

Digital System Design Cipher Specification for Assignment

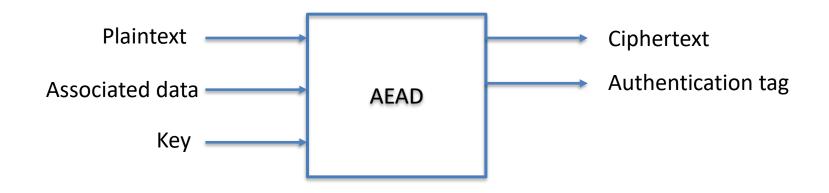
March, 2024

Sujoy Sinha Roy <u>sujoy.sinharoy@iaik.tugraz.at</u> Graz University of Technology

Authenticated Encryption with Associated Data (AEAD)

AEAD is a category of operating modes of block ciphers that ensure

- 1. authenticity
- 2. integrity
- 3. and confidentiality.



Two AEAD schemes for Assignment 1

Depending on your group, you will implement encryption of any one scheme

1. "Elephant" NIST Lightweight Cryptography Standardization.

Full specification: https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf

1. "PHOTON-Beetle" NIST Lightweight Cryptography Standardization.
Full specification: https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/specdoc-rnd2/photon-beetle-spec-round2.pdf

More information and source code: https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates

Commonly used symbols

Symbols	Use
a ⊕ b	Bitwise XOR between binary strings a and b
a b	Concatenation of binary strings a and b.
$a_1, a_2, \dots \stackrel{r}{\leftarrow} a$	Splits a into r-bit sub strings a ₁ , a ₂ , etc.
a< <i< td=""><td>Left shift a by i positions with 0 filling in the right</td></i<>	Left shift a by i positions with 0 filling in the right
a>>i	Right shift a by i positions with 0 filling in the left
a<< <i< td=""><td>Left circular shift of a by i positions</td></i<>	Left circular shift of a by i positions
a>>>i	Right circular shift of a by i positions

Splitting of message into blocks

- 1. Message M is a binary string of any length.
- 2. It will be split into *n*-bit blocks.
- 3. If length(M) is not a multiple of n, then pad 0s at the end.

Footnote *: Depending on scheme, it 0s are added either to left or right. For a given scheme, you should check the specification and reference implementation.

Splitting of message into blocks

- 1. Message M is a binary string of any length.
- 2. It will be split into *n*-bit blocks.
- 3. If length(M) is not a multiple of n, then pad 0s at the end*.

Toy example: Let M = 1011010010001111010101011 and n=4 bit.

Footnote *: Depending on scheme, it 0s are added either to left or right. For a given scheme, you should check the specification and reference implementation.

Splitting of message into blocks

- 1. Message M is a binary string of any length.
- 2. It will be split into *n*-bit blocks.
- 3. If length(M) is not a multiple of n, then pad 0s at the end.

Toy example: Let
$$M = 1011010010001111010101011$$
 and $n=4$ bit.

Length of M is 25. Hence pad three 0s to make the length 28.

$$M_0$$
 M_1 M_2 M_3 M_4 M_5 M_6 M after padding = 1011-0100-1000-1111-0101-0101-1000 Number of blocks = $28/4 = 7$.

Footnote *: Depending on scheme, it 0s are added either to left or right. For a given scheme, you should check the specification and reference implementation.

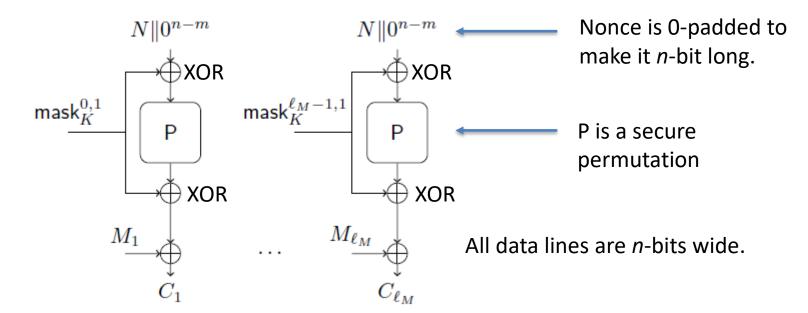
Encryption of Elephant (Dumbo variant will be implemented in Assignment 1)

Notice

I will present the concept of the cipher. For exact parameters and orientation of bits, please follow the specification and reference implementation.

