Hardware Implementation of PublicKey Cryptography

Cryptography on Hardware Platform Sujoy Sinha Roy sujoy.sinharoy@iaik.tugraz.at

Outline

1. Public-key cryptography basics
2. Lattice-based public-key encryption
3. Polynomial arithmetic

- tugraz.at/home/
\leftarrow Security
tugraz.at
- Connection is secure

Your information (for example, passwords or credit card numbers) is private when it is sent to this site. Learn more

国 Certificate is valid \square

T TU Graz \vee Studium \vee Forschung \vee Fakultäten und Institute \vee Informationen für...

Contemporary Cryptographic Primitives (examples)

Public-key Cryptography

- RSA
- Elliptic Curve

Symmetric-key Cryptography

- AES
- SHA-2 or SHA-3

Diffie-Hellman Key Agreement

Public info: Prime pand base g

Secret a
Secret b

Computes $y^{\mathrm{a}} \bmod \mathrm{p}$
$=g^{a b} \bmod p$

Computes $x^{b} \bmod p$ $=g^{\mathrm{ab}} \bmod \mathrm{p}$

I Security is based on Discrete Log Problem (DLP) ?

Discrete Logarithm Problem

Given x, g and p, compute the secret a such that

$$
x=g^{a} \bmod p
$$

Latest record (Dec 2019) is 795-bit [BGGHTZ'19] Using Intel Xeon Gold with 6130 CPUs.

Uses Number Field Sieve and takes 3100 core years using 1 CPU.

BBa 0
4 Now not mutr now nen
 Tectrology

NSA 'developing code-cracking quantum computer ${ }^{*}$

Death of public key cryptography???

both display "quantum primacy" over classical computers

Quantum Supremacy Using a Programmable Superconducting Processor

Wednesday, October 23, 2019
Posted by John Martinis, Chief Scientist Quantum Hardware and Sergio Boixa, Chief Scientist Quantum Computing Theory, Google AI Quantum

Post Quantum Public Key Cryptography

Post-quantum cryptographic (PQC) algorithms are designed using problems that are presumed to be unsolvable using quantum computers.

Currently 5 major problems are used for PQC.

- Lattice-based
- Code-based
- Multivariate-based
- Hash-based
- Isogeny-based

NIST Post Quantum Cryptography Standardization (2016-22)

NIST initiated PQC Standardization in 2016 and called for proposals.

7 Finalists selected

NIST Post Quantum Cryptography Standardization (2016-22)

NIST initiated PQC Standardization in 2016 and called for proposals.
7 Finalists selected

First three winners are all lattice-based. SPHINCS+ is hash-based.

NIST Post Quantum Cryptography Standardization (2022-)

To diversify portfolio of PQC algorithms, NIST called for additional PQC algorithms in 2022. There are around 40 new submissions.

- Code-based
- Enhanced pqsigRM
- FuLeeca
- LESS
- MEDS
- Wave
- Isogenies
- SQISign
- Lattices
- EHT
- EagleSign
- HAETAE
- HAWK
- HuFu
- Raccoon
- Squirrels
- MPC-in-the-Head
- CROSS
- MIRA
- MQOM
- MiRitH
- PERK
- RYDE
- SDitH
- Symmetric
- AlMer
- Ascon-Sign
- FAEST
- SPHINCS-alpha

Outline

1. Public-key cryptography basics
2. Lattice-based public-key encryption
3. Polynomial arithmetic

In this course we will implement a simple lattice-based encryption scheme.

Lattice-based Cryptography - The LWE problem

Given two linear equations with unknown x and y

$$
\begin{aligned}
& 3 x+4 y=26 \\
& 2 x+3 y=19
\end{aligned} \quad \text { or } \quad\left(\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y
\end{array}\right]=\binom{26}{19}
$$

Find x and y.

Solving System of Linear Equations

For an unknown vector s of size n

$$
\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right) \cdot\left(\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n} \\
\vdots \\
b_{m}
\end{array}\right)
$$

Gaussian elimination solves s when the number of equations $m \geq n$

Solving System of Linear Equations after Error is added

Public A Secret s Error e Public b
$\left(\begin{array}{cccc}a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n, 1} & a_{n, 2} & \cdots & a_{n, n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}\end{array}\right) \cdot\left(\begin{array}{c}s_{1} \\ s_{2} \\ \vdots \\ s_{n}\end{array}\right)+\left(\begin{array}{c}e_{1} \\ e_{2} \\ \vdots \\ e_{n} \\ \vdots \\ e_{m}\end{array}\right)=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n} \\ \vdots \\ b_{m}\end{array}\right) \bmod q$

Learning With Errors (LWE) problem:
Given (A, b) \rightarrow computationally infeasible to solve s

Classical \rightarrow Post-Quantum Diffie-Hellman key agreement

Can we get a key agreement by replacing dLog with LWE problem?

LWE-based Diffie-Hellman Key-Exchange

Public uniformly random matrix A mod q

LWE-based Diffie-Hellman Key-Exchange (2)

What to do with the two 'noisy' integers?

LWE-based Diffie-Hellman Key-Exchange (2)

What to do with the two 'noisy' integers?

This integer / is the same on both sides

$+$
Noise E_{1}

Noise E_{2}
E_{1} and E_{2} are quite small noise elements.

Most significant bit of v and v^{\prime} are equal with high probability \rightarrow You get one key bit.

Ring-LWE problem

Given

$$
a(x) * s(x)+e(x)=b(x)(\bmod q)(\bmod f(x))
$$

in a polynomial ring $R_{q}=\mathbb{Z}_{q}[x] /<f(x)>$ where
$a(x)$: uniformly random public polynomial
$s(x)$: small secret polynomial
$e(x)$: small error polynomial
$b(x)$: output polynomial,
Ring-LWE problem:
Given $(a(x), b(x)) \rightarrow$ computationally infeasible to solve $s(x)$

$$
\begin{aligned}
& f(x)=x^{4}+1 \\
& {\left[\begin{array}{cccc}
1 & -4 & -3 & -2 \\
2 & 1 & -4 & -3 \\
3 & 2 & 1 & -4 \\
4 & 3 & 2 & 1
\end{array}\right] \times\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right]=\left[\begin{array}{cc}
5-24 & -21 \\
10+6 & -28 \\
15+12+7 & -32 \\
20+8+14+8
\end{array}\right]=\left[\begin{array}{l}
-56 \\
-36 \\
2 \\
60
\end{array}\right]} \\
& -32 x^{2}-52 x-61+60 x^{3}+34 x^{2}+16 x+5 \\
& -56-36 x+2 x^{2}+60 x^{3} \\
& \\
& \quad a(x)=1+2 x+3 x^{2}+4 x^{3} \\
& \quad b(x)=5+6 x+7 x^{2}+8 x^{3}
\end{aligned}
$$

Ring-LWE-based Diffie-Hellman Key-Exchange

Public polynomial a(x)

Small secret poly $s(x)$
Small error poly e(x)

$$
b(x)=a(x) \cdot s(x)+e(x)
$$

Small secret poly s'(x) Small error poly e'(x)

$v(x)=b^{\prime}(x) \cdot s(x)$
$=a(x) \cdot s(x) \cdot s^{\prime}(x)+e^{\prime}(x) \cdot s(x)$

$$
\begin{aligned}
& v^{\prime}(x)=b(x) \cdot s^{\prime}(x) \\
& =a(x) \cdot s(x) \cdot s^{\prime}(x)+e(x) \cdot s^{\prime}(x)
\end{aligned}
$$

Decoding $v(x)$ gives n bits.
Decoding $v^{\prime}(x)$ gives n bits.

