

System Level Programming

Daniel Gruss

2023-04-23

Course Overview

A0, A1, A2

Compiler, C, Multithreading, Synchronization

A3, A4

Virtual Memory, Processes and Sandboxing

A5, A6

System Programming

A4 - Interprocess Communication

Shared Memory

Code
//shell stuff

Image

Shared Memory

Code
//shell stuff

pid_t pid = fork();

Image

Shared Memory

Code
//shell stuff

pid_t pid = fork();

if(pid == 0)

Image

Shared Memory

Code
//shell stuff

pid_t pid = fork();

if(pid == 0)

{

const char* args[] = {"˜/

"};

}

else
{

//do further shell stuff

}

Image

Shared Memory

Code
//shell stuff

pid_t pid = fork();

if(pid == 0)

{

const char* args[] = {"˜/"};

execv("/bin/ls", args);

}

else
{

//do further shell stuff

}

Image

Shared Memory

Code
//shell stuff

pid_t pid = fork();

if(pid == 0)

{

const char* args[] = {"˜/"};

execv("/bin/ls", args);

}

else
{

//do further shell stuff

}

Image

Shared Memory

Image

Shared Memory

Code
/* just the start of the main */

Image

Shared Memory

Code
/* found in (/dev/shm/obj) */

int fd = shm_open("obj",O_RDWR,0644);

Image

Shared Memory

Code
/* found in (/dev/shm/obj) */

int fd = shm_open("obj",O_RDWR,0644);

/* enlarge the shared memory object */

ftruncate(fd, 1000);

Image

Shared Memory

Shared Memory

Shared Memory

Code
/* found in (/dev/shm/obj) */

int fd = shm_open("obj",O_RDWR,0644);

/* enlarge the shared memory object */

ftruncate(fd, 1000);

/* now map the shared object */

char* ptr = (char*) mmap(NULL, 1000,

PROT_READ | PROT_WRITE, MAP_SHARED, fd,

0);

Image

Shared Memory

Code
/* found in (/dev/shm/obj) */

int fd = shm_open("obj",O_RDWR,0644);

/* enlarge the shared memory object */

ftruncate(fd, 1000);

/* now map the shared object */

char* ptr = (char*) mmap(NULL, 1000,

PROT_READ | PROT_WRITE, MAP_SHARED, fd,

0);

/* fork the process */

pid_t pid = fork();

Image

A5 - malloc/free - Task Description

• Write your own implementation of malloc/free

• void *malloc(size t size);

• void free(void *ptr);

• Write them in C++ with classes!!

• The malloc/free functions manage the Heap area and give a program the ability to request

memory areas of a given size and free those areas if they are not needed anymore

• You can reuse this code in OS A2

A5 - malloc/free - Introduction

i n t i n p u t s i z e = 200 ;

i n t ∗ b u f f e r = ma l l o c (i n p u t s i z e ∗ s i z e o f (i n t)) ;

memcpy(bu f f e r , i nput , i n p u t s i z e)

//do someth ing v e r y impor tan t

f r e e (b u f f e r) ;

• Where in the memory is this buffer area?

• How can it be increased/decreased at runtime?

Memory of a process

Code

BSS

Stack

program break

• Virtual Memory Space

• Code: Segment for the binary code

• BSS: part of Data Segment;

global/static variables with known size at

compiletime

• Program break shows end of Data Segment

• Program break can be increased/decerased

Heap

Data

BSS

Stack

program break

initial program break

Heapbuffer

• Program break increased

• Heap = between end of BSS Segment and program break

• Memory addresses below program break can be used by the

program

• Let’s use this area for our buffer

brk/sbrk

• OS offers syscalls brk and sbrk to change the program break of the own process

• void* sbrk(intptr t increment);

• sbrk(inc) increments the break by inc bytes

• Returns the address of the previous program break

• sbrk(0) returns current location of the break

Why not just:

vo i d ∗mal l oc (s i z e t s i z e){
r e t u r n sb rk (s i z e)

}

Because ...

wh i l e (1){
vo i d ∗ t = ma l l o c (1 0 0) ;

//do any th i ng

f r e e (t) ;

}

It’s not that easy, but not much harder

What do we want

• Efficient usage of memory

• Reuse of freed memory areas

• Avoid fragmentation of Heap Segment

How?

• Decrease program break if possible

• Merge freed memory areas

• Split large free memory areas to the needed size

A5 - malloc/free

Decrease program break if possible

• If there is free memory area just below the break

• Size of this memory area

1

2

3

4

5

6

program break

1

2

3

4

5

program break

program break

A5 - malloc/free

Merge free memory areas

• Only possible to merge with next or previous area

• We have to know the size, location and state of the areas

1

2

3

4

5

program break

program break

1

2

3

5

program break

program break

A5 - malloc/free

Reuse free areas/split large free memory areas to the needed size

• Search for a free memory area larger/equal than needed size

• Split to right size

• State of all memory areas and their location

• Size of the area to split

1

2

3

5

program break

program break

1

2

3

4

5

program break

program break

What do we have to know about the memory areas

• Is the memory area free?

• How large is the memory area?

• Location of the memory area?

Think about a structure which allows you to organise the Heap Segment

Errors you should detect

• Double free

• Out of memory

• sbrk returns 0

• Buffer overflow / memory corruption

• Special value at begin of every memory area

• Check if first word == special value

1
2
3
4
5

A5 - Task Summary

• Consider a structure to organize the memory areas

• Decrease program break if possible

• Avoid heap fragmentation

• Merge free neighboring memory areas

• Split large free memory areas to the needed size

• Detect overflows, double frees and out of mem

• Your implementation has to be POSIX compliant (manpage)

A5 - Hints

• Pointer arithmetics: int* p; p+5; – addr in p is increased by 5*sizeof(int)

• How many bytes does a pointer need? use typedef mempos in malloc.h

• Double-Linked-List of memory areas

• Mempos address = “valid addr”; int* i = (int*) address; *i = 100;

• Be careful to test the right malloc implementation ;)

Down the rabbit hole:

Underneath x86 Linux C

programs

General structure

How does a C program ”work”?

• Control starts at main

• Certain functions pass control to operating system, e.g. printf has the OS write

something to ”standard output”

• When main returns, the program terminates gracefully

• Certain errors kill the program forcefully, e.g. with a ”Segmentation fault”

C Standard Library

How does printf ”work”?

• Format string parsing, argument extraction, construct final string → trivial

• write final string to stdout filedescriptor

• write, in turn, makes a system call (syscall) with the appropriate syscall number

• The syscall transfers control to the operating system, which executes the write on the user

program’s behalf

C program start and termination

How is main called and return handled?

• Operating system does not actually run main

• Execution starts at the entry point address, where the standard library start function is

located

• Initializes standard library, obtains program arguments, calls main

• After main, exit is called with the return value of main

• exit performs a syscall that terminates the program gracefully

Odds and ends

• For C++ programs, initialization and deinitialization of global objects also has to happen

before/after main, respectively

• Disassembly of a program: objdump -d

• Some interesting info (entry point address, sections, ...): readelf -a

• What symbols are visible in your program: nm

• Which shared libraries are loaded: ldd

What’s in a C program?

• Compiler produces object files for your code

• Linker takes your object files and links it with standard library objects

• gcc -nostdlib → ”nothing” works anymore

• Provide your own standard library!

Header files and objects

• #include <stdio.h> still works, despite -nostdlib!

• Yes, but linking fails: undefined reference to ’printf’

• When compiling printf (...) , the compiler produces something like: call printf

• The linker takes all object files, assigns (”arbitrary”) addresses to all functions

• Then, all references to printf are replaced by that address

Virtual Memory

Why can the linker assign static addresses to symbols? Virtual Memory!

You’ll learn about that in OS ;)

32bit Calling conventions

Brief overview

• cdecl: ”Standard” calling convention gcc uses for C programs

• syscall (not the OS/2 one): How syscalls are called

• fastcall, thiscall, pascal, ...: For other operating systems, languages, compilers, ...

We will now look at cdecl and syscall.

cdecl

How do 32bit functions work?

• There is a stack somewhere in memory

• The register esp points to the top of the stack

• Assembly instructions push and pop use and modify esp

• Another register, ebp points to the beginning of the current ”stack frame”

• Each call of each function opens a new ”stack frame”, i.e. ebp is moved to the top of the

stack

• How to restore the old ebp when the function returns? Save it on the stack!

• Local variables and parameters are always referenced relative to ebp!

Example: function

Consider:

i n t myfunc (i n t i)

{
r e t u r n 2∗ i ;

}

This produces the following assembly:

pushl %ebp

movl %esp, %ebp

movl 8(%ebp), %eax

addl %eax, %eax

popl %ebp

ret

cdecl

How does the call work?

• Function refers to parameters on the stack

• So we will have to push them on the stack (right to left)

• call function

• Return value is then in eax

• Remove parameters from stack again (”caller cleanup”)

• Except for floating point values, but we won’t cover that here

Example: call

myfunc (1) ;

This produces the following assembly:

subl $4, %esp

movl $1, (%esp)

call myfunc

addl $0, %esp

syscall

How does a system call work?

• Put all parameters into registers

• Request an interrupt

• The interrupt handler will run in kernel mode and use values from registers

• Return value is then again in eax

• What happens in kernel mode? You will find out in Operating Systems!

	A4 - Interprocess Communication
	Down the rabbit hole: Underneath x86 Linux C programs
	C Programs
	Linking
	Function calls

