
October 9, 2023
Ahmet Can Mert

ahmet.mert@iaik.tugraz.at

Integer and Prime Field Arithmetic

mailto:Ahmet.mert@iaik.tugraz.at

Integer and Prime Field Arithmetic

• All cryptographic operations are based on the arithmetic of number and
polynomial groups, rings and fields.
• RSA and ECC: Large integer arithmetic.
• AES: Finite field (GF(28)) arithmetic.
• PQC, HE, ZKP: Prime field (GF(p)) and polynomial arithmetic.

Integer and Prime Field Arithmetic

• All cryptographic operations are based on the arithmetic of number and
polynomial groups, rings and fields.
• RSA and ECC: Large integer arithmetic.
• AES: Finite field (GF(28)) arithmetic.
• PQC, HE, ZKP: Prime field (GF(p)) and polynomial arithmetic.

• For designing efficient software and hardware:
• Mathematical properties of elements.
• Efficient representation methods of elements .
• Algorithms of for arithmetic operations.

Integer and Prime Field Arithmetic

• Cryptographic protocols targets minimizing arithmetic operations for efficiency
(without scarifying the security of the protocol).

Integer and Prime Field Arithmetic

• Cryptographic protocols targets minimizing arithmetic operations for efficiency
(without scarifying the security of the protocol).

• Efficient implementation of finite field or ring arithmetic leads to efficient
cryptographic implementation.

Image is retrieved from https://koclab.net/ffa.html

Integer and Prime Field Arithmetic

• Example problems:

Problem: Design a multiplier circuit that takes two 256-bit
integers as input and generates 512-bit integer as output.
• Target/Specifications: High performance or low area?
• Algorithm, Resources (DSP, LUT or Hybrid), ...

Integer and Prime Field Arithmetic

• Example problems:

Problem: Design a modular reduction circuit for 256-bit prime
11579208923731619542357098463454348869655883760549
7246864089130975994398638081. The circuit takes one 500-
bit integer as input and performs (mod p) operation.

Problem: Design a multiplier circuit that takes two 256-bit
integers as input and generates 512-bit integer as output.
• Target/Specifications: High performance or low area?
• Algorithm, Resources (DSP, LUT or Hybrid), ...

Integer and Prime Field Arithmetic

• Most cryptographic algorithms are built upon mathematics of finite sets of
integers.
• Set of positive integers modulo q, Zq = {0, 1, …, q-1}
• Fields GF(qm)

Integer and Prime Field Arithmetic

• Most cryptographic algorithms are built upon mathematics of finite sets of
integers.
• Set of positive integers modulo q, Zq = {0, 1, …, q-1}
• Fields GF(qm)

• When q is prime and m is 1, we have prime finite field.
• m>1 gives us extension fields (e.g., AES)

• Finite field properties:
• Closed
• Associative / Commutative: (a . b) . c = a . (b . c) / a . b = b . a
• Identity: a . 1 = a
• Inverse: a . a-1 = 1

Integer and Prime Field Arithmetic

• The arithmetic of such structures are often called modular arithmetic.
• In cryptography, addition/subtraction, multiplication and inversion mod q

are operations of interest.

Integer and Prime Field Arithmetic

• The arithmetic of such structures are often called modular arithmetic.
• In cryptography, addition/subtraction, multiplication and inversion mod q

are operations of interest.

• Example: GF(5) : {0, 1, 2, 3, 4}

• +: 3 + 3 (mod 5) = 1
• - : 1 - 3 (mod 5) = 3
• *: 2 * 4 (mod 5) = 3
• / (inverse): 3 * 2 (mod 5) = 1 3-1 (mod 5) = 2

Modular Addition

• Computation of A + B (mod q)
• Add and reduce:

• Sign detection: s ≥ 0 ?

Input: A, B < q, q
Output: C = A + B (mod q)
1: t = A + B
2: s = t - q
3: if (s ≥ 0) then C = s else C = t
4: return C

Modular Addition

• Computation of A + B (mod q)
• Add and reduce:

• Sign detection: s ≥ 0 ?