This course: Hardware implementation of Ring-LWE encryption

Ring-LWE (i.e., polynomials) is significantly more efficient than matrix LWE

Assignment 1: We implement ring-LWE public-key encryption (PKE)

Ring LWE-based Public-Key Encryption (PKE)

\square Key Generation:
\square Output: public key (pk), secret key (sk)

Arithmetic operations are performed in a polynomial ring R_{q}
Public Key (pk): (a,b)
Secret Key (sk): (s)

Ring LWE-based Public-Key Encryption (PKE)

\square Encryption:
\square Input: pk = (a,b), message m
\square Output: ct = (u,v)

Ring LWE-based Public-Key Encryption (PKE)

\square Decryption:
\square Input: ct = (u, v), sk = s
\square Output: m after decoding

Select most significant bit of each coefficient as the message bits

Outline

1. Public-key cryptography basics
2. Lattice-based public-key encryption
3. Polynomial arithmetic

Mathematical background on Polynomial Arithmetic

Polynomial addition modulo q

Two polynomials are added coefficient-wise modulo q.
Example:

$$
\begin{aligned}
& a(x)=5 x^{3}+4 x^{2}+2 x+6(\bmod 7) \\
& b(x)=3 x^{3}+2 x^{2}+5 x+2(\bmod 7)
\end{aligned}
$$

Polynomial addition modulo q

Two polynomials are added coefficient-wise modulo q.
Example:

$$
\begin{aligned}
& a(x)=5 x^{3}+4 x^{2}+2 x+6(\bmod 7) \\
& b(x)=3 x^{3}+2 x^{2}+5 x+2(\bmod 7)
\end{aligned}
$$

$$
c(x)=1 x^{3}+6 x^{2}+0 x+1(\bmod 7)
$$

Polynomial multiplication modulo q

Usual way: Multiply each term in one polynomial by each term in the other polynomial and then sum them following the standard way.

$$
\text { * } \quad \begin{aligned}
& a(x)=5 x^{3}+4 x^{2}+2 x+6(\bmod 7) \\
& b(x)=3 x^{3}+2 x^{2}+5 x+2(\bmod 7)
\end{aligned}
$$

Polynomial multiplication modulo q

Usual way: Multiply each term in one polynomial by each term in the other polynomial and then sum them following the standard way.

$$
\begin{gathered}
a(x)=5 x^{3}+4 x^{2}+2 x+6(\bmod 7) \\
b(x)=3 x^{3}+2 x^{2}+5 x+2(\bmod 7) \\
3 x^{3}+1 x^{2}+4 x+5
\end{gathered}
$$

Polynomial multiplication modulo q

Usual way: Multiply each term in one polynomial by each term in the other polynomial and then sum them following the standard way.

$$
\begin{aligned}
& a(x)=5 x^{3}+4 x^{2}+2 x+6(\bmod 7) \\
& b(x)=3 x^{3}+2 x^{2}+5 x+2(\bmod 7) \\
& \quad 3 x^{3}+1 x^{2}+4 x+5 \\
& 4 x^{4}+6 x^{3}+3 x^{2}+2 x
\end{aligned}
$$

Polynomial multiplication modulo q

Usual way: Multiply each term in one polynomial by each term in the other polynomial and then sum them following the standard way.

$$
\begin{gathered}
* \quad a(x)=5 x^{3}+4 x^{2}+2 x+6(\bmod 7) \\
b(x)=3 x^{3}+2 x^{2}+5 x+2(\bmod 7) \\
\\
3 x^{3}+1 x^{2}+4 x+5 \\
4 x^{4}+6 x^{3}+3 x^{2}+2 x \\
3 x^{5}+1 x^{4}+4 x^{3}+5 x^{2}
\end{gathered}
$$

Polynomial multiplication modulo q

Usual way: Multiply each term in one polynomial by each term in the other polynomial and then sum them following the standard way.

$$
\left.\begin{array}{rl}
* \quad a(x)= & 5 x^{3}+4 x^{2}+2 x+6(\bmod 7) \\
b(x)= & 3 x^{3}+2 x^{2}+5 x+2(\bmod 7) \\
& 3 x^{3}+1 x^{2}+4 x+5 \\
4 x^{4}+6 x^{3}+3 x^{2}+2 x
\end{array}\right\}
$$

Polynomial multiplication modulo q

Usual way: Multiply each term in one polynomial by each term in the other polynomial and then sum them following the standard way.

$$
\text { * } \quad \begin{aligned}
& a(x)=5 x^{3}+4 x^{2}+2 x+6(\bmod 7) \\
& b(x)=3 x^{3}+2 x^{2}+5 x+2(\bmod 7)
\end{aligned}
$$

$$
3 x^{3}+1 x^{2}+4 x+5
$$

$$
4 x^{4}+6 x^{3}+3 x^{2}+2 x
$$

$$
3 x^{5}+1 x^{4}+4 x^{3}+5 x^{2}
$$

$$
1 x^{5}+5 x^{5}+6 x^{4}+4 x^{3}
$$

$$
c(x)=1 x^{6}+1 x^{5}+4 x^{4}+3 x^{3}+2 x^{2}+6 x+5(\bmod 7)
$$

Modular reduction of a polynomial by a polynomial

Let's say, we want to modulo reduce this polynomial

$$
c(x)=1 x^{6}+1 x^{5}+4 x^{4}+3 x^{3}+2 x^{2}+6 x+5(\bmod 7)
$$

by the following polynomial

$$
f(x)=x^{4}+1(\bmod 7) .
$$

Modular reduction of a polynomial by a polynomial

Let's say, we want to modulo reduce this polynomial

$$
c(x)=1 x^{6}+1 x^{5}+4 x^{4}+3 x^{3}+2 x^{2}+6 x+5(\bmod 7)
$$

by the following polynomial

$$
f(x)=x^{4}+1(\bmod 7)
$$

Any term in $c(x)$ with degree $\geq \operatorname{deg}(f)$ will get reduced by $f(x)$ using the congruence relation:

$$
x^{4}=-1(\bmod 7)
$$

Modular reduction of a polynomial by a polynomial

Let's say, we want to modulo reduce this polynomial

$$
c(x)=1 x^{6}+1 x^{5}+4 x^{4}+3 x^{3}+2 x^{2}+6 x+5(\bmod 7)
$$

by the following polynomial

$$
f(x)=x^{4}+1(\bmod 7) .
$$

Any term in $c(x)$ with degree $\geq \operatorname{deg}(f)$ will get reduced by $f(x)$ using the congruence relation:

$$
x^{4}=-1(\bmod 7)
$$

Example:

$$
\begin{aligned}
4 x^{4} & =4 \cdot(-1) & & (\bmod 7) \\
& =3 & & (\bmod 7)
\end{aligned}
$$