Ciphertext generation in Elephant

- 1. Encryption uses a random m-bit nonce N where $m \le n$, where n is block length.
- 2. From the encryption key K, masks are generated using mask $_K^{a,b} = \text{mask}(K,a,b)$
- 3. Message blocks are encrypted one-by-one as shown below.



This example encrypts $l_{\rm M}$ blocks $M_{\rm i}$ and outputs $l_{\rm M}$ ciphertext blocks $C_{\rm i}$

Permutation P in Elephant

- Elephant has three security levels.
- We will use the 160-bit permutation in Assignment 1.

instance	ey size $rac{k}{}$	m	n	t	Р	φ_1	expected security strength	limit on online complexity
Dumbo Jumbo Delirium	128	96	176	64	$\begin{array}{c} {\sf Spongent-}\pi[160] \\ {\sf Spongent-}\pi[176] \\ {\sf Keccak-}f[200] \end{array}$	(3) (4) (5)	$ 2^{112} \\ 2^{127} \\ 2^{127} $	$\frac{2^{50}/(n/8)}{2^{50}/(n/8)}$ $\frac{2^{74}/(n/8)}{2^{74}}$

Spongent-
$$\pi[160]: \{0,1\}^{160} \to \{0,1\}^{160}$$

It maps 160-bit input into 160-bit output.

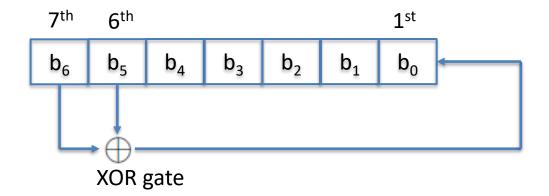
Permutation Spongent- π [160]

- This permutation is applied on the 160-bit state X.
- The state X is a byte-array of 20 words.
 BYTE state[20]
- The permutation performs three operations in a loop on state bytes of X.

```
P(): Input X
for i = 1, ..., 80 do
X \leftarrow XOR \text{ most and least significant bytes of } X \text{ with ICounter}_{160}(i)
X \leftarrow \text{sBoxLayer}_{160}(X)
X \leftarrow \text{pLayer}_{160}(X)
return X
```

ICounter₁₆₀(i)

- This function is a 7-bit Linear Feedback Shift Register (LFSR) initialized with "1110101".
- When the input is 'i', there are i number of shifts



• After one left shift, new bits of the LFSR is $\{b_6, b_5, ..., b_1, b_0\} \leftarrow \{b_5, b_4,, b_1, b_6^b_5\}$

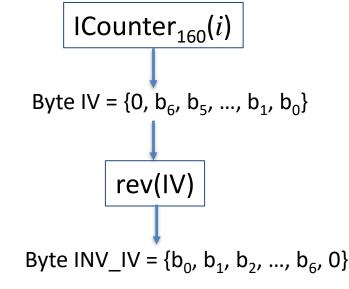
Footnote: Slide shows idea only. Check reference implementation for exact information.

Permutation Spongent- π [160]: Operation with ICounter

for
$$i = 1, ..., 80$$
 do

 $X \leftarrow X \leftarrow XOR \text{ most and least significant bytes of } X \text{ with ICounter}_{160}(i)$
 $X \leftarrow SBoxLayer_{160}(X)$
 $X \leftarrow pLayer_{160}(X)$

Step1:



Footnote: Slide shows idea only. Check ref. imp. for bit ordering.

