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Hardware Faults [1]

• Error introduced by the hardware

• Transient faults affect only a short time slice
• e.g. caused by cosmic radiation

• Latent faults repeat after a certain period
• e.g. Intel’s floating point division bug

• An attacker can induce transient fault by changing
• voltage, temperature, frequency, etc.

• May change the result of a computation
• by flipping bits in memory or registers
• by changing the output of logic circuits
• by creating a timing difference during computation
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Inducing Hardware Faults [3]

• Device parameter variation
• Supply voltage

• Propagation delay is inversely related to supply voltage
• Lowering the voltage increases delay

• Other parameters
• Frequency
• Environment temperature

• Localized heating
• Using laser with long wavelength
• Low photon energy, no photoelectric effect

• Photoelectric effect (e.g. white light, laser)
• Induction from software (e.g. Rowhammer) [2]

5



Fault Attacks on Cryptographic Systems

• Differential fault analysis [4] may
break

• public key systems such as RSA [1]
• break private key systems such as
DES [4] or AES [5]

• Compute plaintext, ciphertext pairs
• with and without inducing a fault
• use difference in CT to recover
parts of the secret

Figure 1: Fault attack on AES [6]
Induce single-byte fault before round 9.
Results in 4 faulty bytes in ciphertext.
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Applying Fault Attacks to FPGAs

• FPGAs are commonly built in CMOS technology
• All previously mentioned strategies can be applied

• Cloud services provide FPGAs for acceleration [6]
• Remote fault attacks necessary

• Power distribution network (PDN) is shared for all FPGA blocks

7



Outline

Introduction to Fault Attacks

Case Study: Remote PDN Fault Attacks

Attacker Model

Voltage Drops in PDNs

Disruptive Attack with Ring Oscillators

AES Key Recovery Attack

Countermeasures

Case Study: Local Thermal Laser Stimulation

8



Attacker Model [6]

• Multi-tenant architecture
• Attacker and victim on same board
• Separated with logical isolation
• Shared PDN

• Attacker may reconfigure logic in
assigned area

• Victim computes AES encryptions
Figure 2: Thread model proposed in [6]
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Voltage Drops in PDNs

• A voltage drop between PDN and
load is characterised by

• IR drop
• Inductive L(di/dt) drop

• Inductive voltage drop has more
impact on smaller technologies [7]

• Attacker wants a logic structure with
high transient current consumption

Figure 3: Simple PDN model with load [8]
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Disruptive Attack with Ring Oscillators [9]

• Ring Oscillator (RO) can be built
from LUTs

• Needs about 7% to 12% of FPGA for
RO structure

• Enable RO with adjustable clock

• Sweep adjustable clock until crash
occurs

• Device is inaccessible until total
power reset

• Denial of Service on cloud possible

Figure 4: Ring oscillator structure proposed
by [9]

11



AES Key Recovery Attack [6, 10]

• Attack last round of AES
• Needs about 35% to 45% of FPGA
for RO structure

• Can also use benign designs such
as AES or s1238 benchmark

• 50% logic utilization for AES
• 65% logic utilization for s1238

• Self-calibrating attack
• Iterate until 1 byte in round 9 is
flipped

• Variable frequency, duty-cycle and
activation delay

Figure 5: Results of attack proposed in [10]
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Countermeasures [6]

• Adjust timing for critical logic paths
• Increase timing margins
• Delay elements invalidate output if close timing violation

• Separate power regions for each user
• Decreases efficiency for multi-tenant operation

• Check bitstream for combinational loops and ROs
• Difficult to implement
• Polynomial complexity
• Attacker can hide malicious logic
• ”Benign” faulting structures (e.g. AES) are not detected
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Attacker Model [11]

• Physical access to FPGA
• Optional training device

• Stimulate device area with laser
• From the backside of the chip

• Measure device parameters
• Voltage induced by thermal
heating

• Extract information from SRAM
• Bitstream encryption key
• Encrypted configuration data

Figure 6: Monitoring device parameters
during laser stimulation [11]
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Seebeck Voltage Generation [12]

• Photon energy of laser smaller than
silicon bandgap

• Causes heating of drain terminal
• Temperature gradient at
metal-silicon junction

• Seebeck effect generates voltage
• Measurable if channel exists
between source and drain

Figure 7: Seebeck voltage generation [12]
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Seebeck Voltage in SRAM Cells [12]

• Seebeck voltage affects only
low-ohmic transistors

• No change in left branch
• Gate voltage of right PMOS
increases

• Sub-threshold conduction
• Measurable current between VDD
and GND

• Extract state of SRAM cells
Figure 8: Seebeck voltage in SRAM cell [12]
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Bitstream Key Extraction [11]

• Encryption key is stored securely
• Battery-backed RAM or eFuses
• No read out possible
• BBRAM is tamper-resistant during runtime

• Attack can be mounted in power down state
• Only the BBRAM will be active
• Reduces additional noise

• Required steps
(i) BBRAM localization
(ii) Verify key dependency of stimulation response
(iii) Key bit localization
(iv) Key extraction
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(i) BBRAM Localization [11]

Figure 9: BBRAM localization [11]
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(ii) Verify Key Dependency of Stimulation [11]

Figure 10: Difference between zero key and 1 active key bit [11]
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(iii) Key Bit Localization [11]

Figure 11: Key bit map after localization experiment [11]
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(iv) Key Extraction [11]

Figure 12: Key extraction with decoded key [11]
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Countermeasures [11]

• Key obfuscation
• Use red key, store black key
• Stored key is encrypted with metalized key
• Store metalized key in eFuses
• Prevents reverse-engineering
• Cloning to another device still possible
• Prevent cloning by including unique device ID

• Sensing the laser
• Impossible with light sensors
• Possible with battery-powered temperature sensors

• Introduce noise source
• Hides data-dependent current
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