Modular reduction of a polynomial by a polynomial

Let's say, we want to modulo reduce this polynomial

$$
c(x)=1 x^{6}+1 x^{5}+4 x^{4}+3 x^{3}+2 x^{2}+6 x+5(\bmod 7)
$$

by the following polynomial

$$
f(x)=x^{4}+1(\bmod 7)
$$

Any term in $c(x)$ with degree $\geq \operatorname{deg}(f)$ will get reduced by $f(x)$ using the congruence relation:

$$
x^{4}=-1(\bmod 7)
$$

Similarly, $1 x^{5}=6 x(\bmod 7)$
and $\quad 1 x^{6}=6 x^{2}(\bmod 7)$

Modular reduction of a polynomial by a polynomial

Let's say, we want to modulo reduce this polynomial

$$
c(x)=1 x^{6}+1 x^{5}+4 x^{4}+3 x^{3}+2 x^{2}+6 x+5(\bmod 7)
$$

by the following polyno nial

$$
f(x)=x^{4}+1(\bmod 7) .
$$

After reduction by $f(x)$

$$
6 x^{2}+6 x+3
$$

Hence, $c(x) \bmod f(x)=\left(6 x^{2}+6 x+3\right)+\left(3 x^{3}+2 x^{2}+6 x+5\right)$

$$
=3 x^{3}+1 x^{2}+5 x+1(\bmod 7)(\bmod f)
$$

[Definition] Polynomial ring $R_{q}=\mathbb{Z}_{q}[x] /<f(x)>$

- The polynomial ring has its irreducible polynomial $f(x)$ of degree n. \rightarrow Hence all ring-elements are polynomials of degree $n-1$.
- Closed under polynomial addition and multiplication. \rightarrow For two polynomials $a(x)$ and $b(x) \in R_{q}$

$$
c(x)=a(x)+b(x)(\bmod q)(\bmod f) \in R_{q}
$$

and

$$
c(x)=a(x) * b(x) \quad(\bmod q)(\bmod f) \in R_{q}
$$

- Identity element under the addition rule is the 0-polynomial.
- Identity element under the multiplication rule is the 1-polynomial
- Multiplicative inverse of a polynomial may not exist.

From now on we assume all multiplications are in $\mathrm{R}_{q}=\mathbb{Z}_{q}[x] /<x^{n}+1>$
\rightarrow This simplifies modular reduction by $f(x)=x^{n}+1$
\rightarrow and makes an implementation more efficient

Implementation hierarchy: Ring-LWE-based PKE

How to multiply two polynomials?

We can use the following algorithms and also combinations of them

- Schoolbook multiplication: $O\left(n^{2}\right)$
- Karatsuba multiplication: $O\left(n^{1.585}\right)$
- Fast Fourier Transform (FFT) multiplication: $O(n \log n)$

Schoolbook method of polynomial multiplication

*

$$
\begin{aligned}
& a(x)=5 x^{3}+4 x^{2}+2 x+6(\bmod 7) \\
& b(x)=3 x^{3}+2 x^{2}+5 x+2(\bmod 7)
\end{aligned}
$$

$$
3 x^{3}+1 x^{2}+4 x+5
$$

$$
4 x^{4}+6 x^{3}+3 x^{2}+2 x
$$

$$
3 x^{5}+1 x^{4}+4 x^{3}+5 x^{2}
$$

$$
1 x^{5}+5 x^{5}+6 x^{4}+4 x^{3}
$$

$$
c(x)=1 x^{6}+1 x^{5}+4 x^{4}+3 x^{3}+2 x^{2}+6 x+5(\bmod 7)
$$

We learnt this method during algebra classes in school.

+ Simple structure makes it easy to implement.
- Time complexity is $\mathrm{O}\left(\mathrm{n}^{2}\right)$, which is the worst of all three algorithms.

GP/Pari code for Schoolbook polynomial multiplication (1)

```
N = 2^8; /* Polynomial degree */
q = 7681; /* Coefficient modulus */
firr = Mod(1,q)* *^N + Mod(1,q); /* Irreducible polynomial modulus */
schoolbook(a,b) = {
    /* Schoolbook polynomial multiplication c=a*b has two nested loops */
    c = 0;
        for(i=0,N-1,
            for(j=0, N-1,
            mval = polcoeff(b, j)*polcoeff(a,i) % q;
            c = c + mval*x^(j+i)));
    c = c%firr;
    return (c);
}
```

https://pari.math.u-bordeaux.fr/gp.html

GP/Pari code for Schoolbook polynomial multiplication (2)

```
test() = {
    /* Formation of random polynomial a(x) with coefficients mod q */
    a = 0;
    for(i=0, N-1, a = a + random(q)*x^i);
    /* Formation of random polynomial b(x) with coefficients mod q */
    b = 0;
    for(i=0,N-1, b = b + random(q)*}\mp@subsup{|}{}{\wedge}\mp@subsup{^}{i}{\prime})
    c= schoolbook(a,b);
    /* Native polynomial multiplication d=a*b. */
    d = a*b % firr;
    print("c= = ", c);
    print("d= ",d);
    print("c-d = ", c-d); /* If correct, then c-d will be 0. */
}
test();
```

https://pari.math.u-bordeaux.fr/gp.html

Architecture for Schoolbook polynomial multiplication

E.g., polynomial degree $N=256$ and $f(x)=x^{256}+1$.

$$
\begin{aligned}
& \hline \text { Algorithm: Schoolbook algorithm } \\
& \hline \operatorname{acc}(x) \leftarrow 0 \\
& \text { for } i=0 ; i<256 ; i++ \text { do } \\
& \qquad \begin{array}{c}
\text { for } j=0 ; j<256 ; j++ \text { do } \\
\lfloor\operatorname{acc}[j]=\operatorname{acc}[j]+b[j] \cdot a[i] \\
b=b \cdot x \bmod \left\langle x^{256}+1\right\rangle
\end{array}
\end{aligned}
$$

return $a c c$
How will you implement the algo as an architecture in HW?