Input: A, B < q, q
Output: C = A + B (mod q)
1: t = A + B
2: s = t - q
3: if (s ≥ 0) then C = s else C = t
4: return C

+
A

B

k

k
k+1

Modular Addition

• Computation of A + B (mod q)
• Add and reduce:

• Sign detection: s ≥ 0 ?

Input: A, B < q, q
Output: C = A + B (mod q)
1: t = A + B
2: s = t - q
3: if (s ≥ 0) then C = s else C = t
4: return C

+
-

A

B
q

k

k

k

k+1

k
0

Modular Addition

• Computation of A + B (mod q)
• Add and reduce:

• Sign detection: s ≥ 0 ?

Input: A, B < q, q
Output: C = A + B (mod q)
1: t = A + B
2: s = t - q
3: if (s ≥ 0) then C = s else C = t
4: return C

+
-

A

B
q

C

k

k

k

k+1

k

k

1
(sign)

1

0

Modular Subtraction

• Computation of A - B (mod q)
• Subtract and reduce:

• Sign detection: t ≥ 0 ?

Input: A, B < q, q
Output: C = A - B (mod q)
1: t = A - B
2: s = t + q
3: if (t ≥ 0) then C = t else C = s
4: return C

Modular Subtraction

• Computation of A - B (mod q)
• Subtract and reduce:

• Sign detection: t ≥ 0 ?

Input: A, B < q, q
Output: C = A - B (mod q)
1: t = A - B
2: s = t + q
3: if (t ≥ 0) then C = t else C = s
4: return C

-
+

A

B
q

C

k

k

k

k+1

k

k

(sign)
1

0

1

Integer Addition

• Carry propagate adder (CPA) and Carry save adder (CSA)
• Full Adder box:

FA

Ai Bi

Si

Ci
Ci+1

Si = Ai ⊕ Bi ⊕ Ci

Ci+1 = Ai · Bi + Ai · Ci + Bi · Ci

Integer Addition

• Carry propagate adder (CPA) and Carry save adder (CSA)
• Full Adder box:

• CPA Topology:

FA

Ai Bi

Si

Ci
Ci+1

Si = Ai ⊕ Bi ⊕ Ci

Ci+1 = Ai · Bi + Ai · Ci + Bi · Ci

FA

A3 B3

S3

C3

C4 FA

A2 B2

S2

C2

FA

A1 B1

S1

C1

FA

A0 B0

S0

C0

Integer Addition

• Carry propagate adder (CPA) and Carry save adder (CSA)
• Full Adder box:

• CPA Topology:

FA

Ai Bi

Si

Ci
Ci+1

Si = Ai ⊕ Bi ⊕ Ci

Ci+1 = Ai · Bi + Ai · Ci + Bi · Ci

FA

A3 B3

S3

C3

C4 FA

A2 B2

S2

C2

FA

A1 B1

S1

C1

FA

A0 B0

S0

C0
Total area: k · FA
Total delay: k · FA

Integer Addition

• Carry propagate adder (CPA) and Carry save adder (CSA)
• Full Adder box:

• CSA Topology:

FA

Ai Bi

Si

Ci
Ci+1

Si = Ai ⊕ Bi ⊕ Ci

Ci+1 = Ai · Bi + Ai · Ci + Bi · Ci

FA

A3 B3

S3

C3

C'3

FA

A2 B2

S2

C2

C'2

FA

A1 B1

S1

C1

C'1

FA

A0 B0

S0

C0

C'0

Integer Addition

• Carry propagate adder (CPA) and Carry save adder (CSA)
• Full Adder box:

• CSA Topology:

Example:

FA

Ai Bi

Si

Ci
Ci+1

Si = Ai ⊕ Bi ⊕ Ci

Ci+1 = Ai · Bi + Ai · Ci + Bi · Ci

FA

A3 B3

S3

C3

C'3

FA

A2 B2

S2

C2

C'2

FA

A1 B1

S1

C1

C'1

FA

A0 B0

S0

C0

C'0

Integer Addition

• Carry propagate adder (CPA) and Carry save adder (CSA)
• Full Adder box:

• CSA Topology:

Example:

FA

Ai Bi

Si

Ci
Ci+1

Si = Ai ⊕ Bi ⊕ Ci

Ci+1 = Ai · Bi + Ai · Ci + Bi · Ci

FA

A3 B3

S3

C3

C'3

FA

A2 B2

S2

C2

C'2

FA

A1 B1

S1

C1

C'1

FA

A0 B0

S0

C0

C'0

Integer Addition

• Carry propagate adder (CPA) and Carry save adder (CSA)
• Full Adder box:

• CSA Topology:

Total area: k · FA
Total delay: 1 · FA

FA

Ai Bi

Si

Ci
Ci+1

Si = Ai ⊕ Bi ⊕ Ci

Ci+1 = Ai · Bi + Ai · Ci + Bi · Ci

FA

A3 B3

S3

C3

C'3

FA

A2 B2

S2

C2

C'2

FA

A1 B1

S1

C1

C'1

FA

A0 B0

S0

C0

C'0

Modular Multiplication

• Computation of A · B (mod q)
• Multiply and reduce:

• Integer Multiplication: D = A · B

• Modular Reduction: C = D (mod q)

Integer Multiplication

• Most of PKC algorithms require (large) integer multiplication.
• Multipliers with large bit length have a major impact on the performance.

Integer Multiplication

• Most of PKC algorithms require (large) integer multiplication.
• Multipliers with large bit length have a major impact on the performance.

• Schoolbook (Standard) Approach:

2 0 5 3

1 1 7 6x

Integer Multiplication

• Most of PKC algorithms require (large) integer multiplication.
• Multipliers with large bit length have a major impact on the performance.

• Schoolbook (Standard) Approach:

2 0 5 3

1 1 7 6

2.6 0.6 5.6 3.6

2.7 0.7 5.7 3.7

2.1 0.1 5.1 3.1

2.1 0.1 5.1 3.1

x

Integer Multiplication

• Most of PKC algorithms require (large) integer multiplication.
• Multipliers with large bit length have a major impact on the performance.

• Schoolbook (Standard) Approach:

2 0 5 3

1 1 7 6

12 0 30 18

14 0 35 21

2 0 5 3

2 0 5 3

x

Integer Multiplication

• Most of PKC algorithms require (large) integer multiplication.
• Multipliers with large bit length have a major impact on the performance.

• Schoolbook (Standard) Approach:

2 0 5 3

1 1 7 6

1 2 3 1 8

1 4 3 7 1

2 0 5 3

2 0 5 3

x

Integer Multiplication

• Most of PKC algorithms require (large) integer multiplication.
• Multipliers with large bit length have a major impact on the performance.

• Schoolbook (Standard) Approach:

2 0 5 3

1 1 7 6

1 2 3 1 8

1 4 3 7 1

2 0 5 3

2 0 5 3

x

+

2 4 1 4 3 2 8

Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

• Example: a, b < rn where r is the radix

Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

• Example: a, b < rn where r is the radix

a = aH . rn/2 + aL

b = bH . rn/2 + bL

Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

• Example: a, b < rn where r is the radix

a = aH . rn/2 + aL

b = bH . rn/2 + bL

a . b = (aH . rn/2 + aL) . (bH . rn/2 + bL)

Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

• Example: a, b < rn where r is the radix

a = aH . rn/2 + aL

b = bH . rn/2 + bL

a . b = (aH . rn/2 + aL) . (bH . rn/2 + bL)
 = aH.bH.rn + aH.bL.r

n/2 + aL.bH.rn/2 + aL.bL

 = aH.bH.rn + (aH.bL. + aL.bH).rn/2 + aL.bL

Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

• Example: a, b < 104

2 0 5 3

1 1 7 6x

Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

• Example: a, b < 104

2 0 5 3

1 1 7 6x

5 3

7 6x

5 3

1 1x

2 0

7 6x

2 0

1 1x

Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

• Example: a, b < 104

2 0 5 3

1 1 7 6x

2 0

7 6x

5 3

7 6x

2 0

1 1x

5 3

1 1x

5 8 3 2 2 0

4 0 2 8 1 5 2 0

Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

• Example: a, b < 104

2 0 5 3

1 1 7 6x

2 0

7 6x

2 0

1 1x

5 3

1 1x

5 8 3 2 2 0

4 0 2 8

1 5 2 0

Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

• Example: a, b < 104

2 0 5 3

1 1 7 6x

2 0

1 1x

5 3

1 1x

5 8 3 2 2 0

4 0 2 8

1 5 2 0

Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

• Example: a, b < 104

2 0 5 3

1 1 7 6x

2 0

1 1x

2 2 0

4 0 2 8

1 5 2 0

5 8 3

Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

• Example: a, b < 104

2 0 5 3

1 1 7 6x

4 0 2 8

1 5 2 0

5 8 3

+

2 4 1 4 3 2 8

2 2 0

Integer Multiplication: Divide-and-conquer Approach

• How to multiply two integers using Xilinx DSPs? How many DSPs are required?
• One Xilinx DSP has 25-bit x 18-bit signed multiplier.

Integer Multiplication: Divide-and-conquer Approach

• How to multiply two integers using Xilinx DSPs? How many DSPs are required?
• One Xilinx DSP has 25-bit x 18-bit signed multiplier.

 32-bit integers

Integer Multiplication: Divide-and-conquer Approach

• How to multiply two integers using Xilinx DSPs? How many DSPs are required?
• One Xilinx DSP has 25-bit x 18-bit signed multiplier.

 32-bit integers

x

16 16

16 16

Integer Multiplication: Divide-and-conquer Approach

• How to multiply two integers using Xilinx DSPs? How many DSPs are required?
• One Xilinx DSP has 25-bit x 18-bit signed multiplier.

 32-bit integers

x

16 16

16 16

+

Integer Multiplication: Divide-and-conquer Approach

• How to multiply two integers using Xilinx DSPs? How many DSPs are required?
• One Xilinx DSP has 25-bit x 18-bit signed multiplier.

 32-bit integers

x

16 16

16 16

+

How to implement
addition operation?

Integer Multiplication: Divide-and-conquer Approach

• How to multiply two integers using Xilinx DSPs? How many DSPs are required?
• One Xilinx DSP has 25-bit x 18-bit signed multiplier.

 32-bit integers

x

16 16

16 16

+

What about squaring?

Integer Multiplication: Divide-and-conquer Approach

• How to multiply two integers using Xilinx DSPs? How many DSPs are required?
• One Xilinx DSP has 25-bit x 18-bit signed multiplier.

 40-bit integers

Integer Multiplication: Divide-and-conquer Approach

• How to multiply two integers using Xilinx DSPs? How many DSPs are required?
• One Xilinx DSP has 25-bit x 18-bit signed multiplier.

 40-bit integers

x

24 16

16 168

Integer Multiplication: Divide-and-conquer Approach

• How to multiply two integers using Xilinx DSPs? How many DSPs are required?
• One Xilinx DSP has 25-bit x 18-bit signed multiplier.

 40-bit integers

x

24 16

16 168

Integer Multiplication: Divide-and-conquer Approach

• How to multiply two integers using Xilinx DSPs? How many DSPs are required?
• One Xilinx DSP has 25-bit x 18-bit signed multiplier.

 40-bit integers

x

24 16

16 168

Integer Multiplication: Divide-and-conquer Approach

• How to multiply two integers using Xilinx DSPs? How many DSPs are required?
• One Xilinx DSP has 25-bit x 18-bit signed multiplier.

 40-bit integers

x

24 16

16 168

Integer Multiplication: Divide-and-conquer Approach

• How to multiply two integers using Xilinx DSPs? How many DSPs are required?
• One Xilinx DSP has 25-bit x 18-bit signed multiplier.

