
Lecture Notes for

Logic and Computability

Course Number: IND04033UF

Contact

Bettina Könighofer
Institute for Applied Information Processing and Communications (IAIK)

Graz University of Technology, Austria
bettina.koenighofer@iaik.tugraz.at

mailto:bettina.koenighofer@iaik.tugraz.at

Table of Contents

5 Predicate Logic 3
5.1 Predicates and Quantifiers . 3
5.2 Syntax of Predicate Logic . 6
5.3 Free and Bound Variables . 9

5.3.1 Substitution . 10
5.4 Semantics of Predicate Logic . 10

5.4.1 Models . 11
5.4.2 Evaluate a Formula under a Model 11

1

5
Predicate Logic

The Limitations of Propositional Logic. Propositional logic has limitations
when encoding declarative sentences. It is quite easy to encode logical sentence
components like not, and, or, if ... then. However, we would also like to express
sentence components like there exists ... and for all ... which is not possible in
propositional logic. To overcome this limitation, we need a more powerful type
of logic like e.g. predicate logic, also called first-order logic.

Example. Model the following sentence in propositional logic:

“Every person who is 18 years or older is eligible to vote.”

Solution. p with p :=“Every person who is 18 years or older is eligible to
vote.”

Note, that the above statement cannot be adequately expressed using only
propositional logic, since propositional logic is not expressive enough to deal
with quantified variables. Since the sentence is not referring to a specific person
and the statement applies to all people who are 18 years or older, we are stuck.
Therefore we need a richer logic like predicate logic.

5.1 Predicates and Quantifiers

Predicate logic is an extension of propositional logic. It adds the concept of
predicates and quantifiers to better capture the meaning of statements that
cannot be adequately expressed by propositional logic.

3

4 Chapter 5. Predicate Logic

Predicates

A predicate is a function that takes one or more variables from a specific do-
main and returns true or false depending on the values of its variables. We
denote predicates with capital roman letters such as P , Q, and R. A statement
involving n variables x1, x2, x3, . . . , xn can be denoted by an n-ary predicate
P (x1, x2, x3, . . . , xn). Once truth value has been assigned to all the variables
x1, x2, x3, . . . , xn, the statement P (x1, x2, x3, . . . , xn) becomes true or false.

Example. Write a formula ϕ in predicate logic that models the following
sentence: “x is smaller than 5.”

Solution. ϕ := STFive(x) using the predicate STFive that returns true if
x < 5 and false otherwise.

Example. What are the truth values of STFive(4) and STFive(6)?
Solution. STFive(4) is true, since it is the case that 4 < 5 holds. STFive(6)

is false since it is not true that 6 < 5.
Example. Let I(x, y) denote the predicate that compares whether x is

equivalent to y + 1, i.e., it returns true if x ≡ y + 1 and false otherwise. Give
the truth values for I(6, 5) and I(1, 4)?

Solution. I(6, 5) is true since 6 = 5 + 1. I(1, 4) is false since 1 6= 4 + 1.

Quantifiers

Quantifiers are used to express the extent to which a predicate is true over a range
of elements. Using quantifiers to create such propositions is called quantification.
We distinguish between two types of quantification: the universal quantification
and the existential quantification.

Universal Quantifier ∀
We can express statements which assert that a property is true for all the

values of a variable in a particular domain using universal quantification. The
notation ∀xP (x) denotes the universal quantification of P (x). ∀xP (x) is read
as “for all x P(x)”. The formula ∀xP (x) evaluates to true if P (x) is true for
all values of x in a given domain. It is very important to explicitly specify
the domain when using universal quantification since the domain decides the
possible values of x. Without the domain, the universal quantification has no
meaning.

Example. Let P (x) := “x + 5 > x” with x ∈ N+. What is the truth value
of the statement ∀xP (x)?

Solution. As x + 5 > x for any positive natural number, P (x) ≡ true for
all x and therefore it holds that ∀xP (x) ≡ true.

Existential Quantifier ∃
We can express statements which assert that there is an element with a

certain property by existential quantification. The notation ∃xP (x) denotes the
existential quantification of P (x), i.e., ∃xP (x) is true if and only if P (x) is true

5.1. Predicates and Quantifiers 5

for at least one value of x in the domain. ∃xP (x) is read as “There is at least
one such x such that P(x)” and denotes the statement. The formula ∃xP (x) is
true if there exists an element x in the domain such that P(x).”

Example. Let P (x) :=“x > 10” with x ∈ N+. What is the truth value of
the statement ∃xP (x)?