Permutation Spongent- π [160]: Operation with ICounter

```
for i = 1, ..., 80 do

X \leftarrow X \leftarrow X

XOR most and least significant bytes of X with ICounter<sub>160</sub>(i)

X \leftarrow SBoxLayer_{160}(X)

X \leftarrow PLayer_{160}(X)
```

Step2:

```
Update the least and most significant state bytes of X as:
    state[0] = state[0] ^ IV;
    State[19] = state[19] ^ INV_IV;
```

Permutation Spongent- π [160]: Operation with sBoxLayer

```
for i = 1, ..., 80 do

X \leftarrow XOR \text{ most and least significant bytes of } X \text{ with ICounter}_{160}(i)

X \leftarrow SBoxLayer_{160}(X)

X \leftarrow pLayer_{160}(X)
```

- 1. The 160-bit state X is segmented into 4 bit chunks. There are 40 chunks.
- 2. Each 4-bit chunk is replaced by the mapping sBox()

Permutation Spongent- π [160]: Operation with pLayer

for i = 1, ..., 80 do

 $X \leftarrow XOR$ most and least significant bytes of X with ICounter₁₆₀(i)

 $X \leftarrow \text{sBoxLayer}_{160}(X)$

 $X \leftarrow pLayer_{160}(X)$ This permutes the bits of X

pLayer₁₆₀: this function moves the j-th bit of its input to bit position $P_{160}(j)$, where

$$P_{160}(j) = \begin{cases} 40 \cdot j \mod 159, & \text{if } j \in \{0, \dots, 158\}, \\ 159, & \text{if } j = 159. \end{cases}$$

Permutation Spongent- π [160]: Operation with pLayer

for
$$i = 1, ..., 80$$
 do

 $X \leftarrow XOR$ most and least significant bytes of X with $ICounter_{160}(i)$

 $X \leftarrow \text{sBoxLayer}_{160}(X)$

 $X \leftarrow pLayer_{160}(X)$ This permutes the bits of X

pLayer₁₆₀: this function moves the j-th bit of its input to bit position $P_{160}(j)$, where

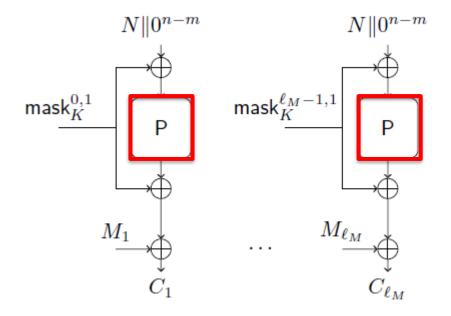
$$P_{160}(j) = \begin{cases} 40 \cdot j \mod 159, & \text{if } j \in \{0, \dots, 158\}, \\ 159, & \text{if } j = 159. \end{cases}$$

Example: Bit X_0 moves to position 0.

Bit X_1 moves to position 40.

Bit X_5 moves to position 200 mod 159 = 41.

Ciphertext generation in Elephant



We have seen how $P = Spongent - \pi[160]$ works.

Next: We will see how $\operatorname{mask}_{K}^{a,b} = \operatorname{mask}(K, a, b)$ works.

Mask generation in Elephant

- 1. Takes an input k-bit key K and pads n-k number of 0s.
- 2. Then applies the P permutation on the state.
- 3. Applies the φ_1 LFSR a times.
- 4. $\varphi_2 = \varphi_1 \oplus ID$ where ID is the identity function.

$$\mathsf{mask}_K^{a,b} = \mathsf{mask}(K,a,b) = \varphi_2^b \circ \varphi_1^a \circ \mathsf{P}(K \| 0^{n-k})$$

There are only three values for b: {0, 1, 2}

LFSR φ_1

160-bit input
$$X \longrightarrow \varphi_1 \longrightarrow 160$$
-bit output X'

