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4
Natural Deduction for Propositional

Logic

We started the first chapter by using our common sense to conclude new knowl-
edge from given knowledge (we concluded that “there were taxis at the airport”
and that “John has his sun creme with him”). Our goal is to perform this rea-
soning formally and automatically. Natural deduction is a calculus for reasoning
about propositions so that we can establish the validity of arguments. There-
fore, natural deduction defines a set of rules each of which allows us to draw
a conclusion given a certain arrangement of premises. By successively applying
these rules, we are able to infer a conclusion from a set of premises.

Sequents

Our goal is to apply proof rules to a set of given formulas –the premises– to
eventually obtain a new formula –the conclusion. Formally, we write:

φ1, φ2,..., φn ` ψ

We call this expression a sequent. We say that the premises (formula on the
left side) entail the conclusion (formula on the right). A sequent is valid if a
proof for it can be found.

Example. The sequent for the illustration example in Chapter 1 is:

p ∧ ¬q → r, ¬r, p ` q

.
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4.1 Rules for natural deduction

For each of the connectives, there is one or more rules to introduce it and one
or more rules to eliminate it.

The ‘AND-Introduction’ Rule

First, we consider the rule for introducing a conjunction, called the and-introduction-
rule. Given the two premises ϕ and ψ, the rule allows us to conclude ϕ∧ψ. We
write:

ϕ ψ
∧i

ϕ ∧ ψ

Above the line we write the two premises ϕ and ψ of the rule. Below the line
we write the conclusion ϕ∧ψ. To the right of the line, we state the name of the
rule; ‘and-introduction’ is abbreviated by ∧i.

The intuition of the rule is the following: If we have two formulas that are
known to be true separately (the premises), then we can conclude that the con-
junction of the two premises must also be true. Consider the following example:

• Butterflies can fly (Premise)

• Bunnies can hop (Premise)

• Therefore: Butterflies can fly and bunnies can hop. (∧i of line 1 and 2)

• Therefore: Bunnies can hop and butterflies can fly. (∧i of line 2 and 1)

Construction of a Natural Deduction Proof

Next, we discuss how to construct a proof using the natural deduction rules to
show that a given sequent is valid.

Example. Give the proof for the sequents p, q ` p ∧ q and p, q ` q ∧ p.

p, q ` p ∧ q

1. p prem.
2. q prem.
3. p ∧ q ∧i 1,2

p, q ` q ∧ p

1. p prem.
2. q prem.
3. q ∧ p ∧i 2,1

Each line of the proof consists of the line number, a formula, and the reason
for having the formula. We start the prof by writing down the premises, leaving
a gap, and writing the conclusion in the end. The task is to apply the rules such
that we fill the gap. In this case, we only need to write down, that we applied
the ∧i rule, once combining line 1 and line 2, and once in the reverse order, to
justify the conclusion.
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The ‘AND-Elimination’ Rule

Given the premise ϕ ∧ ψ, the elimination rules allows us to conclude ϕ as well
as ψ. We write:

ϕ ∧ ψ ∧e1ϕ
ϕ ∧ ψ ∧e2
ψ

The rule ∧e1 is used to derive the first subformula, the rule ∧e2 is used to
derive the second sub-formula. Intuitively, if a conjunction is known to be true,
each sub-formula must also be true. Intuitive illustration:

• The earth is a planet and the sun is a star. (Premise)

• Therefore: The earth is a planet. (∧e1 line 1)

• Therefore: The sun is a star. (∧e2 line 1)

Example. Give the proof for the sequents p ∧ q ` p and p ∧ q ` q.

p ∧ q ` p

1. p ∧ q prem.
2. p ∧e1 1

p ∧ q ` q

1. p ∧ q prem.
2. q ∧e2 1

Example. Give the proof for the sequent p ∧ q, r ` q ∧ r.

1. p ∧ q prem.
2. r prem.
3. q ∧e2 1
4. q ∧ r ∧i 3,2

Example. Give the proof for the sequent (p ∧ q) ∧ r, s ∧ t ` q ∧ s.

