

System Level Programming

Daniel Gruss
2022-04-05

Course QOverview

A5, A6
System Programming

A3, A4
Virtual Memory, Processes and Sandboxing

A0, A1, A2
Compiler, C, Multithreading, Synchronization

A4 - Interprocess Communication

Shared Memory

Code Image
//shell stuff
P1 i

shell

Shared Memory

Code Image
//shell stuff
P1 i

pid_t pid = fork(); shell

Shared Memory

Code Image
//shell stuff
P1 $
pid_t pid = fork(); shell
if (pid == 0) duplicating duplicated
= shell
]

P1

Shared Memory

Code
//shell stuff

pid_t pid = fork();
if (pid == 0)

const char* args[] = {"7/
"}

//do further shell stuff

shell

fork

duplicating

P1

P2

duplicated
shell

Shared Memory

Code
//shell stuff

pid_t pid = fork();

if (pid == 0)

{
const char* args[] = {""/"};
execv ("/bin/1s", args);

}

else

{
//do further shell stuff

shell

fork

duplicating

P1

P2

duplicated
shell

Shared Memory

Code
//shell stuff

pid_t pid = fork();

if (pid == 0)

{
const char* args[] = {""/"};
execv ("/bin/1s", args);

}

else

{
//do further shell stuff

Image

shell

fork

duplicating dUP|"i‘CE|l|tEd
she

P1

| Coew]

replacing
program

your program

Shared Memory

Image

shell

fork

P1

duplicating duplicated
shell
P2 [ereer]
replacing
program

your program

P2

Shared Memory

Code Image
/% just the start of the main */

File system

Program 1

Shared Memory

Code

/* found in (/dev/shm/obj) */

int fd

shm_open ("obj", O_RDWR, 0644) ;

Image

Program 1

File system

shared memory

Shared Memory

Code
/* found in (/dev/shm/obj) */
int fd = shm_open ("obj",O_RDWR, 0644) ;

/# enlarge the shared memory object x/
ftruncate (fd, 1000);

Image

Program 1

File system

shared memory

Shared Memory

TIIIS'II]EWSIIM'FI[E

Shared Memory

Shared Memory

Code Image
/# found in (/dev/shm/obj) */
int fd = shm_open("obj",O_RDWR, 0644) ; File system

/# enlarge the shared memory object */
ftruncate (fd, 1000);

Program 1

shared memory

/# now map the shared object #*/

char* ptr = (charx) mmap (NULL, 1000,
PROT_READ PROT_WRITE, MAP_SHARED, fd,
0);

Shared Memory

Code
/* found in (/dev/shm/obj) */
int fd = shm_open ("obj",O_RDWR, 0644) ;

/# enlarge the shared memory object */
ftruncate (fd, 1000);

/# now map the shared object #*/

charx ptr = (charx) mmap (NULL, 1000,
PROT_READ | PROT_WRITE, MAP_SHARED,
0);

/* fork the process #*/
pid_t pid = fork();

£dy;

Image

Program 1

File system

Program 2

shared memory

A5 - malloc/free - Task Description

e Write your own implementation of malloc/free
e void xmalloc (size_t size);

e void free(void *ptr);

e Write them in C++ with classes!!

e The malloc/free functions manage the Heap area and give a program the ability to request
memory areas of a given size and free those areas if they are not needed anymore

e You can reuse this code in OS A2

A5 - malloc/free - Int

int inputsize = 200;

intx buffer = malloc(inputsizexsizeof(int));
memcpy(buffer ,input,inputsize)

//do something very important

free(buffer);

e Where in the memory is this buffer area?

e How can it be increased/decreased at runtime?

Memory of a process

Stack

BSS

Code

program break

Virtual Memory Space
Code: Segment for the binary code

BSS: part of Data Segment;
global/static variables with known size at
compiletime

Program break shows end of Data Segment

Program break can be increased/decerased

Stack

Heap

BSS

Data

program break

initial program break

e Program break increased

e Heap = between end of BSS Segment and program break

e Memory addresses below program break can be used by the
program

Stack Program break increased

Heap = between end of BSS Segment and program break

Memory addresses below program break can be used by the
program break

initial program break Let's use this area for our buffer

BSS

Data

brk /sbrk

e OS offers syscalls brk and sbrk to change the program break of the own process
e voidx sbrk(intptr_t increment);

e sbrk (inc) increments the break by inc bytes

e Returns the address of the previous program break

e sbrk (0) returns current location of the break

Why not just:

void xmalloc(size_t size){
return sbrk(size)

}

Why not just:

void xmalloc(size_t size){
return sbrk(size)

}

Because ...

while (1){
void* t = malloc(100);
//do anything
free(t);

}

It's not that easy, but not much harder

What do we want

e Efficient usage of memory
e Reuse of freed memory areas

e Avoid fragmentation of Heap Segment
How?

e Decrease program break if possible
e Merge freed memory areas

e Split large free memory areas to the needed size

A5 - malloc/free

program break

Decrease program break if possible

e If there is free memory area just below the break

e Size of this memory area 5

A5 - malloc/free

Decrease program break if possible

e If there is free memory area just below the break

program break

e Size of this memory area 5

- malloc/free

Merge free memory areas

e Only possible to merge with next or previous area

program break

e We have to know the size, location and state of the areas 5

- malloc/free

Merge free memory areas

e Only possible to merge with next or previous area

program break

e We have to know the size, location and state of the areas 5

A5 - malloc/free

Reuse free areas/split large free memory areas to the needed size

Search for a free memory area larger/equal than needed size

program break

Split to right size 5

State of all memory areas and their location

Size of the area to split

A5 - malloc/free

Reuse free areas/split large free memory areas to the needed size

Search for a free memory area larger/equal than needed size

program break

Split to right size 5

State of all memory areas and their location

Size of the area to split

What do we have to know about the memory areas

e Is the memory area free?
e How large is the memory area?

e Location of the memory area?

Think about a structure which allows you to organise the Heap Segment

Errors you should detect

e Double free
e Out of memory
e sbrk returns 0
e Buffer overflow / memory corruption

e Special value at begin of every memory area
e Check if first word == special value

[N

A5 - Task Summary

Consider a structure to organize the memory areas

e Decrease program break if possible

Avoid heap fragmentation

e Merge free neighboring memory areas
e Split large free memory areas to the needed size

Detect overflows, double frees and out of mem

Your implementation has to be POSIX compliant (manpage)

e Pointer arithmetics: int* p; p+5; —addrin p is increased by 5xsizeof (int)

e How many bytes does a pointer need? use typedef mempos in malloc.h

Double-Linked-List of memory areas

Mempos address = ‘“valid addr”; int* i = (intx) address; i = 100;

e Be careful to test the right malloc implementation ;)

Down the rabbit hole:
Underneath x86 Linux C
programs

General structure

How does a C program ”work”?

e Control starts at main
e Certain functions pass control to operating system, e.g. printf has the OS write
something to "standard output”

e When main returns, the program terminates gracefully

e Certain errors kill the program forcefully, e.g. with a "Segmentation fault”

C Standard Library

How does printf "work”?
e Format string parsing, argument extraction, construct final string — trivial
e write final string to stdout filedescriptor
e write, in turn, makes a system call (syscall) with the appropriate syscall number

e The syscall transfers control to the operating system, which executes the write on the user

program’s behalf

C program start and termination

How is main called and return handled?
e Operating system does not actually run main

e Execution starts at the entry point address, where the standard library start function is
located

Initializes standard library, obtains program arguments, calls main

After main, exit is called with the return value of main

exit performs a syscall that terminates the program gracefully

Odds and ends

For C++ programs, initialization and deinitialization of global objects also has to happen
before/after main, respectively

Disassembly of a program: objdump -d

e Some interesting info (entry point address, sections, ...): readelf -a

What symbols are visible in your program: nm

Which shared libraries are loaded: 1dd

What's in a C program?

Compiler produces object files for your code

Linker takes your object files and links it with standard library objects

e gcc —nostdlib — "nothing” works anymore

Provide your own standard library!

Header files and objects

#include <stdio.h> still works, despite -nostdlib!

Yes, but linking fails: undefined reference to ’printf’

When compiling printf (...) , the compiler produces something like: call printf

The linker takes all object files, assigns (" arbitrary”) addresses to all functions

Then, all references to printf are replaced by that address

Virtual Memory

Why can the linker assign static addresses to symbols? Virtual Memory!

You'll learn about that in OS ;)

32bit Calling conventions

Brief overview
e cdecl: "Standard” calling convention gcc uses for C programs
e syscall (not the OS/2 one): How syscalls are called

e fastcall, thiscall, pascal, ...: For other operating systems, languages, compilers, ...

We will now look at cdecl and syscall.

cdecl

How do 32bit functions work?
e There is a stack somewhere in memory
e The register esp points to the top of the stack
e Assembly instructions push and pop use and modify esp
e Another register, ebp points to the beginning of the current "stack frame”

e Each call of each function opens a new "stack frame”, i.e. ebp is moved to the top of the
stack

e How to restore the old ebp when the function returns? Save it on the stack!

e Local variables and parameters are always referenced relative to ebp!

Example: function

Consider:
int myfunc(int i)

{
}

This produces the following assembly:

return 2xi;

pushl %ebp
movl %esp, %ebp

cdecl

How does the call work?
e Function refers to parameters on the stack
e So we will have to push them on the stack (right to left)
e call function
e Return value is then in eax
e Remove parameters from stack again (" caller cleanup™)

e Except for floating point values, but we won't cover that here

Example: call

myfunc(1);

This produces the following assembly:

subl $4, %esp
movl $1, (%esp)
call myfunc
addl $0, %esp

syscall

How does a system call work?
e Put all parameters into registers
e Request an interrupt
e The interrupt handler will run in kernel mode and use values from registers
e Return value is then again in eax

What happens in kernel mode? You will find out in Operating Systems!

	A4 - Interprocess Communication
	Down the rabbit hole: Underneath x86 Linux C programs
	C Programs
	Linking
	Function calls