Input bytes of X: state[0], state[1],, state[19]

Output bytes of X': state[1],, state[19], z

where
$$z = (\text{state}[0] \iff 3) \oplus (\text{state}[3] \iff 7) \oplus (\text{state}[13] \implies 7)$$

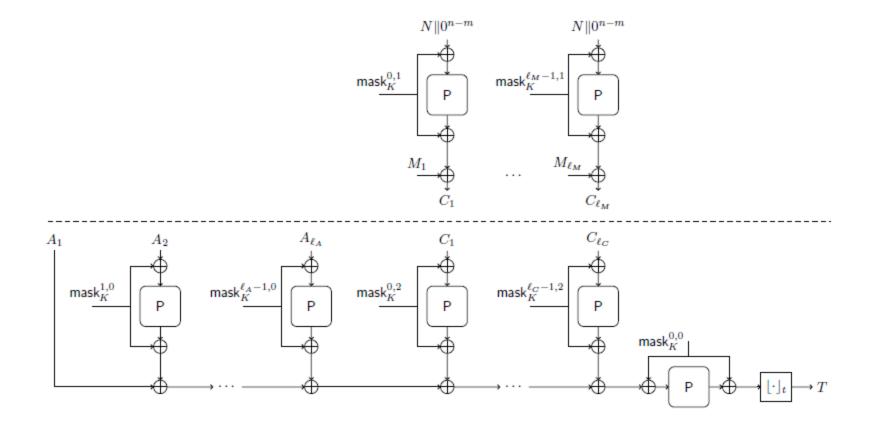
<<< is left-cyclic rotation

<< is left shift

>> is right shift

Footnote: Slide shows idea only. Check ref. imp. for bit ordering.

Ciphertext and Tag Generation in Elephant



Main building blocks in Elephant

- 1. Permutation P
 - ICounter
 - S-box
 - Bit permutation
- 2. LFSR φ_1
- 3. State-machine for managing the operations

Assignment 1 on Elephant's Encryption

What I presented is a *simplification* of the original Elephant.

Your implementation must meet the original specification

- You will implement the "Dumbo" version of Elephant.
 It uses 160-bit permutation.
- Read Section 2 of Elephant's specification.
- See the source reference C code of Elephant.

https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates

Encryption of PHOTON-Beetle (AEAD[128] will be implemented in Assignment 1)

Notice

I will present the concept of the cipher. For exact parameters and orientation of bits, please follow the specification and reference implementation.

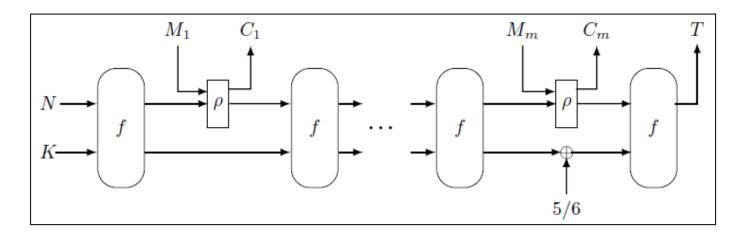
Ciphertext and Tag generation

Message M has m blocks M_i .

 C_i is encryption of M_i .

Message block M_i and ciphertext block C_i are 128 bits.

Nonce N and key K are 128 bits.



f() is the PHOTON₂₅₆ permutation function. ρ is a linear function.

State representation in $PHOTON_{256}(X)$ permutation

It works on the 256-bit state X.

X is represented as a 2D matrix of 4-bit elements.

 $x_{i,j}$ are 4-bit state elements.