1. (p ∧ q) ∧ r prem.
2. s ∧ t prem.
3. p ∧ q ∧e1 1
4. q ∧e2 3
5. s ∧e1 2
6. q ∧ s ∧i 4,5

In order to form the conclusion, the propositions q and s are needed. q can
be extracted from the first premise. Note: a natural deduction rule can only be
applied on the top-level connective of a formula. Hence, we need to apply the
∧e rule once to get p ∧ q, and then a second time to get q. Furthermore, we
need the propositional atom s to form the conclusion. We get s from the second
premise by eliminating the t. Finally, q and s can be connected using the ∧i rule
to form the conclusion.
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The ‘Double-Negation-Introduction’ Rule

If a formula ϕ holds, also ¬¬ϕ must be true, since they are equivalent. The rule
looks as following.

ϕ
¬¬i¬¬ϕ

Intuitively, the sentence “The ocean is salty” is the same as saying “It is not
true that the ocean is not salty.”

Example. Give the proof for the sequent p ∧ q ` ¬¬p.

1. p ∧ q prem.
2. p ∧e1 1
3. ¬¬p ¬¬i 2

The ‘Double-Negation-Elimination’ Rule

The rule is written as follows.

¬¬ϕ ¬¬eϕ

Same argument as before, the two formulas are equivalent. If it is true that
“Great Britain is not not a monarchy”, then we can follow that “Great Britain is
a monarchy”.

Example. Give the proof for the sequent ¬¬p ∧ ¬¬q ` p ∧ q.

1. ¬¬p ∧ ¬¬q prem.
2. ¬¬p ∧e1 1
3. ¬¬q ∧e2 1
4. p ¬¬e 2
5. q ¬¬e 3
6. p ∧ q ∧i 4,5

Example. Give the proof for the sequent p,¬¬(q ∧ r) ` ¬¬p ∧ r.

1. p prem.
2. ¬¬(q ∧ r) prem.
3. ¬¬p ¬¬i 1
4. q ∧ r ¬¬e 2
5. r ∧e2 4
6. ¬¬p ∧ r ∧i 3,5
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The ‘Implication-Elimination’ Rule

The implication-elimination rule states that, if we know that ϕ holds and we
know that ϕ→ ψ, we can conclude that ψ holds.

ϕ ϕ→ ψ →e
ψ

Intuitively, if we know that it is true that “It is snowing”, and “If it is snowing
then it is cold”, then we can conclude that “It is cold”.

Example. Give the proof for the sequent ¬¬p, p→ q ` ¬¬q.

1. ¬¬p prem.
2. p→ q prem.
3. p ¬¬e 1
4. q →e 1,2
5. ¬¬q ¬¬i 4

Example. Give the proof for the sequent p ∧ ¬a, p ∧ ¬a→ q ∨ b ` q ∨ b.

1. p ∧ ¬a prem.
2. p ∧ ¬a→ q ∨ b prem.
3. q ∨ b →e 1,2

Example. Give the proof for the sequent p, p→ q, p→ (q → r) ` r.

1. p prem.
2. p→ q prem.
3. p→ (q → r) prem.
4. q → r →e 1,3
5. q →e 1,2
6. r →e 4,5

The ‘Modus-Tollens’ Rule (MT)

Before discussing the implication-introduction rule, let us consider a derived
rule from the implication-elimination rule called modus tollens. If it holds that
ϕ→ ψ and ¬ψ are true, then we can conclude ¬ϕ.

ϕ→ ψ ¬ψ
MT¬ϕ
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Intuitive argumentation. The following is true: “If the sun is shining it is
daytime” and “It is not daytime”. Therefore, we can conclude using modus
tollens that “The sun is not shining”.

Example. Give the proof for the sequent ¬p→ q,¬q ` p.

1. ¬p→ q prem.
2. ¬q prem.
3. ¬¬p MT 1,2
4. p ¬¬e 3

Example. Give the proof for the sequent ¬p→ (q → r),¬p,¬r ` ¬q.

1. ¬p→ (q → r) prem.
2. ¬p prem.
3. ¬r prem.
4. q → r →e 1,2
5. ¬q MT 4,3

The ‘Implication-Introduction’ Rule

The→i rule says that in order to prove ϕ→ ψ, we make a temporary assumption
ϕ and then prove ψ. The rule is formally written as:

ϕ ass.
...
ψ

→i
ϕ→ ψ

Let’s assume that we want to prove the sequent p→ q, q → r ` p→ r. To
prove this sequent, we temporarily assume that p holds. Under the assumption
that p holds, we can derive from the first premise that q holds, and using q we
can derive that r holds from the second premise. Thus, by assuming that p
holds, we can imply that r holds, which we express symbolically by p→ r. The
prove is given below.