Solution. P (x) is true for all natural numbers greater than 10 and false for
all natural numbers less than 10. Therefore, the formula ∃xP (x) is true.

Example. Model the following sentence in predicate logic:

”Every person who is 18 years or older is eligible to vote.“

Solution. Using the domain x ∈ People and the predicates P (x) :=“x is 18
years”, R(x) :=“x is older than 18 years” and Q(x) :=“x is eligible to vote” we
get:

∀x((P (x) ∨R(x))↔ Q(x)).

Example. Model the following sentence in predicate logic:

”Every lecturer is older than some student.“

Solution. We define the following predicates for x, y ∈ People:

L(x) := “x is a lecturer”
S(x) := “x is a student”

O(x, y) := “x is older than y”

Using these predicates, we can model the sentence as follows:

∀x(L(x)→ ∃y(S(y) ∧O(x, y)))

Example. Formalize the following reasoning using propositional logic and
show whether the sequent is valid:

“Every child has a mother. Maria is a child. Therefore, Maria has a mother.”
Solution. We define the following atomic propositions:

p := “Every child has a mother.”
q := “Maria is a child.”
r := “Maria has a mother.”

Using propositional logic results in the following sequent:

p, q ` r

The sequent can easily disproven by the following counterexample: M :=
{p = >, q = >, r = ⊥}.

Example. Formalize the reasoning from above using predicate logic.
Solution. We define the following predicates:

6 Chapter 5. Predicate Logic

C(x) := “x is a child”
M(x) := “x has a mother”

Using the domain of x, y ∈ People, we can model the sequent as follows:

∀x(C(x)↔M(x)), C(maria) ` M(maria)

Using predicate logic, the meaning of the statements is preserved such that
reasoning is possible. In the next chapter, we will extend the natural deduction
calculus to predicate logic such that we are able to prove such sequents.

Example. Model the following sentence in predicate logic:

”Niki and Ben have the same maternal grandmother.“

Solution. We use the binary predicate M(x, y) :=“x is the mother of y.”
with x, y ∈ People and get the following formula:

∀x∀y∀u∀v(M(x, y) ∧M(y, niki) ∧M(u, v) ∧M(v, ben)→ x = u).

The formula states that, if y and v are Niki’s and Ben’s mothers, respectively,
and x and u are their mothers (i.e. Ben’s and Niki’s maternal grandmothers,
respectively), then x and u are the same person. Note, that we use the infix
notation for the equality predicate instead of the prefix notation. Whenever
it feels more natural you can use the infix notation. You can always use the
equality predicate without defining it explicitly.

What are functions?

A function is an expression of one or more variables determined on some spe-
cific domain and returns a value from that domain. We denote functions with
lowercase capital roman letters such as f , g, and h.

Example. Express the statement from before using the function symbol
m(x) that returns the mother of x.

Solution. Using the function m, the sentences from above can be encoded
as follows:

m(m(niki)) = m(m(ben))

5.2 Syntax of Predicate Logic

In this section we define the syntactic rules that define well-formed formulas in
predicate logic.

First, note that in predicate logic, we have two types of sorts. First, we have
terms that talk about objects. Terms include individual objects (e..g, ben, niki),

5.2. Syntax of Predicate Logic 7

variables since they represent objects (e.g., x, y), and function symbols since
they refer to objects (e.g., m(x)).

Second, we have formulas that have a truth value. For example, P (x, f(y)
is a formula and x, y, and f(x) are terms.

Formula︷ ︸︸ ︷
P︸︷︷︸

Predicate

(x︸︷︷︸
Term

, f(y)︸︷︷︸
Term

)

To define the syntax of predicate logic, we use the following notation:

• V : Defines the set of variable symbols, e.g., x, y, z.

• F: Defines the set of function symbols, e.g., f , g, h.

• P: Defines the set of predicate symbols, e.g., P , Q, R.

Each predicate symbol and each function symbol comes with an arity, the
number of arguments it expects. Constants are functions which don’t take any
arguments, i.e., nullary functions.

Terms

Terms are defined as follows:

• Any variable is a term.

• If c ∈ F is a nullary function, then c is a term.

• If t1, t2, ..., tn are terms and f ∈ F has arity n > 0, then f(t1, t2, ..., tn) is
a term.

• Nothing else is a term.

Note that the first building blocks of terms are constants (nullary functions)
and variables. More complex terms are built from function symbols using as
many previously built terms as required by such function symbols.

Formulas

Formulas are defined as follows:

• If P ∈ P is a predicate with arity n > 0 and t1, t2, ..., tn are terms over F,
then P (t1, t2, ..., tn) is a formula.