Architecture for Schoolbook polynomial multiplication

E.g., polynomial degree $N=256$ and $f(x)=x^{256}+1$.

$$
\begin{aligned}
& \text { Algorithm: Schoolbook algorithm } \\
& \hline \operatorname{acc}(x) \leftarrow 0 \\
& \text { for } i=0 ; i<256 ; i++ \text { do } \\
& \qquad \begin{array}{l}
\text { for } j=0 ; j<256 ; j++ \text { do } \\
\lfloor\operatorname{acc}[j]=a c c[j]+b[j] \cdot a[i] \\
b=b \cdot x \bmod \left\langle x^{256}+1\right\rangle
\end{array}
\end{aligned}
$$

return $a c c$

How will you implement the algo as an architecture in HW?

- What are the fundamental elementary operations?

Architecture for Schoolbook polynomial multiplication

E.g., polynomial degree $N=256$ and $f(x)=x^{256}+1$.

Algorithm: Schoolbook algorithm

$$
\operatorname{acc}(x) \leftarrow 0
$$

for $i=0 ; i<256 ; i+$ do
for $j=0 ; j<256 ; j+$ do
$L a c c[j]=a c c[j]+b[j] \cdot a[i] \quad$ Multiply and Accumulate (MAC)
$b=b \cdot x \bmod \left\langle x^{256}+1\right\rangle$
return $a c c$
How will you implement the algo as an architecture in HW?

- What are the fundamental elementary operations?
- Draw an architecture for MAC

Architecture for Schoolbook polynomial multiplication

E.g., polynomial degree $N=256$ and $f(x)=x^{256}+1$.

Algorithm: Schoolbook algorithm

$$
\begin{aligned}
& \text { acc }(x) \leftarrow 0 \\
& \text { for } i=0 ; i<256 ; i+\text { do } \\
& \qquad \begin{array}{l}
\text { for } j=0 ; j<256 ; j++ \text { do } \\
\quad \operatorname{acc}[j]=a c c[j]+b[j] \cdot a[i] \\
b=b \cdot x \bmod \left\langle x^{256}+1\right\rangle
\end{array}
\end{aligned}
$$

return $a c c$

Architecture of MAC unit

Architecture for Schoolbook polynomial multiplication

E.g., polynomial degree $N=256$ and $f(x)=x^{256}+1$.

Algorithm: Schoolbook algorithm

$$
\operatorname{acc}(x) \leftarrow 0
$$

for $i=0 ; i<256 ; i+$ do
for $j=0 ; j<256 ; j+$ do
$\llcorner a c c[j]=a c c[j]+b[j] \cdot a[i]$
$b=b \cdot x \bmod \left\langle x^{256}+1\right\rangle \quad$ How to implement this step?
return $a c c$

Architecture for Schoolbook polynomial multiplication

E.g., polynomial degree $N=256$ and $f(x)=x^{256}+1$.

Algorithm: Schoolbook algorithm

$$
\begin{aligned}
& a c c(x) \leftarrow 0 \\
& \text { for } i=0 ; i<256 ; i++ \text { do } \\
& \qquad \begin{array}{l}
\text { for } j=0 ; j<256 ; j++ \text { do } \\
\lfloor\operatorname{acc}[j]=\operatorname{acc}[j]+b[j] \cdot a[i] \\
b=b \cdot x \bmod \left\langle x^{256}+1\right\rangle
\end{array}
\end{aligned}
$$

How to implement this step?

return $a c c$

With $\bmod f(x)=x^{n}+1$, we have $x^{n} \equiv-1$, hence multiplying

$$
\begin{aligned}
b(x) & =b_{n-1} x^{n-1}+\ldots+b_{0} \quad(\bmod f(x)) \quad \text { by } x \text { gives } \\
x \cdot b(x) & =b_{n-2} x^{n-1}+\ldots+b_{0} x-b_{n-1}(\bmod f(x)) \rightarrow \text { Rotation with sign change. }
\end{aligned}
$$

Architecture for Schoolbook polynomial multiplication

Ring-buffer
 registers

Note: This is just an idea. This may not be an optimized architecture!

acc_{255}	acc $_{254}$	\cdots	acc_{1}	$a^{2} c_{0}$

Apply this MAC() one by one.

Karatsuba method of polynomial multiplication

In 1960, during a seminar at Moscow State University, Kolmogorov conjectured that multiplying two integers have $\mathrm{O}\left(\mathrm{n}^{2}\right)$ complexity.

Karatsuba, then a 23 years old student, attended the seminar and within a week came up with a divide-and-conquer method for multiplying two integers with $O\left(n^{\log _{2} 3}\right)$ complexity.

Anatoly Karatsuba (1937-2008)

The method was published in the Proceedings of the USSR Academy of Sciences in 1962.

Karatsuba method of polynomial multiplication (1)

Split each operand into two halve-size polynomials:

$$
a(x)=a_{n-1} x^{n-1}+\ldots+a_{n / 2} x^{n / 2}+a_{n / 2-1} x^{n / 2-1}+\ldots+a_{1} x+a_{0}
$$

$$
a_{h}(x)
$$

$a_{l}(x)$

Hence, we can write:

$$
a(x)=a_{h}(x) x^{n / 2}+a_{l}(x)=a_{h} x^{n / 2}+a_{l}
$$

Karatsuba method of polynomial multiplication (2)

After splitting we have:

$$
\begin{aligned}
& a(x)=a_{h} x^{n / 2}+a_{l} \\
& b(x)=b_{h} x^{n / 2}+b_{l}
\end{aligned}
$$

Naïve method: We can compute the result using the Schoolbook method

$$
a(x) * b(x)=a_{h} b_{h} x^{n}+\left(a_{h} b_{l}+a_{l} b_{h}\right) x^{n / 2}+a_{l} b_{l}
$$

It performs 4 multiplication and has a quadratic complexity.

Karatsuba showed how to compute this using 3 multiplications.

Karatsuba method of polynomial multiplication (3)

After splitting we have:

$$
\begin{aligned}
& a(x)=a_{h} x^{n / 2}+a_{l} \\
& b(x)=b_{h} x^{n / 2}+b_{l}
\end{aligned}
$$

Karatsuba method:

$$
a(x) * b(x)=a_{h} b_{h} x^{n}+\left(a_{h} b_{l}+a_{l} b_{h}\right) x^{n / 2}+a_{l} b_{l}
$$

It computes $\left(a_{h} b_{l}+a_{l} b_{h}\right)$ term by performing only one multiplication as:

$$
\left(a_{h} b_{l}+a_{l} b_{h}\right)=\left(a_{h}+a_{l}\right) \cdot\left(b_{h}+b_{l}\right)-a_{h} b_{h}-a_{l} b_{l}
$$

These two produces are reused from the above.