1. p→ q prem.
2. q → r prem.
3. p ass.
4. q →e 3,1
5. r →e 4,2
6. p→ r →i 3-5
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The assumption box in the proof defines the scope of the temporary assump-
tion p. By applying other rules, we can derive new formulas within the box. But
everything that we derive inside of the box still depends on the assumption of p.
Only by applying the →i rule, we are allowed to conclude p→ r. We will intro-
duce additional rules that uses boxes. It is important that the line immediately
following a closed box has to match the pattern of the conclusion of the rule that
uses the box. For the →i rule this means that we have to continue after the box
with ϕ→ ψ. Within the box, ϕ is the formula in the first line and ψ the formula
of the last line.

Example. Give the proof for the sequent p→ q ` ¬q → ¬p.

1. p→ q prem.
2. ¬q ass.
3. ¬p MT 1,2
4. ¬q → ¬p →i 2-3

Example. Give the proof for the sequent ¬q → ¬p ` p→ ¬¬q.

1. ¬q → ¬p prem.
2. p ass.
3. ¬¬p ¬¬i 2
4. ¬¬q MT 1,3
5. p→ ¬¬q →i 2-4

Example. Give the proof for the sequent p ∧ q → r ` p→ (q → r).

1. p ∧ q → r prem.
2. p ass.
3. q ass.
4. p ∧ q ∧i 2,3
5. r →e 4,1
6. q → r →i 3-5
7. p→ (q → r) →i 2-6

Example. Give the proof for the sequent p→ (q → r) ` p ∧ q → r.
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1. p→ (q → r) prem.
2. p ∧ q ass.
3. p ∧e1 2
4. q ∧e2 2
5. q → r →e 3,1
6. r →e 4,5
7. p ∧ q → r →i 2-6

The ‘Disjunction-Introduction’ Rule

If we know that ϕ holds, we can derive that ϕ ∨ ψ holds and that ψ ∨ ϕ holds.
This is true for any ψ. The rule is formulated as follows:

Formally the rules are written as:

ϕ
∨i1

ϕ ∨ ψ
ϕ

∨i2
ψ ∨ ϕ

Example. Give the proofs for the sequent p ` (q → r ∧ s) ∨ p.

1. p prem.
2. (q → r ∧ s) ∨ p ∨i2 1

The ‘Disjunction-Elimination’ Rule

From a given formula ϕ ∨ ψ, we want to proof some other formula χ. We only
know that ϕ or ψ holds. It could be that both of them are true, but it could also
be that only ψ is true, or only ϕ is true. Sine we don’t know which sub-formula
is true, we have to give two separate proofs:

• First box: We assume ϕ is true and need to find a proof for χ.

• Second box: We assume ψ is true and need to find a proof for χ.

Only if we can prove χ in the first and in the second box, then we can conclude
that χ holds also outside of the box.

The ∨e rules says that we can only derive χ from ϕ ∨ ψ if we can derive χ
from the assumption ϕ as well as from the assumption ψ. Formally the rule is
written as:

ϕ ∨ ψ

ϕ ass.
...
χ

ψ ass.
...
χ

∨eχ

Example. Give the proof for the sequent p ∨ q ` q ∨ p.
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p ∨ q ` q ∨ p

1. p ∨ q prem.
2. p ass.
3. q ∨ p ∨i2 2
4. q ass.
5. q ∨ p ∨i1 4
6. q ∨ p ∨e 1,2-3,4-5

Example. Give the proof for the sequent q → r ` (p ∨ q) → (p ∨ r).

1. q → r prem.
2. p ∨ q ass.
3. p ass.
4. p ∨ r ∨i1 2
5. q ass.
6. r →e 5,1
7. p ∨ r ∨i 6
8. p ∨ r ∨e 2,3-4,5-7
9. p ∨ q → (p ∨ r) →i 2-8

Example. Give the proof for the sequent:
p ∧ (q ∨ r), p, (q ∨ r) ` (p ∧ q) ∨ (p ∧ r).

