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Integer and Prime Field Arithmetic

• All cryptographic operations are based on the arithmetic of number and 
polynomial groups, rings and fields.
• RSA and ECC: Large integer arithmetic.
• AES:  Finite field (GF(28)) arithmetic.
• PQC, HE, ZKP: Prime field (GF(p)) and polynomial arithmetic.
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• All cryptographic operations are based on the arithmetic of number and 
polynomial groups, rings and fields.
• RSA and ECC: Large integer arithmetic.
• AES:  Finite field (GF(28)) arithmetic.
• PQC, HE, ZKP: Prime field (GF(p)) and polynomial arithmetic.

• For designing efficient software and hardware:
• Mathematical properties of elements.
• Efficient representation methods of elements .
• Algorithms of for arithmetic operations.
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(without scarifying the security of the protocol).



Integer and Prime Field Arithmetic

• Cryptographic protocols targets minimizing arithmetic operations for efficiency 
(without scarifying the security of the protocol).

• Efficient implementation of finite field or ring arithmetic leads to efficient 
cryptographic implementation.

Image is retrieved from https://koclab.net/ffa.html



Integer and Prime Field Arithmetic

• Example problems:

Problem: Design a multiplier circuit that takes two 256-bit 
integers as input and generates 512-bit integer as output.
• Target/Specifications: High performance or low area?
• Algorithm, Resources (DSP, LUT or Hybrid), ...



Integer and Prime Field Arithmetic

• Example problems:

Problem: Design a modular reduction circuit for 256-bit prime
11579208923731619542357098463454348869655883760549
7246864089130975994398638081. The circuit takes one 500-
bit integer as input and performs (mod p) operation.

Problem: Design a multiplier circuit that takes two 256-bit 
integers as input and generates 512-bit integer as output.
• Target/Specifications: High performance or low area?
• Algorithm, Resources (DSP, LUT or Hybrid), ...
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• Fields GF(qm)



Integer and Prime Field Arithmetic

• Most cryptographic algorithms are built upon mathematics of finite sets of 
integers.
• Set of positive integers modulo q, Zq = {0, 1, …, q-1}
• Fields GF(qm)

• When q is prime and m is 1, we have prime finite field.
• m>1 gives us extension fields (e.g., AES)

• Finite field properties:
• Closed
• Associative / Commutative: (a . b) . c = a . (b . c) / a . b = b . a
• Identity: a . 1 = a
• Inverse: a . a-1 = 1



Integer and Prime Field Arithmetic

• The arithmetic of such structures are often called modular arithmetic.
• In cryptography,  addition/subtraction, multiplication and inversion mod q 

are operations of interest.



Integer and Prime Field Arithmetic

• The arithmetic of such structures are often called modular arithmetic.
• In cryptography,  addition/subtraction, multiplication and inversion mod q 

are operations of interest.

• Example: GF(5) : {0, 1, 2, 3, 4}

• +: 3 + 3 (mod 5) = 1
• - : 1 - 3 (mod 5) = 3
• *: 2 * 4 (mod 5) = 3
• / (inverse): 3 * 2 (mod 5) = 1          3-1 (mod 5) = 2



Modular Addition

• Computation of A + B (mod q)
• Add and reduce:

• Sign detection: s ≥ 0 ?

Input: A, B < q, q
Output: C = A + B (mod q)
1: t = A + B
2: s = t - q
3: if (s ≥ 0) then C = s else C = t
4: return C
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Modular Addition

• Computation of A + B (mod q)
• Add and reduce:

• Sign detection: s ≥ 0 ?

Input: A, B < q, q
Output: C = A + B (mod q)
1: t = A + B
2: s = t - q
3: if (s ≥ 0) then C = s else C = t
4: return C
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Modular Subtraction

• Computation of A - B (mod q)
• Subtract and reduce:

• Sign detection: t ≥ 0 ?

Input: A, B < q, q
Output: C = A - B (mod q)
1: t = A - B
2: s = t + q
3: if (t ≥ 0) then C = t else C = s
4: return C



Modular Subtraction

• Computation of A - B (mod q)
• Subtract and reduce:

• Sign detection: t ≥ 0 ?

Input: A, B < q, q
Output: C = A - B (mod q)
1: t = A - B
2: s = t + q
3: if (t ≥ 0) then C = t else C = s
4: return C
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Integer Addition

• Carry propagate adder (CPA) and Carry save adder (CSA)
• Full Adder box:

FA

Ai Bi

Si

Ci
Ci+1

Si   = Ai ⊕ Bi ⊕ Ci

Ci+1  = Ai · Bi + Ai · Ci + Bi · Ci



Integer Addition

• Carry propagate adder (CPA) and Carry save adder (CSA)
• Full Adder box:

• CPA Topology:
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Ai Bi

Si

Ci
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Si   = Ai ⊕ Bi ⊕ Ci

Ci+1  = Ai · Bi + Ai · Ci + Bi · Ci
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• Carry propagate adder (CPA) and Carry save adder (CSA)
• Full Adder box:

• CSA Topology:
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Integer Addition

• Carry propagate adder (CPA) and Carry save adder (CSA)
• Full Adder box:

• CSA Topology:

Total area: k · FA
Total delay: 1 · FA
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Modular Multiplication

• Computation of A · B (mod q)
• Multiply and reduce:

• Integer Multiplication: D = A · B

• Modular Reduction: C = D (mod q)



Integer Multiplication

• Most of PKC algorithms require (large) integer multiplication.
• Multipliers with large bit length have a major impact on the performance.
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Integer Multiplication

• Most of PKC algorithms require (large) integer multiplication.
• Multipliers with large bit length have a major impact on the performance.

• Schoolbook (Standard) Approach:

2     0     5     3

1     1     7     6

2.6   0.6  5.6   3.6

2.7   0.7  5.7   3.7

2.1   0.1  5.1   3.1

2.1   0.1  5.1   3.1

x



Integer Multiplication

• Most of PKC algorithms require (large) integer multiplication.
• Multipliers with large bit length have a major impact on the performance.

• Schoolbook (Standard) Approach:

2     0     5     3

1     1     7     6

12    0    30    18

14    0    35    21

2     0     5     3

2     0    5     3

x



Integer Multiplication

• Most of PKC algorithms require (large) integer multiplication.
• Multipliers with large bit length have a major impact on the performance.

• Schoolbook (Standard) Approach:

2     0     5     3

1     1     7     6

1     2     3     1     8

1     4    3    7     1

2     0     5     3

2     0    5     3

x



Integer Multiplication

• Most of PKC algorithms require (large) integer multiplication.
• Multipliers with large bit length have a major impact on the performance.

• Schoolbook (Standard) Approach:

2     0     5     3

1     1     7     6

1     2     3     1     8

1     4    3    7     1

2     0     5     3

2     0    5     3

x

+

2    4     1     4     3     2     8



Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications
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Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

• Example: a, b < rn where r is the radix

a = aH . rn/2 + aL

b = bH . rn/2 + bL



Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

• Example: a, b < rn where r is the radix

a = aH . rn/2 + aL

b = bH . rn/2 + bL

a . b = (aH . rn/2 + aL) . (bH . rn/2 + bL)
    



Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

• Example: a, b < rn where r is the radix

a = aH . rn/2 + aL

b = bH . rn/2 + bL

a . b = (aH . rn/2 + aL) . (bH . rn/2 + bL)
    = aH.bH.rn + aH.bL.r

n/2 + aL.bH.rn/2 + aL.bL

    = aH.bH.rn + (aH.bL. + aL.bH).rn/2 + aL.bL



Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

• Example: a, b < 104

2     0     5     3

1     1     7     6x



Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

• Example: a, b < 104

2     0     5     3

1     1     7     6x

5     3

7     6x

5     3

1     1x

2     0

7     6x

2     0

1     1x



Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

• Example: a, b < 104

2     0     5     3

1     1     7     6x

2     0

7     6x

5     3

7     6x

2     0

1     1x

5     3

1     1x

5    8     3 2    2    0

4    0   2    8 1    5    2     0



Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

• Example: a, b < 104

2     0     5     3

1     1     7     6x

2     0

7     6x

2     0

1     1x

5     3

1     1x

5    8     3 2    2    0

4    0   2    8

1    5    2     0



Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

• Example: a, b < 104

2     0     5     3

1     1     7     6x

2     0

1     1x

5     3

1     1x

5    8     3 2    2    0

4    0   2    8

1    5    2     0



Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

• Example: a, b < 104

2     0     5     3

1     1     7     6x

2     0

1     1x

2    2    0

4    0   2    8

1    5    2     0

5    8     3



Integer Multiplication: Divide-and-conquer Approach

• Divide a large multiplication into smaller chunks.
• Multiply two n-bit (or digit) integers using (n/2)-bit multiplications

• Example: a, b < 104

2     0     5     3

1     1     7     6x

4    0   2    8

1    5    2     0

5    8     3

+

2    4     1     4     3     2     8

2    2    0



Integer Multiplication: Divide-and-conquer Approach

• How to multiply two integers using Xilinx DSPs? How many DSPs are required?
• One Xilinx DSP has 25-bit x 18-bit signed multiplier.
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Integer Multiplication: Divide-and-conquer Approach

• How to multiply two integers using Xilinx DSPs? How many DSPs are required?
• One Xilinx DSP has 25-bit x 18-bit signed multiplier.
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16 16
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Integer Multiplication: Divide-and-conquer Approach

• How to multiply two integers using Xilinx DSPs? How many DSPs are required?
• One Xilinx DSP has 25-bit x 18-bit signed multiplier.

               32-bit integers                               

x

16 16

16 16

+

How to implement 
addition operation?



Integer Multiplication: Divide-and-conquer Approach

• How to multiply two integers using Xilinx DSPs? How many DSPs are required?
• One Xilinx DSP has 25-bit x 18-bit signed multiplier.

               32-bit integers                               

x

16 16

16 16

+

What about squaring?



Integer Multiplication: Divide-and-conquer Approach

• How to multiply two integers using Xilinx DSPs? How many DSPs are required?
• One Xilinx DSP has 25-bit x 18-bit signed multiplier.
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Integer Multiplication: Divide-and-conquer Approach

• How to multiply two integers using Xilinx DSPs? How many DSPs are required?
• One Xilinx DSP has 25-bit x 18-bit signed multiplier.
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x
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Integer Multiplication: Divide-and-conquer Approach

• How to multiply two integers using Xilinx DSPs? How many DSPs are required?
• One Xilinx DSP has 25-bit x 18-bit signed multiplier.

               40-bit integers                               

x

24 16

16 16

+

8
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• Tiling problem (cover a given region using a given set of tiles without overlap).
• Xilinx DSPs have asymmetric multipliers.
• How to decompose inputs efficiently?
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• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

242410
1717177

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.
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• Xilinx DSPs have asymmetric multipliers
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• Example: 58-bit multiplication [1]
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Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

242410
1717177

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.
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Key observations:
1. mulbest = ⌈(b . b) / (w1 . w2)⌉



Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

242410
1717177

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.

x

Key observations:
1. mulbest = ⌈(b . b) / (w1 . w2)⌉
2. b = m . w1 + n . w2



Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.
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• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.
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[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.
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Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.

2410
17177

X

24
17



Integer Multiplication: Divide-and-conquer Approach
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• Xilinx DSPs have asymmetric multipliers
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2410
17177

X

24
17



Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.
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Integer Multiplication: Divide-and-conquer Approach

• Tiling problem (cover a given region using a given set of tiles without overlap)
• Xilinx DSPs have asymmetric multipliers
• How to decompose inputs efficiently?

• Example: 58-bit multiplication [1]

[1] Roy et al., Tile Before Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves . DAC, 2014.

2410
17177

X

10
10



Integer Multiplication: Parallel and Sequential Architectures

• Sequential and Parallel Architectures
• Single or multiple DSPs
• Low-cost or High-throughput oriented design

• Example: 32-bit multiplier



Integer Multiplication: Karatsuba Algorithm

• Schoolbook method has O(n2) complexity.
• Karatsuba Algorithm uses a divide-and-conquer method and reduces complexity 

to O(n1.58).



Integer Multiplication: Karatsuba Algorithm

• Schoolbook method has O(n2) complexity.
• Karatsuba Algorithm uses a divide-and-conquer method and reduces complexity 

to O(n1.58).
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Integer Multiplication: Karatsuba Algorithm

• Schoolbook method has O(n2) complexity.
• Karatsuba Algorithm uses a divide-and-conquer method and reduces complexity 

to O(n1.58).

a, b < rn where r is the radix

a = aH . rn/2 + aL

b = bH . rn/2 + bL

a . b = aH.bH . rn + (aH.bL + aL.bH).rn/2 + aL.bL = z0 . rn + (z1 + z2).rn/2 + z3

1. z0 = aH.bH

2. z3 = aL.bL

3. z1 + z2 = (aH + aL) . (bH + bL) - z0 - z3

Standard 
divide-and-conquer 

uses 4 multiplication.

Karatsuba Algorithm
uses 3 multiplication.



Integer Multiplication: Karatsuba Algorithm

• Karatsuba algorithm can be applied recursively.
• How many DSPs are required for 58-bit multiplication?



Integer Multiplication: Literature

• Many works following Karatsuba's invention
• Toom-Cook
• Schonhage-Strassen

• Uses FFT
• Harvey's Method

• State-of-the-art (2019)
* Harvey et al., Even faster integer multiplication, arXiv/1407.3360, 2014
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Integer Multiplication: Constant Multiplication

• Sometimes, one of the operands is a fixed integer.
• Using a generic integer multiplier will not be optimal.

• Example: 24-bit multiplication: (A · 8519937)

• DSP-based approach will require 2 DSPs

• 8519937 = 223 + 217 + 28 + 1
   A · 8519937 = A · (223 + 217 + 28 + 1)
   A · 8519937 = A · 223 + A · 217 + A · 28 + A



Integer Multiplication: Constant Multiplication

• Shift-Add based approach
• Example: C · X

                          where ci is {0, 1}

                          C · X = X · c0 · 20 + X · c1 · 21 + X · c2 · 22 + ...

• Complexity depends on the number of 1s in the binary representation of C.
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Integer Multiplication: Constant Multiplication

• Use different number representation/encoding.
• Canonical Signed-Digit (CSD) (also called non-adjacent form) uses the digits {−1, 0, 1} 

to represent a number in such a way that no two adjacent digits are non-zero.

• Example: implementation of 477 · X

477 · X = (111011101)2 · X
      = (X << 8) + (X << 7) + (X << 6) + (X << 4) + (X << 3) + (X << 2) + X

477 · X = (1000100101)2 · X
      = (X << 9) - (X << 5) - (X << 2) + X

_ _
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