Karatsuba method of polynomial multiplication (3)

After splitting we have:

$$
\begin{aligned}
& a(x)=a_{h} x^{n / 2}+a_{l} \\
& b(x)=b_{h} x^{n / 2}+b_{l}
\end{aligned}
$$

Karatsuba method:

$$
a(x) * b(x)=a_{h} b_{h} x^{n}+\left(a_{h} b_{l}+a_{l} b_{h}\right) x^{n / 2}+a_{l} b_{l}
$$

It computes $\left(a_{h} b_{l}+a_{l} b_{h}\right)$ term by performing only one multiplication as:

$$
\left(a_{h} b_{l}+a_{l} b_{h}\right)=\left(a_{h}+a_{l}\right) \cdot\left(b_{h}+b_{l}\right)-a_{h} b_{h}-a_{l} b_{l}
$$

Hence, the three multiplications are:
$a_{h} b_{h}, a_{l} b_{l}$, and $\left(a_{h}+a_{l}\right) \cdot\left(b_{h}+b_{l}\right)$.

Divide-and-Conquer approach: Karatsuba tree

- Recursively apply divide-and-conquer strategy
- When the polynomials are of sufficiently-small size, multiply them
- And return to the higher levels

Complexity of Karatsuba polynomial multiplication

Let, T_{n} be the time for multiplication two n-coefficient polynomials.

$$
\begin{aligned}
\mathrm{T}_{\mathrm{n}} & =3 \mathrm{~T}_{\mathrm{n} / 2} \\
& =3^{2} \mathrm{~T}_{\mathrm{n} / 4} \\
& =3^{3} \mathrm{~T}_{\mathrm{n} / 8} \\
& =\cdots \dot{l o g}_{2} n \\
& =\mathrm{T}_{1}
\end{aligned}
$$

Hence, the complexity $=O\left(3^{\log _{2} n}\right)=O\left(n^{\log _{2} 3}\right) \approx O\left(n^{1.585}\right)$

The idea of FFT

Representation: Polynomial \leftrightarrow Point values

Given a polynomial $\mathrm{a}(\mathrm{x})$ we can easily compute its evaluations at n points

$$
a(x)=a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

Representation: Polynomial \leftrightarrow Point values

Given n distinct evaluation points $y_{0}, y_{1}, \ldots, y_{\mathrm{n}-1}$ can we get $a(x)$?

$$
a(x)=\text { ? }
$$

Representation: Polynomial \leftrightarrow Point values

What we have as $y_{0}, y_{1}, \ldots, y_{\mathrm{n}-1}$ are:

$$
\begin{aligned}
& y_{0}=a(0)=a_{n-1} 0^{n-1}+\ldots+a_{2} 0^{2}+a_{1} 0+a_{0} \\
& y_{1}=a(1)=a_{n-1} 1^{n-1}+\ldots+a_{2} 1^{2}+a_{1} 1+a_{0}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
{\left[\begin{array}{ccccc}
\begin{array}{cccc}
0^{0} & 0^{1} & 0^{2} & \ldots
\end{array} 0^{n-1} \\
1^{0} & 1^{1} & 1^{2} & \ldots & 1^{n-1} \\
2^{0} & 2^{1} & 2^{2} & \ldots & 2^{n-1} \\
& & & \ldots & \\
& & & & \\
& \left(V^{-1} \text { performs the opposite }\right)
\end{array}\right.} & {\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\ldots
\end{array}\right]}
\end{array}\right]=\left[\begin{array}{l}
a(0) \\
a(1) \\
a(2) \\
\ldots
\end{array}\right]
$$

$$
y_{\mathrm{n}-1}=a(n-1)=a_{n-1}(n-1)^{n-1}+\ldots+a_{2}(n-1)^{2}+a_{1}(n-1)+a_{0}
$$

Polynomial \rightarrow Point values

$$
\begin{aligned}
& \left(\begin{array}{c}
a(0) \\
a(1) \\
a(2) \\
\ldots \\
a(n-1)
\end{array}\right)=\left(\begin{array}{ccccc}
0^{0} & 0^{1} & 0^{2} & \ldots & 0^{n-1} \\
1^{0} & 1^{1} & 1^{2} & \ldots & 1^{n-1} \\
2^{0} & 2^{1} & 2^{2} & \ldots & 2^{n-1} \\
& \ldots & & \\
(n-1)^{0} & & & (n-1)^{n-1}
\end{array}\right)
\end{aligned} \begin{gathered}
\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\ldots \\
a_{n-1}
\end{array}\right] \\
\text { Points } \\
\begin{array}{l}
\text { Polynomial } \\
\text { coefficients }
\end{array}
\end{gathered}
$$

Given a polynomial, calculating the n distinct points is called 'evaluation'.

Point values \rightarrow Polynomial

Given n distinct points, calculating the polynomial is called 'interpolation'.

Rules: Polynomial \leftrightarrow Point values

1. Interpolation will succeed in obtaining $a(x)$ only if there are n distinct evaluations y_{0}, \ldots, y_{n-1}.
2. You can choose any values for x as long as you get n distinct y_{i}.

Application of DFT in polynomial multiplication

$$
\begin{aligned}
a(x) & =a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1} \\
b(x) & =b_{0}+b_{1} x+\ldots+b_{n-1} x^{n-1} \\
c(x)=a(x) * b(x) & =c_{0}+c_{1} x+\ldots+c_{n-1} x^{n-1}+\ldots+c_{2 n-2} x^{2 n-2}
\end{aligned}
$$

Polynomial $c(x)$ has degree $2 n-2$.
\rightarrow Therefore $\mathrm{c}(\mathrm{x})$ can be represented as $2 n-1$ discrete points.

Application of DFT in polynomial multiplication

- For $c(x)=a(x) * b(x)$ where $a(x)$ and $b(x)$ have degree of $n-1$:
- Evaluate $a(x)$ and $b(x)$ at $2 n-1$ points
- Multiply evaluated points $m_{i}=a(i) \cdot b(i)$
- Use Lagrange's interpolating polynomials to reconstruct $c(x)$

$$
\mathrm{c}(\mathrm{x})=\mathrm{a}(\mathrm{x})^{*} \mathrm{~b}(\mathrm{x})=\sum_{i=0}^{2 n-2} i . L_{i}(x) \text { where } L_{i}(x)=\prod_{i \neq j} \frac{x-j}{i-j}
$$

Application of DFT in polynomial multiplication

- For $c(x)=a(x) * b(x)$ where $a(x)$ and $b(x)$ have degree of $n-1$:
- Evaluate $a(x)$ and $b(x)$ at $2 n-1$ points
- Multiply evaluated points $m_{i}=a(i) \cdot b(i)$
- Use Lagrange's interpolating polynomials to reconstruct $c(x)$

$$
\mathrm{c}(\mathrm{x})=\mathrm{a}(\mathrm{x})^{*} \mathrm{~b}(\mathrm{x})=\sum_{i=0}^{2 n-2} i . L_{i}(x) \text { where } L_{i}(x)=\prod_{i \neq j} \frac{x-j}{i-j}
$$

Application of DFT in polynomial multiplication

- Observation: If we can perform evaluation and interpolation operations fast, then we can multiply two polynomials fast.
- Can we use DFT to perform these operations?

Application of DFT in polynomial multiplication

- Observation: If we can perform evaluation and interpolation operations fast, then we can multiply two polynomials fast.
- Can we use DFT to perform these operations?
- Discrete Fourier Transform (DFT)
- A transformation $\left(a_{0}, a_{1}, \ldots, a_{n-2}, a_{n-1}\right)-->\left(A_{0}, A_{1}, \ldots, A_{n-2}, A_{n-1}\right)$

$$
\mathrm{A}_{\mathrm{k}}=\sum_{j=0}^{n-1} a_{j} \cdot e^{\left(-\frac{(2 i \pi)}{n}\right) \cdot k \cdot j}
$$

- $\omega=e^{-i 2 \pi / n}$ is n-th primitive root of 1 (unity) which satisfies $\omega^{n}=1$

$$
\omega^{k} \neq 1 \text { for } 1 \leq k<n
$$

Application of DFT in polynomial multiplication

- We can choose our evaluation points as powers of ω

$$
\underbrace{\left[\begin{array}{ccc}
\omega^{0} \omega^{0} \omega^{0} & \ldots . & \omega^{0-1} \\
\omega^{0} \omega^{1} \omega^{2} & \ldots & \omega^{n-1} \\
\omega^{0} \omega^{2} \omega^{4} & \ldots . & \omega^{2 n-2} \\
\ldots & &
\end{array}\right]}_{V(\omega)} *\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\ldots
\end{array}\right]=\left[\begin{array}{c}
a\left(\omega^{0}\right) \\
a\left(\omega^{1}\right) \\
a\left(\omega^{2}\right) \\
\ldots
\end{array}\right]
$$

$$
\begin{aligned}
V(\omega) * V\left(\omega^{-1}\right) & =n * 1 \\
V\left(\omega^{-1}\right) & =n * V(\omega)^{-1} \\
V(\omega)^{-1} & =(1 / n) * V\left(\omega^{-1}\right)
\end{aligned}
$$

With $V(\omega)$ (DFT), we compute evaluation
With $\mathrm{V}(\omega)-1$ or $(1 / n)^{*} \mathrm{~V}\left(\omega^{-1}\right)$ (IDFT), we compute interpolation

Application of DFT in polynomial multiplication

- We can choose our evaluation points as powers of ω
$\underbrace{\left[\begin{array}{ccc}\omega^{0} \omega^{0} \omega^{0} & \ldots & \omega^{0-1} \\ \omega^{0} \omega^{1} \omega^{2} & \ldots & \omega^{n-1} \\ \omega^{0} \omega^{2} \omega^{4} & \ldots . & \omega^{2 n-2} \\ \ldots & \\ \hline\end{array}\right]}_{V(\omega)} \cdot\left[\begin{array}{c}a_{0} \\ a_{1} \\ a_{2} \\ \ldots\end{array}\right]=\left[\begin{array}{c}a\left(\omega^{0}\right) \\ a\left(\omega^{1}\right) \\ a\left(\omega^{2}\right) \\ \ldots\end{array}\right]$

$$
\begin{aligned}
V(\omega) * V\left(\omega^{-1}\right) & =n * 1 \\
V\left(\omega^{-1}\right) & =n * V(\omega)^{-1} \\
V(\omega)^{-1} & =(1 / n) * V\left(\omega^{-1}\right)
\end{aligned}
$$

With $\mathrm{V}(\omega)$ (DFT), we compute evaluation
With $\mathrm{V}(\omega)-1$ or $(1 / \mathrm{n}) * \mathrm{~V}\left(\omega^{-1}\right)$ (IDFT), we compute interpolation

- We can use DFT and IDFT for evaluation and interpolation.

Summary: DFT-base polynomial multiplication

What is the complexity of Discrete Fourier Transform (DFT) ?
Answer: O(n^{2})
Fast Fourier Transform (FFT) computes it 'fast' in O($n \log n$)

Fast Fourier Transform (FFT)

The n-point FFT evaluates $a(x)=a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$
at n special points: $x=\omega_{n}^{k}=e^{-i 2 \pi k / n}$ for $k=0, \ldots, n-1$ where $\omega_{n}=e^{-i 2 \pi / n}$ is the $n^{\text {th }}$ primitive root of 1 i.e., $\omega_{n}^{n}=1$.

With these special points, we can reuse intermediate values to do fewer computation in total.

Fast Fourier Transform (FFT)

The n-point FFT evaluates $a(x)=a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$
at n special points: $x=\omega_{n}^{k}=e^{-i 2 \pi k / n}$ for $k=0, \ldots, n-1$ where $\omega_{n}=e^{-i 2 \pi / n}$ is the $n^{\text {th }}$ primitive root of 1 .

Interesting mathematical property FFT uses:

$$
\omega_{n}^{n / 2}=-1
$$

Fast Fourier Transform (FFT)

The n-point FFT evaluates $a(x)=a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$
at n special points: $x=\omega_{n}^{k}=e^{-i 2 \pi k / n}$ for $k=0, \ldots, n-1$ where $\omega_{n}=e^{-i 2 \pi / n}$ is the $n^{\text {th }}$ primitive root of 1 .

Interesting mathematical property FFT uses:

$$
\omega_{n}^{n / 2}=-1
$$

We can rewrite

$$
\begin{aligned}
a(x) & =a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} \\
& =\left(\ldots+a_{4} x^{4}+a_{2} x^{2}+a_{0}\right)+\left(\ldots+a_{5} x^{4}+a_{3} x^{2}+a_{1}\right) x \\
& =a_{\text {even }}\left(x^{2}\right)+x a_{\text {odd }}\left(x^{2}\right)
\end{aligned}
$$

Fast Fourier Transform (FFT)

Interesting mathematical property FFT uses:

$$
\omega_{n}^{n / 2}=-1
$$

We can rewrite

$$
\begin{aligned}
a(x) & =a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} \\
& =\left(\ldots+a_{4} x^{4}+a_{2} x^{2}+a_{0}\right)+\left(\ldots+a_{5} x^{4}+a_{3} x^{2}+a_{1}\right) x \\
& =a_{\text {even }}\left(x^{2}\right)+x a_{\text {odd }}\left(x^{2}\right)
\end{aligned}
$$

