Automata and LTL Model Checking Bettina Könighofer

Model Checking SS23

May $11^{\text {th }} 2023$

Model Checking of LTL given an LTL property φ and a Kripke structure M check whether $\mathrm{M} \vDash \varphi$

1. Construct $\neg \varphi$
2. Construct a Büchi automaton \boldsymbol{S} $\neg \varphi$
3. Translate M to an automaton \mathcal{A}.
4. Construct the automaton \mathcal{B} with $\mathcal{L}(\mathcal{B})=\mathcal{L}(\mathcal{A}) \cap \mathcal{L}\left(\mathcal{S}_{\neg \varphi}\right)$
5. If $\mathcal{L}(\mathcal{B})=\varnothing \Rightarrow \mathcal{A}$ satisfies φ
6. Otherwise, a word $v \cdot w^{\omega} \in \mathcal{L}(\mathcal{B})$ is a counterexample

- a computation in M that does not satisfy φ

Outline

- Finite automata on finite words
- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Model checking using automata
- Translation of LTL to Büchi automata

Finite Automata on Finite Words Regular Automata

- $\mathcal{A}=\left(\mathbf{\Sigma}, \mathbf{Q}, \Delta, \mathbf{Q}^{0}, \mathbf{F}\right)$
- Σ is the finite alphabet
- \mathbf{Q} is the finite set of states
- $\Delta \subseteq \mathbf{Q} \times \Sigma \times \mathbf{Q}$ is the transition relation
- \mathbf{Q}^{0} is the set of initial states
- $\quad \mathbf{F}$ is the set of accepting states
- \mathcal{A} accepts a word if there is a corresponding run ending in an accepting state
a

Finite Automata on Finite Words Regular Automata

- Example: $\mathcal{A}=\left(\mathbf{\Sigma}, \mathbf{Q}, \Delta, \mathbf{Q}^{0}, \mathbf{F}\right)$
- $\boldsymbol{\Sigma}=\{a, b\}$
- $\mathbf{Q}=\left\{q_{1}, q_{2}\right\}$
- $\boldsymbol{\Delta}=\left\{\left(q_{1}, a, q_{1}\right),\left(q_{1}, b, q_{2}\right),\left(q_{2}, a, q_{1}\right),\left(q_{2}, b, q_{2}\right)\right\}$,
- $\mathbf{Q}^{0}=\left\{q_{1}\right\}$
- $\mathbf{F}=\left\{q_{1}\right\}$

Finite Automata on Finite Words Regular Automata

- Example: $\mathcal{A}=\left(\mathbf{\Sigma}, \mathbf{Q}, \Delta, \mathbf{Q}^{0}, \mathbf{F}\right)$
- $\boldsymbol{\Sigma}=\{a, b\}$
- $\mathbf{Q}=\left\{q_{1}, q_{2}\right\}$
- $\boldsymbol{\Delta}=\left\{\left(q_{1}, a, q_{1}\right),\left(q_{1}, b, q_{2}\right),\left(q_{2}, a, q_{1}\right),\left(q_{2}, b, q_{2}\right)\right\}$,
- $\mathbf{Q}^{0}=\left\{q_{1}\right\}$
- $\mathbf{F}=\left\{q_{1}\right\}$

麀10D0 What words does it accept?

Finite Automata on Finite Words Regular Automata

- Example: $\mathcal{A}=\left(\mathbf{\Sigma}, \mathbf{Q}, \Delta, \mathbf{Q}^{0}, \mathbf{F}\right)$
- $\boldsymbol{\Sigma}=\{a, b\}$
- $\mathbf{Q}=\left\{q_{1}, q_{2}\right\}$
- $\boldsymbol{\Delta}=\left\{\left(q_{1}, a, q_{1}\right),\left(q_{1}, b, q_{2}\right),\left(q_{2}, a, q_{1}\right),\left(q_{2}, b, q_{2}\right)\right\}$,
- $\mathbf{Q}^{0}=\left\{q_{1}\right\}$
- $\mathbf{F}=\left\{q_{1}\right\}$
- What words does it accept?
$\mathcal{L}(\mathcal{A})=\{$ the empty word $\} \cup$ \{all words that end with a\}
$=\{\varepsilon\} \cup\{\mathrm{a}, \mathrm{b}\}^{*} \mathrm{a}$

Finite Automata on Finite Words Regular Automata

ETBD Build an automaton that accepts all and only those strings that contain 001

Finite Automata on Finite Words Regular Automata

Build an automaton that accepts all and only those strings that contain 001

Languages on Finite Automata

Given a word $v=a_{1}, a_{2}, \ldots, a_{n}$ and automaton \mathcal{A}
A run $\rho=q_{0}, q_{1}, \ldots q_{n}$ of \mathcal{A} over v is a sequence of states s.t.

- $q_{0} \in \mathbf{Q}^{0}$
- for all $0 \leq i \leq n-1, \quad\left(q_{i}, a_{i+1}, q_{i+1}\right) \in \Delta$
- $\rightarrow \boldsymbol{\rho}$ is a path in the graph of $\boldsymbol{\mathcal { A }}$.

Languages on Finite Automata

Given a word $v=a_{1}, a_{2}, \ldots, a_{n}$ and automaton \mathcal{A}
A run $\rho=q_{0}, q_{1}, \ldots q_{n}$ of \mathcal{A} over v is a sequence of states s.t.

- $q_{0} \in \mathbf{Q}^{0}$
- for all $0 \leq i \leq n-1, \quad\left(q_{i}, a_{i+1}, q_{i+1}\right) \in \Delta$
- $\rightarrow \boldsymbol{\rho}$ is a path in the graph of $\boldsymbol{\mathcal { A }}$.
- A run is accepting $\Leftrightarrow \square$

Languages on Finite Automata

Given a word $v=a_{1}, a_{2}, \ldots, a_{n}$ and automaton \mathcal{A}
A run $\rho=q_{0}, q_{1}, \ldots q_{n}$ of \mathcal{A} over v is a sequence of states s.t.

- $q_{0} \in \mathbf{Q}^{0}$
- for all $0 \leq i \leq n-1,\left(q_{i}, a_{i+1}, q_{i+1}\right) \in \Delta$
- $\rightarrow \boldsymbol{\rho}$ is a path in the graph of $\boldsymbol{\mathcal { A }}$.
- A run is accepting $\Leftrightarrow q_{n} \in \mathcal{F}$

Languages on Finite Automata

Given a word $v=a_{1}, a_{2}, \ldots, a_{n}$ and automaton \mathcal{A}
A run $\rho=q_{0}, q_{1}, \ldots q_{n}$ of \mathcal{A} over v is a sequence of states s.t.

- $q_{0} \in \mathbf{Q}^{0}$
- for all $0 \leq \mathrm{i} \leq \mathrm{n}-1, \quad\left(\mathrm{q}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}+1}, \mathrm{q}_{\mathrm{i}+1}\right) \in \Delta$
- $\rightarrow \boldsymbol{\rho}$ is a path in the graph of $\boldsymbol{\mathcal { A }}$.
- A run is accepting $\Leftrightarrow q_{n} \in F$
- Language of \mathcal{A}
- $\mathcal{L}(\mathcal{A}) \subseteq \boldsymbol{\Sigma}^{*}$, is the set of words that \mathcal{A} accepts.
- Languages accepted by finite automata are regular languages.

Deterministic \& Non-Deterministic Automata

\mathcal{A} is deterministic if Δ is a function (one output for each input).

- $\left|\mathbf{Q}^{0}\right|=1$, and
- $\forall \mathrm{q} \in \mathrm{Q} \forall \mathrm{a} \in \mathrm{\Sigma}:|\Delta(\mathrm{q}, \mathrm{a})| \leq 1$

Det. automata have exactly one run for each word.

Deterministic \& Non-Deterministic Automata

- \mathcal{A} is deterministic if Δ is a function (one output for each input).
- $\left|\mathbf{Q}^{0}\right|=1$, and
- $\forall \mathrm{q} \in \mathbf{Q} \forall \mathrm{a} \in \mathrm{\Sigma}:|\Delta(\mathrm{q}, \mathrm{a})| \leq 1$
- Det. automata have exactly one run for each word.

- Non-det. automata
- Can have ε-transitions (transitions without a letter)
- Can have transitions (q,a,q'),(q,a,q") $\Delta \Delta$ and $q^{\prime \prime} \neq q^{\prime}$

Nondeterministic Finite Automata (NFA)

- NFA accepts all words that have a run that ends in an accepting state
郎IDDO What is the language of this automaton?

Nondeterministic Finite Automata (NFA)

- NFA accepts all words that have a run that ends in an accepting state
- What is the language of this automaton?
$\mathcal{L}(\mathcal{A})=\{$ all words that end with a $\}$

Equivalent deterministic automaton

Every NFA can be transformed to DFA.

- Subset-Construction (exponential blow-up)
- NFA: $\mathcal{A}=\left(\boldsymbol{\Sigma}, \mathbf{Q}, \Delta, \mathbf{Q}^{0}, \mathbf{F}\right)$
- DFA: $\mathcal{A}^{\prime}=\left(\boldsymbol{\Sigma}, \mathrm{P}(\mathbf{Q}), \Delta^{\prime},\left\{\mathbf{Q}^{0}\right\}, \mathbf{F}^{\prime}\right)$ such that
- $\Delta^{\prime}: P(Q) \times \Sigma \rightarrow P(Q)$ where $\left(Q_{1}, a, Q_{2}\right) \in \Delta^{\prime}$ if

$$
Q_{2}=\bigcup_{q \in Q_{1}}\left\{q^{\prime} \mid\left(q, a, q^{\prime}\right) \in \Delta\right\}
$$

- $F^{\prime}=\left\{Q^{\prime} \mid Q^{\prime} \cap F \neq \varnothing\right\}$

Non-deterministic automaton \mathcal{A}

Equivalent Det. automaton \mathcal{A}^{\prime}

Equivalent deterministic automaton

- Compute the equivalent DFA

- $\mathcal{A}^{\prime}=\left(\boldsymbol{\Sigma}, \mathrm{P}(\mathbf{Q}), \boldsymbol{\Delta}^{\prime},\left\{\mathbf{Q}^{0}\right\}, \mathbf{F}^{\prime}\right)$ such that
- $\Delta^{\prime}: P(Q) \times \Sigma \rightarrow P(Q)$ where $\left(Q_{1}, a, Q_{2}\right) \in \Delta^{\prime}$ if

$$
Q_{2}=\bigcup_{q \in Q_{1}}\left\{q^{\prime} \mid\left(q, a, q^{\prime}\right) \in \Delta\right\}
$$

- $F^{\prime}=\left\{Q^{\prime} \mid Q^{\prime} \cap F \neq \varnothing\right\}$

Non-deterministic automaton \mathcal{A}
Equivalent Det. automaton \mathcal{A} ’

Equivalent deterministic automaton

Compute the equivalent DFA

- $\mathcal{A} \mathcal{A}^{\prime}=\left(\boldsymbol{\Sigma}, \mathrm{P}(\mathbf{Q}), \boldsymbol{\Delta}^{\prime},\left\{\mathbf{Q}^{0}\right\}, \mathbf{F}^{\prime}\right)$ such that
- $\Delta^{\prime}: P(Q) \times \Sigma \rightarrow P(Q)$ where $\left(Q_{1}, a, Q_{2}\right) \in \Delta^{\prime}$ if

$$
Q_{2}=\bigcup_{q \in Q_{1}}\left\{q^{\prime} \mid\left(q, a, q^{\prime}\right) \in \Delta\right\}
$$

- $F^{\prime}=\left\{Q^{\prime} \mid Q^{\prime} \cap F \neq \varnothing\right\}$

Non-deterministic automaton \mathcal{A}
Equivalent Det. automaton \mathcal{A} '

Equivalent deterministic automaton

Compute the equivalent DFA

- $\mathcal{A} \mathcal{A}^{\prime}=\left(\boldsymbol{\Sigma}, \mathrm{P}(\mathbf{Q}), \boldsymbol{\Delta}^{\prime},\left\{\mathbf{Q}^{0}\right\}, \mathbf{F}^{\prime}\right)$ such that
- $\Delta^{\prime}: P(Q) \times \Sigma \rightarrow P(Q)$ where $\left(Q_{1}, a, Q_{2}\right) \in \Delta^{\prime}$ if

$$
Q_{2}=\bigcup_{q \in Q_{1}}\left\{q^{\prime} \mid\left(q, a, q^{\prime}\right) \in \Delta\right\}
$$

- $F^{\prime}=\left\{Q^{\prime} \mid Q^{\prime} \cap F \neq \varnothing\right\}$

Non-deterministic automaton \mathcal{A}

Equivalent Det. automaton \mathcal{A} '

Complement of DFA

- The complement automaton $\overline{\mathcal{A}}$ accepts exactly those words that are rejected by \mathcal{A}
层厂DO How do we construct $\overline{\mathcal{A}}$?

${ }_{\mathcal{A}}$

Complement of DFA

- The complement automaton $\overline{\mathcal{A}}$ accepts exactly those words that are rejected by \mathcal{A}
- Construction of $\overline{\mathcal{A}}$
- Substitution of accepting and non-accepting states
${ }_{\mathcal{A}}$

Consider NFA that accepts words that end with 001

Let's try switching accepting and non-accepting states:
$\overline{\boldsymbol{\mathcal { A }}} \xrightarrow{*} \xrightarrow{\left(\mathrm{~s}_{0}\right)} \xrightarrow{\left(\mathrm{s}_{1}\right)}$
展 $=10 D_{0}$ Is $\overline{\mathcal{A}}$ the complement of \mathcal{A} ?

Consider NFA that accepts words that end with 001

Let's try switching accepting and non-accepting states:

The language of this automaton is $\{0,1\}^{*}$ - this is wrong!

Tu

${ }_{26}$ Complement of NFA

- The complement automaton $\overline{\mathcal{A}}$ accepts exactly those words that are rejected by \mathcal{A}
- Construction of $\overline{\mathcal{A}}$

Complement of NFA

- The complement automaton $\overline{\mathcal{A}}$ accepts exactly those words that are rejected by \mathcal{A}
- Construction of $\overline{\mathcal{A}}$

1. Determinization: Convert NFA to DFA
2. Substitution of accepting and non-accepting states

Intersections of NFAs

- Given two languages, L_{1} and L_{2}, the intersection of L_{1} and L_{2} is

$$
L_{1} \cap L_{2}=\left\{w \mid w \in L_{1} \text { and } w \in L_{2}\right\}
$$

- Product automaton of $\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2}$ has $\mathrm{L}(\mathcal{A})=\mathrm{L}\left(\mathcal{A}_{1}\right) \cap \mathrm{L}\left(\boldsymbol{\mathcal { A }}_{2}\right)$

Intersections of NFAs

$\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2}$

1. States: $\left(\mathrm{s}_{0}, \mathrm{t}_{0}\right),\left(\mathrm{s}_{0}, \mathrm{t}_{1}\right),\left(\mathrm{s}_{1}, \mathrm{t}_{0}\right),\left(\mathrm{s}_{1}, \mathrm{t}_{1}\right)$.
2. Initial state: $\left(\mathrm{s}_{0}, \mathrm{t}_{0}\right)$.
3. Accepting states: $\left(\mathrm{s}_{0}, \mathrm{t}_{0}\right),\left(\mathrm{s}_{0}, \mathrm{t}_{1}\right)$.

Intersections of NFAs

$$
\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2}
$$

1. States: $\left(\mathrm{s}_{0}, \mathrm{t}_{0}\right),\left(\mathrm{s}_{0}, \mathrm{t}_{1}\right),\left(\mathrm{s}_{1}, \mathrm{t}_{0}\right),\left(\mathrm{s}_{1}, \mathrm{t}_{1}\right)$.
2. Initial state: $\left(\mathrm{s}_{0}, \mathrm{t}_{0}\right)$.
3. Accepting states: $\left(\mathrm{s}_{0}, \mathrm{t}_{0}\right),\left(\mathrm{s}_{0}, \mathrm{t}_{1}\right)$.

Intersections of NFAs

- Given two languages, L_{1} and L_{2}, the intersection of L_{1} and L_{2} is

$$
L_{1} \cap L_{2}=\left\{w \mid w \in L_{1} \text { and } w \in L_{2}\right\}
$$

- Product automaton of $\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2}$ has $\mathrm{L}(\mathcal{A})=\mathrm{L}\left(\mathcal{A}_{1}\right) \cap \mathrm{L}\left(\mathcal{A}_{2}\right)$
- $Q=Q_{1} \times Q_{2}$ (Cartesian product),
- $\Delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\Delta_{1}\left(q_{1}, a\right), \Delta_{2}\left(q_{2}, a\right)\right)$
- $q_{0}=\left(q_{01}, q_{02}\right)$
- $\left(q_{1}, q_{2}\right) \in F$ iff $q_{1} \in F_{1}$ and $q_{2} \in F_{2}$

Outline

- Finite automata on finite words
- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Model checking using automata

Automata on Infinite Words (Büchi)

$$
\mathcal{B}=\left(\boldsymbol{\Sigma}, \mathbf{Q}, \boldsymbol{\Delta}, \mathbf{Q}^{0}, \mathbf{F}\right)
$$

An infinite run ρ is accepting \Leftrightarrow it visits an accepting state an infinite number of times.

- $\inf (\rho) \cap F \neq \varnothing$
- $\mathcal{L}(\mathcal{B}) \subseteq \Sigma^{\omega}$ is the set of all infinite words that \mathcal{B} accepts
- Languages accepted by finite automata on infinite words are called w-regular languages.

Automata on Infinite Words (Büchi)

$$
\mathcal{B}=\left(\boldsymbol{\Sigma}, \mathbf{Q}, \Delta, \mathbf{Q}^{0}, \mathbf{F}\right)
$$

ρ is accepting $\Leftrightarrow \inf (\rho) \cap \mathbf{F} \neq \varnothing$

EDDO

- What is the language of this automaton?

Automata on Infinite Words (Büchi)

$$
\mathcal{B}=\left(\boldsymbol{\Sigma}, \mathbf{Q}, \Delta, \mathbf{Q}^{0}, \mathbf{F}\right)
$$

ρ is accepting $\Leftrightarrow \inf (\rho) \cap \mathbf{F} \neq \varnothing$

- Language of Büchi Automaton \mathcal{B}

$$
\begin{aligned}
& \mathcal{L}(\mathcal{B})=\{\text { words with an } \\
&\quad \text { Infinite number of a's }\} \\
& \text { or } \\
& \mathcal{L}(\mathcal{B})=\left(\{a, b\}^{*} a\right)^{\omega}
\end{aligned}
$$

Automata on Infinite Words (Büchi)

$$
\mathcal{B}=\left(\boldsymbol{\Sigma}, \mathbf{Q}, \Delta, \mathbf{Q}^{0}, \mathbf{F}\right)
$$

ρ is accepting $\Leftrightarrow \inf (\rho) \cap \mathbf{F} \neq \varnothing$

- Language of Büchi Automaton \mathcal{B}

庬IDDOCan you express it in LTL?

$$
\begin{aligned}
& \mathcal{L}(\mathcal{B})=\{\text { words with an } \\
&\quad \text { Infinite number of a's }\} \\
& \text { or } \\
& \mathcal{L}(\mathcal{B})=\left(\{a, b\}^{*} a\right)^{\omega}
\end{aligned}
$$

Automata on Infinite Words (Büchi)

$$
\mathcal{B}=\left(\boldsymbol{\Sigma}, \mathbf{Q}, \Delta, \mathbf{Q}^{0}, \mathbf{F}\right)
$$

ρ is accepting $\Leftrightarrow \inf (\rho) \cap \mathbf{F} \neq \varnothing$

- Language of Büchi Automaton \mathcal{B}

$$
\begin{aligned}
& \mathcal{L}(\mathcal{B})=\{\text { words with an } \\
&\quad \text { Infinite number of a's }\} \\
& \quad \text { or } \\
& \mathcal{L}(\mathcal{B})=\left(\{a, b\}^{*} \mathrm{a}\right)^{\omega} \\
& \text { In LTL: } G F(\mathrm{a})
\end{aligned}
$$

Outline

- Finite automata on finite words
- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Model checking using automata

Det. and Non-det. Büchi Automata

- Deterministic Büchi automata are strictly less expressive than nondeterministic ones.
- That is, not every nondeterministic Büchi automaton has an equivalent deterministic Büchi one.

Det. and Non-det. Büchi Automata

Theorem: There exists a non-deterministic Büchi automaton \mathcal{B} for which there is no equivalent deterministic one.
Consider \mathcal{B} below. What is its language? (Also in LTL)
\mathcal{B}

Det. and Non-det. Büchi Automata

Theorem: There exists a non-deterministic Büchi automaton \mathcal{B} for which there is no equivalent deterministic one.
 Consider \mathcal{B} below. What is its language?

$\mathcal{L}(\mathcal{B})=\{$ words with a finite number of a's\}
or
$\mathcal{L}(\mathcal{B})=\{\mathrm{a}, \mathrm{b}\}^{*} \mathrm{~b}^{\omega}$
In LTLL :
FGュa or FGb

Det. and Non-det. Büchi Automata

Theorem: There exists a non-deterministic Büchi automaton \mathcal{B} for which there is no equivalent deterministic one.
Proof: The proof shows that there is no det. Büchi Automaton for "finitely many". Detailed proof see book.

$\mathcal{L}(\mathcal{B})=\{$ words with a finite number of a's\} or

$$
\mathcal{L}(\mathcal{B})=\{a, b\}^{*} b^{\omega}
$$

FGनa or FGb

Det. and Non-det. Büchi Automata

Lemma 2:" Deterministic Büchi automata are not closed under

 complementation.
Proof: 聪有TODO

- Why? Hint: Automata below

Det. and Non-det. Büchi Automata

Lemma 2:: Deterministic Büchi automata are not closed under

 complementation.
Proof:

- Consider the language $\mathcal{L}=\{$ words with infinitely many a's $\}$.
- Construct a deterministic Büchi automaton \mathcal{A} that accepts \mathcal{L}.
- Its complement is $\mathcal{L}^{\prime}=\{$ words with finitely many a's\}, for which there is no deterministic Büchi automaton (see Theorem). \square

Det. and Non-det. Büchi Automata

Theorem: Nondeterministic Büchi automata are closed under complementation.

- The construction is very complicated. We will not see it here.
- Originally Büchi showed an algorithm for complementation that is double exponential in the size n of the automaton
- Mooly Safra (Tel-Aviv University) proved that it can be done by

$$
2^{0(n \log n)}
$$

Outline

- Finite automata on finite words
- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Model checking using automata

Intersection of Büchi Automata

$5{ }^{6} 10 D_{0}$

- What is $\mathcal{L}\left(\mathcal{B}_{1}\right) \cap \mathcal{L}\left(\mathcal{B}_{2}\right)$?

Intersection of Büchi Automata

- $\mathcal{L}\left(\mathcal{B}_{1}\right) \cap \mathcal{L}\left(\mathcal{B}_{2}\right)=$ \{words with an infinite number of a's and infinite number of b's\} (not empty)

Intersection of Büchi Automata

- $\mathcal{L}\left(\mathcal{B}_{1}\right) \cap \mathcal{L}\left(\mathcal{B}_{2}\right)=$ \{words with an infinite number of a's and infinite number of b's\}

BDO

- What do you get if you build the standard intersection?

Intersection of Büchi Automata

- $\quad \mathcal{L}\left(\mathcal{B}_{1}\right) \cap \mathcal{L}\left(\mathcal{B}_{2}\right)=$ \{words with an infinite number of a's and infinite number of b's\}
- A standard intersection does not work - the automaton will not have any accepting states!
- Solution: Introduce counter!

Intersection of Büchi Automata

Given $\boldsymbol{B}_{1}=\left(\boldsymbol{\Sigma}, \mathbf{Q}_{1}, \boldsymbol{\Delta}_{1}, \mathbf{Q}_{1}{ }^{0} \mathbf{F}_{1}\right)$ and $\boldsymbol{B}_{2}=\left(\boldsymbol{\Sigma}, \mathbf{Q}_{2}, \boldsymbol{\Delta}_{2}, \mathbf{Q}_{2}{ }^{0}, \mathbf{F}_{2}\right)$ $\mathcal{B}=\left(\boldsymbol{\Sigma}, \mathbf{Q}, \Delta, \mathbf{Q}^{0}, \mathbf{F}\right)$ s.t. $\mathcal{L}(\mathcal{B})=\mathcal{L}\left(\mathcal{B}_{1}\right) \cap \mathcal{L}\left(\mathcal{B}_{2}\right)$ is defined as follows:

- $\mathbf{Q}=\mathbf{Q}_{1} \times \mathbf{Q}_{2} \times\{0,1,2\}$
- $\mathbf{Q}^{0}=\mathbf{Q}_{1}{ }^{0} \times \mathbf{Q}_{2}{ }^{0} \times\{\mathbf{0}\}$
- $\boldsymbol{F}=\mathbf{Q}_{1} \times \mathbf{Q}_{2} \times\{2\}$

Intersection of Büchi Automata

$\left(\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{x}\right), \mathrm{a},\left(\mathrm{q}_{1}^{\prime}, \mathrm{q}_{2}^{\prime}, \mathrm{x}^{\prime}\right)\right) \in \Delta \Leftrightarrow$
(1) $\left(\mathrm{q}_{1}, \mathrm{a}, \mathrm{q}_{1}^{\prime}\right) \in \Delta_{1}$ and $\left(\mathrm{q}_{2}, \mathrm{a}, \mathrm{q}_{2}^{\prime}\right) \in \Delta_{2}$ and
(2) If $x=0$ and $q_{1}^{\prime} \in F_{1}$ then $x^{\prime}=1$

If $x=1$ and $q_{2}^{\prime} \in F_{2}$ then $x^{\prime}=2$
If $x=2$ then $x^{\prime}=0$
Else, $x^{\prime}=x$

Explanation: $\mathrm{x}=0$ is waiting for an accepting state from \mathbf{F}_{1}
$x=1$ is waiting for an accepting state from \mathbf{F}_{2}

Intersection of Büchi Automata

The first copy waits for an accepting state of \boldsymbol{B}_{1}
The second copy waits for an accepting state of $\boldsymbol{\mathcal { B }}_{2}$
All states in the third copy are accepting
Only the reachable states are drawn

Intersection of Büchi Automata

The first copy waits for an accepting state of \boldsymbol{B}_{1}
The second copy waits for an accepting state of $\boldsymbol{\mathcal { B }}_{2}$
All states in the third copy are accepting
Only the reachable states are drawn

Intersection of Büchi Automata

The first copy waits for an accepting state of \boldsymbol{B}_{1}
The second copy waits for an accepting state of $\boldsymbol{\mathcal { B }}_{2}$
All states in the third copy are accepting
Only the reachable states are drawn

$\left\langle r_{1}, q_{2}, 1\right\rangle$

$\left\langle r_{2}, q_{1}, 0\right\rangle$

Intersection of Büchi Automata

The first copy waits for an accepting state of \boldsymbol{B}_{1}
The second copy waits for an accepting state of $\boldsymbol{\mathcal { B }}_{2}$
All states in the third copy are accepting

Only the reachable states are drawn

Intersection of Büchi Automata

The first copy waits for an accepting state of \boldsymbol{B}_{1}
The second copy waits for an accepting state of $\boldsymbol{\mathcal { B }}_{2}$
All states in the third copy are accepting
Only the reachable states are drawn

Intersection of Büchi Automata

The first copy waits for an accepting state of \boldsymbol{B}_{1}
The second copy waits for an accepting state of $\boldsymbol{\mathcal { B }}_{2}$
All states in the third copy are accepting
Only the reachable states are drawn

Intersection of Büchi Automata

The first copy waits for an accepting state of \mathcal{B}_{1}
The second copy waits for an accepting state of $\boldsymbol{\mathcal { B }}_{2}$
All states in the third copy are accepting
Only the reachable states are drawn

Intersection of Büchi Automata

The first copy waits for an accepting state of \mathcal{B}_{1}
The second copy waits for an accepting state of $\boldsymbol{\mathcal { B }}_{2}$
All states in the third copy are accepting
Only the reachable states are drawn

Intersection of Büchi Automata

ADDO

Question

- How do we define the transition relation for \mathcal{B}, if x is over $\{0,1\}$ only?

With x over $\{0,1,2\}$ we had: $\quad\left(\left(q_{1}, q_{2}, x\right), a,\left(q^{\prime}{ }_{1}, q^{\prime}{ }_{2}, x^{\prime}\right)\right) \in \Delta \Leftrightarrow$
(1) $\left(\mathrm{q}_{1}, \mathrm{a}, \mathrm{q}^{\prime}{ }_{1}\right) \in \Delta_{1}$ and $\left(\mathrm{q}_{2}, \mathrm{a}, \mathrm{q}^{\prime}{ }_{2}\right) \in \Delta_{2}$ and
(2) If $x=0$ and $q_{1}^{\prime} \in F_{1}$ then $x^{\prime}=1$

If $x=1$ and $q^{\prime}{ }_{2} \in F_{2}$ then $x^{\prime}=2$
If $x=2$ then $x^{\prime}=0$
Else, $x^{\prime}=x$

Intersection of Büchi Automata

Question

- How do we define the transition relation for \mathcal{B}, if x is over $\{0,1\}$ only?
- Answer
- For Δ
- (2) If $x=0$ and $q_{1} \in \mathbf{F}_{1}$ then $x^{\prime}=1$

If $x=1$ and $q_{2} \in F_{2}$ then $x^{\prime}=0$
Else, $x^{\prime}=x$

- For \mathbf{F}
- $\mathbf{F}=\mathbf{F}_{1} \times \mathbf{Q}_{2} \times\{0\}$

Intersection of Büchi Automata

10DO

Question

- In every interval we first wait for F_{1} and then wait for F_{2}.
- We ignore accepting states that don't appear in this order.
- Might we miss accepting paths in \mathcal{B} ?

Intersection of Büchi Automata

Question

- In every interval we first wait for F_{1} and then wait for F_{2}.
- We ignore accepting states that don't appear in this order.
- Might we miss accepting paths in \mathcal{B} ?
- Answer
- No. Since on an accepting path there are infinitely many of those, ignoring finite number of them in each interval will still lead us to the conclusion that the run is accepting

Outline

- Finite automata on finite words
- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Automata and Kripke Structures
- Model checking using automata
- Translation of LTL to Büchi automata

shecking for ennotiness of $\mathcal{L}(\boldsymbol{P})$

- An infinite run ρ is accepting \Leftrightarrow it visits an accepting state an infinite number of times.
- $\inf (\rho) \cap \mathbf{F} \neq \varnothing$

良四DO How to check for $L(A)=\varnothing$?

checking for ennotiness of $\mathcal{L}(\underset{B}{ })$

- An infinite run ρ is accepting \Leftrightarrow it visits an accepting state an infinite number of times.
- $\inf (\rho) \cap \mathbf{F} \neq \varnothing$
- How to check for $L(A)=\varnothing$?
- Empty if there is no reachable accepting state on a cycle.

Non-emptiness \Leftrightarrow
 Existence of reachable accepting cycles

$\mathcal{L}(\mathcal{B})$ is nonempty \Leftrightarrow
The graph induced by \mathcal{B} contains a path from an initial state of \mathcal{B} to a state $\boldsymbol{t} \in \mathbf{F}$ and a path from \boldsymbol{t} back to itself.

Example

EDDO

- Is the language $\mathcal{L}(\mathcal{B})$ empty?

Example

$<r_{2}, q_{1}, 2>$ is accepting and reachable from $<r_{1}, q_{1}, 0>$ and reachable from itself

IIAIK

THANK YOU!

III

1

$\xrightarrow{3}$

Institute for Applied Information Processing and Communications