$PHOTON_{256}(X)$ permutation

- The permutation has 12 rounds.
- Each round has four layers.

```
PHOTON_{256}(X)
    for i = 0 to 11:
2: X \leftarrow \mathsf{AddConstant}(X, i);
3: X \leftarrow \mathsf{SubCells}(X);
4: X \leftarrow \mathsf{ShiftRows}(X);
\mathbf{5}: \qquad X \leftarrow \mathsf{MixColumnSerial}(X);
return X:
```

PHOTON₂₅₆(X) permutation: AddConstant(X, k)

```
\begin{array}{lll} {\sf AddConstant}(X,k) \\ & 1: & RC[12] \leftarrow \{1,3,7,14,13,11,6,12,9,2,5,10\}; \\ 2: & IC[8] \leftarrow \{0,1,3,7,15,14,12,8\}; \\ 3: & {\sf for} \ i=0 \ {\sf to} \ 7: \\ 4: & X[i,0] \leftarrow X[i,0] \oplus RC[k] \oplus IC[i]; \\ {\sf return} \ X; \end{array}
```

Adds constants to the first column of state matrix X.

Round constant RC[k] depends on the iteration counter within PHOTON₂₅₆.

PHOTON₂₅₆(X) permutation: SubCells(X)

```
\begin{aligned} & \mathsf{SubCells}(X) \\ & 1: & \mathsf{for}\ i = 0\ \mathsf{to}\ 7, j = 0\ \mathsf{to}\ 7: \\ & 2: & X[i,j] \leftarrow \mathsf{S-Box}(X[i,j]); \\ & \mathsf{return}\ X; \end{aligned}
```

This substitutes each 4-bit state element according to the table:

Table 2.1: The PHOTON S-box

\boldsymbol{x}	0	1	2	3	4	5	6	7	8	9	A	В	C	D	Е	F
S-box	C	5	6	В	9	0	A	D	3	E	F	8	4	7	1	2

Example: X[2,3] = 7 after substitution becomes X[2,3] = D.

$PHOTON_{256}(X)$ permutation: ShiftRows(X)

$$\frac{\mathsf{ShiftRows}(X)}{1:\quad \mathsf{for}\ i=0\ \mathsf{to}\ 7, j=0\ \mathsf{to}\ 7:}\\ 2:\quad X'[i,j] \leftarrow X[i,(j+i)\%8]);\\ \mathbf{return}\ X';$$

State element within a row are cyclically rotated.

Example: Let the 3^{rd} row of X be X[2] = [5, D, A, 3, 4, F, 2, 7].

After ShiftRows() it becomes X'[2] = [A, 3, 4, F, 2, 7, 5, D]

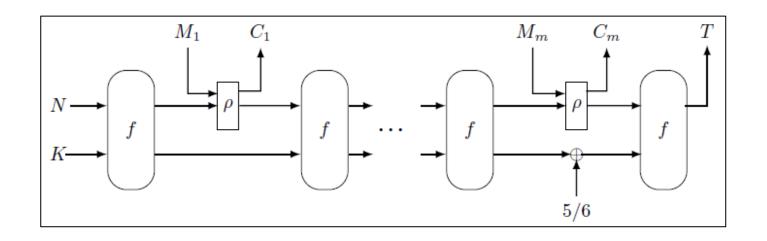
PHOTON₂₅₆(X) permutation: MixColumnSerial(X)

MixColumnSerial(X)

1: $M \leftarrow \text{Serial}[2,4,2,11,2,8,5,6];$ 2: $X \leftarrow M^8 \odot X;$ M^8 is a constant matrix.

return X;

PHOTON-Beetle: Overall block diagram



f() is the PHOTON₂₅₆ permutation function.

Next: Structure of ρ is a linear function.

PHOTON-Beetle: *p* linear function.