 40-bit integers

x

24 16

16 168

Integer Multiplication: Divide-and-conquer Approach

• How to multiply two integers using Xilinx DSPs? How many DSPs are required?
• One Xilinx DSP has 25-bit x 18-bit signed multiplier.

 40-bit integers

x

24 16

16 168

Integer Multiplication: Divide-and-conquer Approach

• How to multiply two integers using Xilinx DSPs? How many DSPs are required?
• One Xilinx DSP has 25-bit x 18-bit signed multiplier.

 40-bit integers

x

24 16

16 16

+

8

Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap).
• Xilinx DSPs have asymmetric multipliers.
• How to decompose inputs efficiently?

Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

242410
1717177

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.

x

Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

242410
1717177

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.

x

Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

242410
1717177

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.

x

Key observations:
1. mulbest = ⌈(b . b) / (w1 . w2)⌉

Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

242410
1717177

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.

x

Key observations:
1. mulbest = ⌈(b . b) / (w1 . w2)⌉
2. b = m . w1 + n . w2

Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.

Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.

2410
17177

58
58

Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.

2410
17177

24
17X

Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.

2410
17177 17

X

17

Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.

2410
17177 17

X

17

Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.

2410
17177

X

17
24

Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.

2410
17177

X

17
24

Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.

2410
17177

X

24
17

Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.

2410
17177

X

24
17

Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.

2410
17177

X

24
17

Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.

2410
17177

X

10
10

Integer Multiplication: Parallel and Sequential Architectures

• Sequential and Parallel Architectures
• Single or multiple DSPs
• Low-cost or High-throughput oriented design

• Example: 32-bit multiplier

Integer Multiplication: Karatsuba Algorithm

• Schoolbook method has O(n2) complexity.
• Karatsuba Algorithm uses a divide-and-conquer method and reduces complexity

to O(n1.58).

Integer Multiplication: Karatsuba Algorithm

• Schoolbook method has O(n2) complexity.
• Karatsuba Algorithm uses a divide-and-conquer method and reduces complexity

to O(n1.58).

a, b < rn where r is the radix

a = aH . rn/2 + aL

b = bH . rn/2 + bL

a . b = aH.bH . rn + (aH.bL + aL.bH).rn/2 + aL.bL

Integer Multiplication: Karatsuba Algorithm

• Schoolbook method has O(n2) complexity.
• Karatsuba Algorithm uses a divide-and-conquer method and reduces complexity

to O(n1.58).

a, b < rn where r is the radix

a = aH . rn/2 + aL

b = bH . rn/2 + bL

a . b = aH.bH . rn + (aH.bL + aL.bH).rn/2 + aL.bL = z0 . rn + (z1 + z2).rn/2 + z3

Integer Multiplication: Karatsuba Algorithm

• Schoolbook method has O(n2) complexity.
• Karatsuba Algorithm uses a divide-and-conquer method and reduces complexity

to O(n1.58).

a, b < rn where r is the radix

a = aH . rn/2 + aL

b = bH . rn/2 + bL

a . b = aH.bH . rn + (aH.bL + aL.bH).rn/2 + aL.bL = z0 . rn + (z1 + z2).rn/2 + z3

Standard
divide-and-conquer

uses 4 multiplication.

Integer Multiplication: Karatsuba Algorithm

• Schoolbook method has O(n2) complexity.
• Karatsuba Algorithm uses a divide-and-conquer method and reduces complexity

to O(n1.58).

a, b < rn where r is the radix

a = aH . rn/2 + aL

b = bH . rn/2 + bL

a . b = aH.bH . rn + (aH.bL + aL.bH).rn/2 + aL.bL = z0 . rn + (z1 + z2).rn/2 + z3

1. z0 = aH.bH

Standard
divide-and-conquer

uses 4 multiplication.

Integer Multiplication: Karatsuba Algorithm

• Schoolbook method has O(n2) complexity.
• Karatsuba Algorithm uses a divide-and-conquer method and reduces complexity

to O(n1.58).

a, b < rn where r is the radix

a = aH . rn/2 + aL

b = bH . rn/2 + bL

a . b = aH.bH . rn + (aH.bL + aL.bH).rn/2 + aL.bL = z0 . rn + (z1 + z2).rn/2 + z3

1. z0 = aH.bH

2. z3 = aL.bL

Standard
divide-and-conquer

uses 4 multiplication.

Integer Multiplication: Karatsuba Algorithm

• Schoolbook method has O(n2) complexity.
• Karatsuba Algorithm uses a divide-and-conquer method and reduces complexity

to O(n1.58).

a, b < rn where r is the radix

a = aH . rn/2 + aL

b = bH . rn/2 + bL

a . b = aH.bH . rn + (aH.bL + aL.bH).rn/2 + aL.bL = z0 . rn + (z1 + z2).rn/2 + z3

1. z0 = aH.bH

2. z3 = aL.bL

3. z1 + z2 = (aH + aL) . (bH + bL) - z0 - z3

Standard
divide-and-conquer

uses 4 multiplication.

Karatsuba Algorithm
uses 3 multiplication.

Integer Multiplication: Karatsuba Algorithm

• Karatsuba algorithm can be applied recursively.
• How many DSPs are required for 58-bit multiplication?

Integer Multiplication: Literature

• Many works following Karatsuba's invention
• Toom-Cook
• Schonhage-Strassen

• Uses FFT
• Harvey's Method

• State-of-the-art (2019)
* Harvey et al., Even faster integer multiplication, arXiv/1407.3360, 2014

Integer Multiplication: Constant Multiplication

• Sometimes, one of the operands is a fixed integer.
• Using a generic integer multiplier will not be optimal.

Integer Multiplication: Constant Multiplication

• Sometimes, one of the operands is a fixed integer.
• Using a generic integer multiplier will not be optimal.

• Example: 24-bit multiplication: (A · 8519937)

Integer Multiplication: Constant Multiplication

• Sometimes, one of the operands is a fixed integer.
• Using a generic integer multiplier will not be optimal.

• Example: 24-bit multiplication: (A · 8519937)

• DSP-based approach will require 2 DSPs.

Integer Multiplication: Constant Multiplication

• Sometimes, one of the operands is a fixed integer.
• Using a generic integer multiplier will not be optimal.

• Example: 24-bit multiplication: (A · 8519937)

• DSP-based approach will require 2 DSPs

• 8519937 = 223 + 217 + 28 + 1
 A · 8519937 = A · (223 + 217 + 28 + 1)
 A · 8519937 = A · 223 + A · 217 + A · 28 + A

Integer Multiplication: Constant Multiplication

• Shift-Add based approach
• Example: C · X

 where ci is {0, 1}

 C · X = X · c0 · 20 + X · c1 · 21 + X · c2 · 22 + ...

• Complexity depends on the number of 1s in the binary representation of C.

Integer Multiplication: Constant Multiplication

• Use different number representation/encoding.
• Canonical Signed-Digit (CSD) (also called non-adjacent form) uses the digits {−1, 0, 1}

to represent a number in such a way that no two adjacent digits are non-zero.

Integer Multiplication: Constant Multiplication

• Use different number representation/encoding.
• Canonical Signed-Digit (CSD) (also called non-adjacent form) uses the digits {−1, 0, 1}

to represent a number in such a way that no two adjacent digits are non-zero.

• Example: implementation of 477 · X

477 · X = (111011101)2 · X
 = (X << 8) + (X << 7) + (X << 6) + (X << 4) + (X << 3) + (X << 2) + X

Integer Multiplication: Constant Multiplication

• Use different number representation/encoding.
• Canonical Signed-Digit (CSD) (also called non-adjacent form) uses the digits {−1, 0, 1}

to represent a number in such a way that no two adjacent digits are non-zero.

• Example: implementation of 477 · X

477 · X = (111011101)2 · X
 = (X << 8) + (X << 7) + (X << 6) + (X << 4) + (X << 3) + (X << 2) + X

477 · X = (1000100101)2 · X
 = (X << 9) - (X << 5) - (X << 2) + X

_ _

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