1. p ∧ (q ∨ r) prem.
2. p prem.
3. (q ∨ r) prem.
4. q ass.
5. p ∧ q ∧i 2,4
6. (p ∧ q) ∨ (p ∧ r) ∨i1 5
7. r ass.
8. p ∧ r ∧i 2,7
9. (p ∧ q) ∨ (p ∧ r) ∨i2 8

10. (p ∧ q) ∨ (p ∧ r) ∨e 3, 4-6, 7-9

The ’Copy’-Rule

The copy rules allows us to repeat any formula that we have already proven.
This is helpful when we need to conclude a box with a formula that we have
already proven outside of the box. In this case, the formula can simply be copied
into the box which can then be closed.



12 Chapter 4. Natural Deduction for Propositional Logic

Example. Give the proof for the sequent p ` q → (p ∨ t).

1. p prem.
2. q ass.
3. p copy 1
4. p ∨ t ∨i1 3
5. q → (p ∨ t) →i 2-4

Definition. Formulas in propositional logic ϕ with valid sequent ` ϕ are
called theorems.

Example. Give the proof for the sequent ` p→ q → p.

1. p ass.
2. q ass.
3. p copy 1
4. q → p →i 2-3
5. p→ q → p →i 1-4

The ’Contradiction-Elimination’ Rule

Definition. A contradiction is an expressions of the form ϕ ∧ ¬ϕ or ¬ϕ ∧ ϕ,
where ϕ is any formula.
Examples for contradictions are: r ∧ ¬r and (p→ q) ∧ ¬(p→ q).

Any formula can be derived from a contradiction. Therefore, the proof rule
for contradiction elimination looks as follows.

⊥ ⊥eϕ

The rule expresses that we can derive anything from a contradiction. Lets
say, that our two premises say “Sunflowers are plants” and “Sunflowers are not
plants”. These two premises cannot be true at the same time, and we can infer a
contradiction. From the contradiction we can infer anything, like e.g., Therefore,
”drinking energy drinks helps you sleep better.“ If a formula on the left hand
side of en entailment relation is false, the entire sequent is trivially true.

The ’Negation-Elimination’ Rule

We use the negation-elimination rule to derive a contradiction from the given
formulas ϕ and ¬ϕ. Formally the rule is written as:

ϕ ¬ϕ ¬e
⊥
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Example. Give the proof for the sequent ¬p, p ` q.

1. ¬p prem.
2. p prem.
3. ⊥ ¬e 2,1
4. q ⊥e 3

Example. Give the proof for the sequent p ∨ ¬q ` q → (p ∨ r).

1. p ∨ ¬q prem.
2. q ass.
3. p ass.
4. p ∨ r ∨i1 3
5. ¬q ass.
6. ⊥ ¬e 2,5
7. p ∨ r ⊥e 6
8. p ∨ r ∨e 1,3-4,5-7
9. q → (p ∨ r) →i 2-8

The ’Negation-Introduction’ Rule

Lets assume that we make an assumption which gets us a contradiction. If this
is the case, our assumption must be false. The ¬i rule captures this intuition:

ϕ ass.
...
⊥

¬i¬ϕ

Example. Give the proof for the sequent p→ ¬q, q ` ¬p.

1. p→ ¬q prem.
2. q prem.
3. p ass.
4. ¬q →e 3,1
5. ⊥ ¬e 2,4
6. ¬p ¬i 3-5

Example. Give the proof for the sequent p→ ¬p ` ¬p.



14 Chapter 4. Natural Deduction for Propositional Logic

1. p→ ¬p prem.
2. p ass.
3. ¬p →e 1,2
4. ⊥ ¬e 2,3
5. ¬p ¬i 2-4

Example. Give the proof for the sequent p ∧ ¬q → r,¬r, p ` q.

1. p ∧ ¬q → r prem.
2. ¬r prem.
3. p prem.
4. ¬q ass.
5. p ∧ ¬q ∧i 3,4
6. r →e 1,5
7. ⊥ ¬e 6,2
8. ¬¬q ¬i 2-4
9. q ¬¬e 8

The ’Proof-by-Contradiction’ Rule (PBC)

Another handy derived-rule is called the proof-by-contradiction rule (PBC). It
is very similar to the ¬i rule. The rule states that if from ¬ϕ we obtain a
contradiction, then we are allowed to conclude ϕ:

¬ϕ ass.
...
⊥

PBCϕ

Example. Give the proof for the sequent ¬p→ ¬q, q ` p.