• If φ is a formula, then ¬φ is a formula.

• If φ and ψ are formulas, then (φ ∧ ψ), (φ ∨ ψ), and (φ→ ψ) are formulas.

• If φ is a formula and x is a variable, then (∀x φ) and (∃x φ) are formulas.

• Nothing else is a formula.

Note, that arguments, that are given to a predicate, are always terms.

8 Chapter 5. Predicate Logic

Binding Priorities

We add to the binding priorities that we defined for porpositional logic the
convention that ∀x and ∃x bings like ¬. Therefore, the precedence rules can be
given by:

1. ∀, ∃, ¬ bind most tightly;

2. then ∧;
3. then ∨;
4. then → which is right-associative.

Parse Tree

The parse tree is constructed in the same way as for formulas in propositional
logic, but with two additional sorts of nodes:

• Nodes for the quantifiers ∀x and ∃x have one subtree.

• Predicates of the form P (t1, t2, . . . , tn) have the symbol P as a node with
n subtrees, namely the parse trees of the terms t1, t2, . . . , tn.

Example. Draw the syntax tree to the following formula:

∀x
((
P (x)→ ¬Q(x)

)
∧
(
S(x, f(y, z)) ∨ T (y)

))
.

Solution.

∀x

∧

→

P

x

¬

Q

x

∨

S

x f

y z

T

y

Figure 5.1: A syntax tree of a predicate logic formula.
Red nodes are formulas, green nodes are terms.

5.3. Free and Bound Variables 9

5.3 Free and Bound Variables

With the introduction of ∀ and ∃, we also have to think about the scope of a
these quantifiers and whether a variable is free or bound.

Definition - Free and Bound Variables. Let φ be a formula in predicate
logic. An occurrence of x in φ is free if it is a leaf node in the syntax tree of
φ such that there is no path upwards from that node x to a node ∀x or ∃x.
Otherwise, that occurrence of x is called bound.

Definition - Scope of a Quantifier. For ∀xφ, or ∃xφ, we say that φ is
the scope of ∀x, respectively ∃x.

In other words, if x occurs in φ, then it is bound if, and only if, it is in the
scope of some ∃x or some ∀x; otherwise it is free. In terms of parse trees, the
scope of a quantifier is its subtree.

Example. Construct a parse tree for the following formula φ and determine
the scope of its quantifiers and which occurrences of the variables are free and
which are bound:

φ := ∀x (P (x) ∨Q(y, x)) ∧R(x)

Solution. The syntax tree with labels denoting free and bound variables
can be seen in Figure 5.2.

∧

∀x

∨

P

x

Q

y x

R

x

Scope
of quantifier

bound free bound

free

Figure 5.2: A syntax tree illustrating free and bound variables.

The scope of ∀x is (P (x)∨Q(y, x)). Thus, the first two occurrences of x are
bound to ∀x. Starting for the y leave node, the only quantifier we run into is
∀x but that x has nothing to do with y. So y is free in this formula. The third
occurrence of x is also free.

10 Chapter 5. Predicate Logic

5.3.1 Substitution

Variables are place holders and can be replaced with more concrete information.
Definition - Substitution. Given a variable x, a term t and a formula φ

we define φ[t/x] to be the formula obtained by replacing each free occurrence
of variable x in φ with t.

φ[t︸︷︷︸
Term

/ x︸︷︷︸
Variable

]

Therefore, if all occurrences of x are bound in φ, none of them gets substituted
by t. Furthermore, it is not allowed to perform substitutions such that a variable
gets captured by a quantifier : meaning that the variable was free before and by
carrying out the substitution it gets bound by a quantifier.

Example. Compute φ[f(z)/x] for the following formula:

φ := ∀y
(
P (x) ∧Q(y)

)
∨
(
R(y) ∧Q(x)

)
Solution. All occurrences of x are free and can be replayed by f(z).

φ
[
f(z)/x

]
= ∀y

(
P (f(z)) ∧Q(y)

)
∨
(
R(y) ∧Q(f(z))

)
Example. Compute ψ[f(z)/x] for the following formula:

ψ = ∀x
(
P (x) ∧Q(y)

)
∨
(
R(y) ∧Q(x)

)
Solution. We can only substitute the x in Q(x), as the other occurrence x

is bound to the ∀x quantifier.

