:
Core is reading data from far memory.

Solution: There is no solution
to this problem.
Localizing read or write (not both) is possible.

This paper localizes the read operation.

BRAM is exclusively read by only one core.

Data-write paths are heavily pipelined.

Pipeline
register
\star Coefficient of a polynomial

System-level view: Main challenges

Arithmetic on large polynomials

Ciphertexts, Keys,
Constants, etc.

Next topic: Memory management

Memory organization and management

Common techniques

- Lots of on-chip memory (BRAM/SRAM) for storing operands

Memory organization and management

Common techniques

- Lots of on-chip memory (BRAM/SRAM) for storing operands
- Perform communication-computation parallelism using cache

Memory organization and management

Common techniques

- Lots of on-chip memory (BRAM/SRAM) for storing operands
- Perform communication-computation parallelism using cache
- High-bandwidth off-chip memory and with multiple channels

Tutorial outline

1. FHE concepts
2. Parallel processing opportunities in FHE (from high-level)
3. Hardware architecture design challenges and methods * Implementation
4. Results

Implementations

There are two main tracks

1. True accelerator prototype in ASIC/FPGA

2. Simulation-based modelling of accelerator

Simulation-based works:
F1 ${ }^{[5]}$, BTS ${ }^{[6]}$, CraterLake ${ }^{[7]}, \ldots$
[1] Furkan Turan et al. HEAWS: an accelerator for homomorphic encryption on the amazon AWS FPGA. IEEE ToC, 2020.
[2] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.
[3] Mohammed Nabeel et al. CoFHEE: A Co-processor for Fully Homomorphic Encryption Execution. DATE 2023.
[4] Mert et al. Medha: Microcoded Hardware Accelerator for computing on Encrypted Data. CHES 2023.
[5] Axel Feldmann et al. F1: A fast and programmable accelerator for fully homomorphic encryption. MICRO 2021.
[6] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.
[7] Samardzic et al. CraterLake: A Hardware Accelerator for Efficient Unbounded Computation on Encrypted Data. ISCA 2022.

Briefly talk about

High level computation flow

Ciphertexts are polynomials in $R_{Q}=Z_{Q} /<X^{n}+1>$ E.g., $\log (Q)=500, \quad n=2^{15}$

Let $Q=\Pi q_{i}$ where q_{i} are NTT primes.
Apply Residue Number System (RNS)

Chinese Remainder Theorem (CRT) to obtain R_{Q} (Used during modulus switching steps)

Residue polynomial arithmetic layer

Arch. block diagram
*RPAU stands for Residue Polynomial Arithmetic Unit

Residue polynomial layer
 CRT layer

Each thread in CRT layer combines all threads from previous layer.
... Residue polynomial layer \longleftrightarrow CRT layer

Therefore, RPAUs need to exchange data with each other.

RPAU ()

Example RPAU. It uses 16 NTT butterfly cores and 4 coefficient-wise (dyadic) arithmetic cores. Polynomials are stored in 'Memory' made of BRAMs.

Instruction Parallelism in RPAU ()

Homomorphic multiplication \& key-switching. (The most expensive operation)

Parallel execution of instructions

This reduces 40% cycle count

Placement of RPAUs

CRT requires combining the residues.
\rightarrow Therefore, RPAUs need to communicate with each other

How to interconnect the RPAUs in large 3D FPGAs?

Chinese Remainder Theorem (CRT) to obtain R_{Q} (Used during modulus switching steps)

Large SLR FPGA

Large FPGAs are multi-die
$>$ The FPGA is split into four SLRs.
$>$ Connected by a limited number of wires.

Large SLR FPGA - top view

There are a limited number of interconnects.

Large design cannot be spread arbitrarily across SLRs.

Xilinx Alveo U250 FPGA. This FPGA is $1000 x$ larger than the FPGA used in this course.

Placement-friendly interconnection of RPAUs

- FPGA Constraints
$>$ The FPGA is split into four SLRs.
$>$ Connected by a limited number of wires.
- Some operations require exchanging the residue polynomials between RPAUs
- Naïve solution: A "star-like" network

Placement-friendly interconnection of RPAUs

- FPGA Constraints
$>$ The FPGA is split into four SLRs.
$>$ Connected by a limited number of wires.
- Some operations require exchanging the residue polynomials between RPAUs
- Naïve solution: A "star-like" network

Each RPAU has its own connections

Placement-friendly interconnection of RPAUs

- FPGA Constraints
$>$ The FPGA is split into four SLRs.
$>$ Connected by a limited number of wires.
- Some operations require exchanging the residue polynomials between RPAUs
- Naïve solution: A "star-like" network
- Complicates the routing

- Large number of nets crossing the SLRs
- Reduces the clock frequency to around 50 MHz or less

Placement-friendly interconnection of RPAUs

- FPGA Constraints
$>$ The FPGA is split into four SLRs.
$>$ Connected by a limited number of wires.
- Some operations require exchanging the residue polynomials between RPAUs
- Solution: A "ring" interconnection of RPAUs
- Only two neighbour RPAUs are connected.

- Data sent to an RPAU through a chain of RPAUs.
- No additional computation overhead

Placement-friendly interconnection of RPAUs

- FPGA Constraints
$>$ The FPGA is split into four SLRs.
$>$ Connected by a limited number of wires.
- Some operations require exchanging the residue polynomials between RPAUs
- Placement of 10 RPAUs using "ring" interconnect

Exteral

Floorplan of the design

[RPAUl
RPAU2
I RPAU3
1 RPAU4
R RPAU5
[RPAU6
回 RPAU7
R RPAU8
I RPAUp
I platform_i

Full system overview

Figure 8: CPU-FPGA interface and software stack
FPGA is used as an accelerator card of a server. HW/SW codesign is used to run applications.

FPGA Acceleration results

foo(data)
Takes 1s
foo(Enc(data))

Takes 10^{4} to $10^{5} \mathrm{~s}$

Our Group's research: Open Problems in FHE

1. How to make hardware accelerators for larger parameter sets?
2. How to support different parameters?
3. How to support different FHE schemes?
4. How to implement FHE Bootstrapping?
5. From FPGA to ASIC accelerators

- More parallel processing
- Custom memory
- Higher clock frequency and lower power consumption