1. ¬p→ ¬q prem.
2. q prem.
3. ¬p ass.
4. ¬q →e 3,1
5. ⊥ ¬e 2,4
6. p PBC 3-5

The ’Law-of-the-Excluded-Middle’ Rule (LEM)

The LEM simply says that ϕ ∨ ¬ϕ is true. For every formula ϕ it holds that it
is either true or false, therefore the sequent ` ϕ ∨ ¬ϕ is valid.



4.2. Soundness and Completeness of ND 15

LEMϕ ∨ ¬ϕ

Example. Give the proof for the sequent p ` q ∧ r ∨ ¬(q ∧ r).

1. p prem.
2. q ∧ r ∨ ¬(q ∧ r) LEM

Example. Give the proof for the sequent p→ q ` ¬p ∨ q using LEM.

jjl

Tips for making your own Natural Deduction Proof

• Start a proof. At the top of your page write the premises, at the bottom
write the conclusion.

• Work in both directions to fill the gap. Work from the top to the
bottom by working with the premises, and simultaneously work upwards
by using the conclusion.

• Look first at the conclusion. If the conclusion is of the form ϕ → ψ,
then immediately apply →i. You still have to fill the gap in the box, but
you have an extra assumption to work with and a simpler conclusion you
try to reach. Similar, if your conclusion is of the form ¬ϕ, apply ¬i to
make your life easier.

• Assumption boxes. At any time you can introduce a formula as as-
sumption, by choosing a proof rule that opens the box. The box defines
the scope of the assumption. By opening a box you introduce an assump-
tion. But don’t forget, you have to close the box precisely as defined by
the applied proof rule.

• What rule should you apply? The rules →i and ¬i make your life
easier, apply them whenever you can. There is no easy recipe for when
to use the other rules. The best way to get the hang of it is doing many
proofs by yourself.

4.2 Soundness and Completeness of ND

Soundness

Natural deduction for propositional logic is sound. Therefore, any sequent that
can be proven is a correct semantic entailment.

φ1, φ2,..., φn ` ψ ⇒ φ1, φ2, ..., φn � ψ
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So, if we have proven with natural deduction that a sequent φ1, φ2,..., φn is
valid, then for all valuations in which all premises φ1, φ2, ..., φn evaluate to true,
ψ evaluates to true as well.

From soundness also follows that if the semantic entailment relation does not
hold, the sequent cannot be proven using natural deduction.

φ1, φ2,..., φn 2 ψ ⇒ φ1, φ2,..., φn 0 ψ

Completeness

Natural deduction for propositional logic is sound. Therefore, any sequent that
is a correct semantic entailment can be proven.

φ1, φ2,..., φn � ψ ⇒ φ1, φ2,..., φn ` ψ

From completeness also follows that if a sequent is not provable that means
it is no correct semantic entailment.

φ1, φ2,..., φn 0 ψ ⇒ φ1, φ2,..., φn 2 ψ

Corollary: Soundness and Completeness

Natural deduction for propositional logic is sound and complete.
Let φ1, φ2,..., φn, ψ be formulas of propositional logic. Then φ1, φ2,..., φn � ψ

is holds if and only if the sequent φ1, φ2,..., φn ` ψ is valid.

4.2.1 Invalid Sequents

To show that a sequent is invalid, we need to find a counter example. A counter
example is a model, that satisfies all premises but falsifies the conclusion.

Example. Show that the sequent p ∧ q ` ¬p is not valid by finding a
counter-example.

The model
M : p = T, q = T

is a counter example, since it satisfies the premise, i.e., M � p ∧ q, and it does
not satisfy the conclusion, i.e., M 2 ¬p.

Example. Find two counter-examples for the sequent p ∨ q ` p ∧ q.

M : p = T, q = F

M � p ∨ q, M 2 p ∧ q
Therefore, p ∨ q 0 p ∧ q

M : p = F, q = T

M � p ∨ q, M 2 p ∧ q
Therefore, p ∨ q 0 p ∧ q
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