ψ
[
f(z)/x

]
= ∀x

(
P (x) ∧Q(y)

)
∨
(
R(y) ∧Q(f(z))

)
Example. Compute φ[f(y)/x] for the following formula:

φ := ∀y
(
P (x) ∧Q(y) ∨

(
R(y) ∧Q(x)

))
Solution. We are not allowed to replace x with f(y), since x is free before

the substitution and the term f(y) contains a y which is in the scope of the ∀y
quantifier. Therefore, the variable would be captured which is not allowed.

φ
[
f(y)/x

]
:= ∀y

(
P (x) ∧Q(y) ∨

(
R(y) ∧Q(x)

))
5.4 Semantics of Predicate Logic

We will extend the notion of models that we discussed for propositional logic to
predicate logic. In propositional logic, a model defined an assignment of truth
values to all variables such that the formula evaluated to true or to false.

A model in predicate logic differs from a model in propositional logic in the
treatment of predicates and functions.

5.4. Semantics of Predicate Logic 11

5.4.1 Models

A model in predicate logic needs to define a concrete meaning to all predicate
and function symbols involved. For example, the predicate P is defined in the
model to be the relation “greater than” on the set of real numbers.

Definition - Model in Predicate Logic. A model M consists of the
following set of data:

• A non-empty set A, the universe/domain of concrete values;

• for each nullary function symbol f ∈ F, a concrete element fM ∈ A;

• for each nullary predicate symbol P ∈ P, a truth value;

• for each function symbol f ∈ F with arity n > 0, a concrete function
fM : An → A;

• for each predicate symbol P ∈ P with arity n > 0 : subset PM ⊆ An.

• for any free variable var: a lookup-table l : var→ A.

To denote a concrete instance of a function f or a predicate P in a model
M, we use the notation fM and PM. We often define PM as tuples which make
P true and use function tables to define fM.

Example. Give a model M for the following formula:

φ := ∀x∃yP (x, y)

Solution. The model consists of a domain A and a concrete predicate in-
stance PM. We give one possible model for φ:

• A = {a, b}
• PM = {(a, b), (b, a)} (meaning P (a, b) = true, P (b, a) = true, for all other
cases, P evaluates to false)

5.4.2 Evaluate a Formula under a Model

Given a model M, we define the satisfaction relation M � φ for each logical
formula φ by structural induction on φ.

• P : If φ is of the form P (t1, t2, . . . , tn), then we interpret the terms t1, t2, . . . , tn
in our set A by replacing all variables with their values according to the
look-up table l and interpret any function symbols f ∈ F by fM. In this
way we compute concrete values a1, a2, ..., an of A for each of these terms.
Now M � P (t1, t2, . . . , tn) holds if and only if (a1, a2, ..., an) is in the set
PM.

• ∀x: The relation M � ∀xψ holds if and only if M �l[x←a] ψ holds for all
a ∈ A.

• ∃x: Dually, M � ∃xψ holds if and only if M �l[x←a] ψ holds for some
a ∈ A.

12 Chapter 5. Predicate Logic

Example. Given a model M : A = {a, b}, PM = {(a, b), (b, a)} and a
formula φ := ∀x∃yP (x, y). Does it hold that M � φ?

Solution. We need to show that for any possible value for x, there exists
a value for y, such that P evaluates to true. Since P (a, b) and P (b, a) are both
true, this is the case and it holds that M � φ.

Example. Given a model M : A = {a, b}, PM = {(a, b), (b, a)} and a
formula ψ = ∃x∀y P (x, y). Does it hold that M � ψ?

Solution. We need to show that there is value for x, such that for all possible
values for y, P evaluates to true. We perform the following substitutions:

• x and y substituted with a: P (a, a) = ⊥. Therefore, we try the next
substitution for x.

• x with b and y with a: P (b, a) = >
• x with b and y with b: P (b, b) = ⊥

Therefore, there is no such x for which P evaluates to true under all possible
values for y. Therefore, M 6� ψ.

Example. Give a formula ψ = ∃x∀y P (x, y) and a modelM : A = N, PM =
x ≤ y | PM = {(1, 1), (1, 2) . . . (2, 2), . . . }. Does it hold that M � ψ?

Solution. Let us substitute x with 1. We need to show that P evaluates to
true for all values of y.

• y substituted with 1: P (1, 1) = >
• y substituted with 2: P (1, 2) = >
• . . .

• y substituted with n: P (1, n) = > for any n > 1

Therefore, we can conclude that M � ψ.

	Title Page
	Table of Contents
	Predicate Logic
	Predicates and Quantifiers
	Syntax of Predicate Logic
	Free and Bound Variables
	Substitution

	Semantics of Predicate Logic
	Models
	Evaluate a Formula under a Model