Based on the above,

$$
y_{k}=a\left(\omega^{k}\right)=a_{\text {even }}\left(\omega^{2 k}\right)+\omega^{k} a_{\text {odd }}\left(\omega^{2 k}\right)
$$

and

$$
\begin{gathered}
y_{k+n / 2}=a\left(\omega^{k+n / 2}\right)=a_{\text {even }}\left(\omega^{2 k+n}\right)+\omega^{k+n / 2} a_{\text {odd }}\left(\omega^{2 k+n}\right) \\
=a_{\text {even }}\left(\omega^{2 k}\right)-\omega^{k} a_{\text {odd }}\left(\omega^{2 k}\right)
\end{gathered}
$$

Fast Fourier Transform (FFT)

Interesting mathematical property FFT uses:

$$
\omega_{n}^{n / 2}=-1
$$

We can rewrite

$$
\begin{aligned}
a(x) & =a_{\mathrm{n}-1} x^{n-1}+\ldots+a_{1} x+a_{0} \\
& =\left(\ldots+a_{4} x^{4}+a_{2} x^{2}+a_{0}\right)+\left(\ldots+a_{5} x^{4}+a_{3} x^{2}+a_{1}\right) x \\
& =a_{\text {even }}\left(x^{2}\right)+x a_{\text {odd }}\left(x^{2}\right)
\end{aligned}
$$

Based on the above,

FFT reuses them

$$
y_{k}=a\left(\omega^{k}\right)=a_{\text {even }}\left(\omega^{2 k}\right)+\omega^{k} a_{\text {odd }}\left(\omega^{2 k}\right)
$$

and

$$
\begin{gathered}
y_{k+n / 2}=a\left(\omega^{k+n / 2}\right)=a_{\text {even }}\left(\omega^{2 k+n}\right)+\omega^{k+n / 2} a_{\text {odd }}\left(\omega^{2 k+n}\right) \\
=a_{\text {even }}\left(\omega^{2 k}\right)-\omega^{k} a_{\text {odd }}\left(\omega^{2 k}\right)
\end{gathered}
$$

Complexity of FFT

Uses divide and conquer approach

Each level in the tree has $O(n)$ cost. There are $\log (n)$ levels. Total cost $=0(n \log n)$

FFT to Number Theoretic Transform (NTT)

- FFT involves arithmetic of real numbers

It evaluates at powers of $e^{-i 2 \pi / n}$ where $e^{-i 2 \pi / n}$ is the complex $n^{\text {th }}$ primitive root of the unity.

- Number Theoretic Transform (NTT)

NTT replaces $e^{-i 2 \pi / n}$ by an $n^{\text {th }}$ primitive root of the unity modulo q where q is a prime satisfying $q \equiv 1 \bmod n$ and n is a power-of- 2 .
\rightarrow Only integer arithmetic modulo q

Number Theoretic Transform (NTT)

- An n-point NTT takes $a(x)$ as an input and generates:
$\mathbf{a}(x)=\sum_{i=0}^{n-1} \mathcal{A}_{i} \cdot x^{i} \quad$ where $\quad \mathcal{A}_{i}=\sum_{j=0}^{n-1} a_{j} \cdot \omega^{i . j}$
$\omega: n^{\text {th }}$ root of unity (twiddle factor) satisfying $\omega^{n} \equiv 1(\bmod q)$

$$
\begin{aligned}
& \omega^{i} \neq 1(\bmod q) \forall i<n \\
& q \equiv 1(\bmod n)
\end{aligned}
$$

Number Theoretic Transform (NTT)

- An n-point NTT takes $a(x)$ as an input and generates:

$$
\mathbf{a}(x)=\sum_{i=0}^{n-1} \mathcal{A}_{i} \cdot x^{i} \quad \text { where } \quad \mathcal{A}_{i}=\sum_{j=0}^{n-1} a_{j} . \omega^{i . j}
$$

$\omega: n^{\text {th }}$ root of unity (twiddle factor) satisfying $\omega^{n} \equiv 1(\bmod q)$

$$
\begin{aligned}
& \omega^{i} \neq 1(\bmod q) \forall i<n \\
& q \equiv 1(\bmod n)
\end{aligned}
$$

- Inverse NTT (INTT) operation uses a similar formula.

$$
\mathrm{a}(x)=\sum_{i=0}^{n-1} a_{i} \cdot x^{i} \quad \text { where } \quad a_{i}=\frac{1}{n} \cdot \sum_{j=0}^{n-1} \mathcal{A}_{j} \cdot \omega^{-i . j}
$$

Number Theoretic Transform (NTT)

- Example (NTT for $n=4$):

$$
\begin{aligned}
& \mathcal{A}_{0}=a_{0}+a_{1}+a_{2}+a_{3} \\
& \mathcal{A}_{1}=a_{0}+a_{1} \cdot \omega^{1}+a_{2} \cdot \omega^{2}+a_{3} \cdot \omega^{3} \\
& \mathcal{A}_{2}=a_{0}+a_{1} \cdot \omega^{2}+a_{2} \cdot \omega^{4}+a_{3} \cdot \omega^{6} \\
& \mathcal{A}_{3}=a_{0}+a_{1} \cdot \omega^{3}+a_{2} \cdot \omega^{6}+a_{3} \cdot \omega^{9}
\end{aligned}
$$

Using $\omega^{4}=1$

$$
\omega^{2}=-1
$$

Number Theoretic Transform (NTT)

- Example (NTT for $n=4$):

$$
\begin{array}{ll}
\mathcal{A}_{0}=a_{0}+a_{1}+a_{2}+a_{3} & \mathcal{A}_{0}=a_{0}+a_{1}+a_{2}+a_{3} \\
\mathcal{A}_{1}=a_{0}+a_{1} \cdot \omega^{1}+a_{2} \cdot \omega^{2}+a_{3} \cdot \omega^{3} & \mathcal{A}_{1}=a_{0}+a_{1} \cdot \omega^{1}-a_{2}-a_{3} \cdot \omega^{2} \\
\mathcal{A}_{2}=a_{0}+a_{1} \cdot \omega^{2}+a_{2} \cdot \omega^{4}+a_{3} \cdot \omega^{6} & \mathcal{A}_{2}=a_{0}-a_{1}+a_{2}-a_{3} \\
\mathcal{A}_{3}=a_{0}+a_{1} \cdot \omega^{3}+a_{2} \cdot \omega^{6}+a_{3} \cdot \omega^{9} & \mathcal{A}_{3}=a_{0}-a_{1} \cdot \omega-a_{2}+a_{3} \cdot \omega^{1}
\end{array}
$$

$$
\begin{aligned}
\text { Using } \omega^{4} & =1 \\
\omega^{2} & =-1
\end{aligned}
$$

An optimization in NTT: Negative-wrapped convolution

Polynomial multiplication in $R_{q}=\mathbb{Z}_{q}[x] /<f(x)>$ where q is a prime satisfying $q \equiv 1(\bmod n)$ is as follows:

An optimization in NTT: Negative-wrapped convolution

Polynomial multiplication in $R_{q}=\mathbb{Z}_{q}[\mathrm{x}] /<f(\mathrm{x})>$ where q is a prime satisfying $q \equiv 1(\bmod n)$ is as follows:

Polynomial multiplication in $R_{q}=\mathbb{Z}_{q}[\mathrm{x}] /<f(\mathrm{x})>$ where q is a prime satisfying $q \equiv 1(\bmod 2 n)$, and $f(x)=x^{n}+1$ is as follows:

Negative-wrapped convolution

An optimization in NTT: Negative-wrapped convolution

- Two main approaches to perform fast NTT:
- Decimation-in-time (DIT) with Cooley-Tukey butterfly structure
- Decimation-in-frequency (DIF) with Gentleman-Sande butterfly structure
- For $n-p t$ NTT, there are $\log (n)$ stages where each stage performs $n / 2$ butterfly operations

Explaining NTT using the Chinese Remainder Theorem (CRT)

https://electricdusk.com/ntt.html
(Optional study material. Not essential for this course)

Python code of NTT-based multiplication is available on the course page.

Forward NTT Pseudocode

```
fntt(B[] ] of size N):
    t=N
    m}=
    while(m<N):
    t = int(t/2)
    for i in range(m):
        j1 = 2*i*t
        j2 = j1 + t-1
        psi_pow = int_bitreverse(m+i) # Bits in the reverse order
            W = psi_table[psi_pow]
            for j in range(j1,j2+1): # Cooley-Tukey butterfly operation
                U = B[j]
                    V = (B[j+t]*W) % q
                    B[j] = (U+V) % q
                    B[j+t] = (U-V) % q
    m=2*m
return B
```


Butterfly circuit for forward NTT

\# Cooley-Tukey butterfly operation
for j in range($\mathrm{j} 1, \mathrm{j} 2+1$):

$$
\begin{aligned}
& U=B[j] \\
& V=(B[j+t] * W) \% q \\
& B[j]=(U+V) \% q \\
& B[j+t]=(U-V) \% q
\end{aligned}
$$

NTT and Memory access

Simplified NTT loops

$B[n-1]$
$B[n-2]$
$B[3]$
$B[2]$
$B[1]$
$B[0]$

```
Loop m {
    Loop i {
        Loop j {
        Butterfly(B[j],B[j+t]);
        }
    }
}
```

Butterfly() reads two coefficients from memory.
Butterfly() writes two coefficients to memory.

NTT in HW

Inverse NTT Pseudocode

```
intt( B[] of size N ):
    \(\mathrm{t}=1\)
    \(\mathrm{m}=\mathrm{N}\)
    while( \(m>1\) ):
    j1 = 0
    \(h=\operatorname{int}(m / 2)\)
    for i in range \((\mathrm{h})\) :
        \(j 2=j 1+t-1\)
        psi_pow = int_bitreverse(h+i,l)
        W = psi_inv_table[psi_pow]
        for j in range( \(\mathrm{j} 1, \mathrm{j} 2+1\) ):
            \# Gentleman-Sande butterfly operation
            \(\mathrm{U}=\mathrm{B}[\mathrm{j}]\)
            \(V=B[j+t]\)
            \(B[j]=(U+V) \% q\)
            \(B[j+t]=(U-V) * W \% q\)
        \(\mathrm{j} 1=\mathrm{j} 1+2^{*} \mathrm{t}\)
        \(\mathrm{t}=2{ }^{*} \mathrm{t}\)
        \(\mathrm{m}=\mathrm{int}(\mathrm{m} / 2)\)
        \# ... (Division by N)
    return B
```


NTT and Memory access

Simplified NTT loops

$B[n-1]$
$B[n-2]$
$B[3]$
$B[2]$
$B[1]$
$B[0]$

```
Loop m {
    Loop i {
        Loop j {
        Butterfly(B[j],B[j+m/2]);
        }
    }
}
```

Butterfly() reads two coefficients from memory.
Butterfly() writes two coefficients to memory.

NTT and Memory access

NTT and Memory access

--- MFNTT_DIT_NR (N=8)
A_index=0, B_index=4, psi_pow=4
A_index=1, B_index=5, psi_pow=4
A_index=2, B_index=6, psi_pow=4
A_index=3, B_index=7, psi_pow=4
A_index=0, B_index=2, psi_pow=2
A_index=1, B_index=3, psi_pow=2
A_index=4, B_index=6, psi_pow=6
A_index=5, B_index=7, psi_pow=6
A_
A_index=0, B_index=1, psi_pow=1
A_index=2, B_index=3, psi_pow=5
A_index=4, B_index=5, psi_pow=3
A_index=6, B_index=7, $p s i _p o w=7$

--- MINTT_DIF_RN ($\mathrm{N}=8$)	
A_index $=0, ~ B _i n d e x=1$	psi_pow=1
A_index $=2, \mathrm{~B}$ _inde $\mathrm{x}=3$,	psi_pow=5
A_inde $=4, \mathrm{~B}$ _inde $\mathrm{x}=5$,	psi_pow=3
A_index $=6$, B_index=7,	psi_pow=7
A_index $=0$, B index=	psi_pow=2
A_inde $x=1, \quad B$ _inde $x=3$,	psi_pow=2
A_index $=4, ~ B _i n d e x=6$,	psi_pow=6
A_index $=5, \mathrm{~B}$ _inde $=7$,	psi_pow=6
A_index $=0, B_{1}$ index $=4$,	psi_pow=4
A_index $=1, \mathrm{~B}$ _inde $\mathrm{x}=5$,	psi_pow=4
A_index $=2, \quad B$ _inde $=6$,	psi_pow=4
A_index $=3, \mathrm{~B}$ _inde $\mathrm{x}=7$,	psi_pow=4

Karatsuba multiplier in HW?

- Karatsuba uses divide-and-conquer recursively.
- Recursion is easy to implement in SW \rightarrow Call the function recursively.
- Full recursion is 'difficult' to implement in HW (*my* personal opinion)

But, a few levels of recursions is easy to implement. (see next slide)

E.g., 1 level of Karatsuba then Schoolbook

Some ideas:

1. Use HW/SW co-design approach. Perform splitting and joining in SW and compute the Schoolbook multiplications in HW.
\rightarrow Easy to implement. But many rounds of HW <--> SW communications.
2. Do everything in HW. \rightarrow More efficient.

HW/SW co-design of the Karatsuba method

1. SW: Since recursion is challenging to implement in HW, perform all the recursive function calls in SW.
2. HW: When the recursion tree reaches a 'threshold', perform the actual schoolbook multiplications in HW.
3. SW: Read the partial results from HW and combine them in SW.

HW/SW co-design of the Karatsuba method: example

Schoolbook $_{32}$ () in HW