- Two inputs: $S \in \{0, 1\}^r$ and $U \in \{0, 1\}^{\leq r}$.
- Two outputs: $S \in \{0, 1\}^r$ and $V \in \{0, 1\}^{|U|}$.
- where r is 128.

```
\begin{array}{ll} \underline{\rho(S,U)} \\ \text{1:} & V \leftarrow \mathsf{Trunc}(\mathsf{Shuffle}(S),|U|) \oplus U; \\ \text{2:} & S \leftarrow S \oplus \mathsf{Ozs}_r(U); \\ \text{return } & (S,V); \end{array}
```

```
Shuffle(S)
1: S_1 || S_2 \stackrel{r/2}{\longleftarrow} S;
\mathbf{return} S_2 || (S_1 \gg 1);
```

- Trunc(X, i) is a truncation function. It returns most significant i bits of X.
- Ozs_r(U) appends 10* to U and outputs $U \parallel 1 \parallel 0^{r-|U|-1}$
- In general, S, U and V are all r-bits in PHOTON-Beetle-AEAD.

Simplified ρ when |S|, |U|, and |V| are of length 128

Footnote: Check reference implementation for exact information.

Main building blocks in PHOTON-Beetle

- 1. Permutation PHOTON₂₅₆
 - Constant addition (XOR)
 - S-box (Table access)
 - Shift rows
 - Mix Columns (matrix multiplication M⁸ ⊙ X)
 - Field multiplication and XOR
- 2. Simplified linear function ρ
- 3. State-machine for managing the operations

Field multiplication

4-bit values are multiplied with reduction polynomial $z^4 + z + 1$. $z^4 = z + 1 \mod GF(2^4)$

Let two 4-bit values be
$$a=\{a_3, a_2, a_1, a_0\}$$
 and $b=\{b_3, b_2, b_1, b_0\}$.

We can write them as polynomial $a(z) = a_3 z^3 + a_2 z^2 + a_1 z + a_0$

$$b(z) = b_3 z^3 + b_2 z^2 + b_1 z + b_0$$

Field multiplication (2)

4-bit values are multiplied with reduction polynomial $z^4 + z + 1$.

$$z^4 = z + 1 \mod GF(2^4)$$

$$a(z) = a_3 z^3 + a_2 z^2 + a_1 z + a_0$$

$$b(z) = b_3 z^3 + b_2 z^2 + b_1 z + b_0$$

$$a(z)*b(z) \text{ gives } c(x) = c_6 z^6 + c_5 z^5 + \dots c_3 z^3 + \dots + c_0$$

$$where c_0 = a_0 \& b_0$$

$$c_1 = (a_0 \& b_1) \land (a_1 \& b_0)$$

$$c_2 = (a_0 \& b_2) \land (a_1 \& b_1) \land (a_2 \& b_0)$$
...

These c_i are bits
...

Field multiplication (3)

4-bit values are multiplied with reduction polynomial $z^4 + z + 1$.

$$z^4 = z + 1 \mod GF(2^4)$$

Next, reduce
$$c(x) = c_6 z^6 + c_5 z^5 + c_4 z^4$$
 using $z^4 = z + 1$, $z^5 = z^2 + z$, $z^6 = z^3 + z^2$.

That gives:

$$c_4 z^4 = c_4 z + c_4$$

 $c_5 z^5 = c_5 z^2 + c_4 z$
 $c_6 z^6 = c_6 z^3 + c_4 z^2$

Field multiplication (4)

4-bit values are multiplied with reduction polynomial $z^4 + z + 1$.

$$z^4 = z + 1 \mod GF(2^4)$$

The final multiplication result $d(x) = d_3 z^3 + ... + d_0$ is given by $d(x) = (c_3 z^3 + c_2 z^2 + c_1 z + c_0) + (c_4 z + c_4) + (c_5 z^2 + c_5 z) + (c_6 z^3 + c_6 z^2)$

where bit addition of two values is XOR operation.

Assignment 1 on PHOTON-Beetle Encryption

What I presented is a *simplification* of the original PHOTON-Beetle

Your implementation must meet the original specification

- You will implement PHOTON-Beetle-AEAD[128].
- Read Chapter 3 on the specification.
- See the source reference C code of PHOTON-Beetle-AEAD[128].

https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates