
Lecture Notes for

Logic and Computability

Course Number: IND04033UF

Contact

Bettina Könighofer
Institute for Applied Information Processing and Communications (IAIK)

Graz University of Technology, Austria
bettina.koenighofer@iaik.tugraz.at

mailto:bettina.koenighofer@iaik.tugraz.at

Table of Contents

7 Satisfiability Modulo Theories 3
7.1 Definitions and Notations . 4

7.1.1 Theory of Equality and Uninterpreted Functions 5
7.2 Eager Encoding . 6
7.3 Lazy Encoding . 10

7.3.1 Theory Solvers and Congruence Closure 11
over

1

7
Satisfiability Modulo Theories

In computer science, the satisfiability modulo theories (SMT) problem refers
to the problem of determining whether a formula in predicate logic is satisfiable
with respect to some theory. A theory fixes the interpretation/meaning of certain
predicate and function symbols. Checking whether a formula in predicate logic is
satisfiable with respect to a theory means that we are not interested in arbitrary
models but in models that interpret the functions and predicates contained in
the theory as defined by the axioms in the theory. Consider the following formula
that uses arithmetic:

ϕ := ¬(a ≥ b) ∧ (a+ 1 > b).

We are not interested in models that use a nonstandard interpretation of the
symbols <, +, and 1. We only want to consider models that use the well-
established interpretation of those symbols.
There exists several commonly used theories in computer science. For example,
Presburger arithmetic is the theory of natural numbers with addition, more
complex theories include the theory of integers or real numbers with arithmetic,
and the theories of data structures such as lists, arrays, or bit vectors.
The two most commonly used approaches for implementing SMT solvers are
called eager encoding and lazy encoding. In eager encoding, all axioms of the
theory are explicitly incorporated into the input formula. Eager encoding is not
always possible and even if it is, the performance of solvers using eager encoding
is often unacceptable. To avoid the explicit encoding of axioms, solvers that use
lazy encoding use specialized theory solvers in combination with SAT solvers to
decide the satisfiability of formulas within a given theory. In this chapter, we
will have a brief glimpse into SMT, eager and lazy encoding.

3

4 Chapter 7. Satisfiability Modulo Theories

7.1 Definitions and Notations

A theory in predicate logic is defined by:

• Its signature Σ, which is a set of constants, function and predicate symbols
such as {0, 1, ...,+,−, ...,≤, <,≥, >, . . .} and

• a set of axioms A that gives meaning to the predicate and function symbols.

In SMT the interpretation defined by A is fixed and corresponds to the usual
semantic of the operators. The equality symbol = is assumed to be included in
every signature.
Definition - Theory. A theory is as a pair (Σ;A) where Σ is a signature which
defines a set of constant, function, and predicate symbols. The set of axioms A
is a set of closed predicate logic formulas in which only constant, function, and
predicate symbols of Σ appear.
Nothe that besides the logical symbols (logical connectives like ∧,∨, variables
like x, y and quantifiers like ∀x) a formula in a theory only consists of symbols
from Σ. Thus, do not use any non-logical symbols constants, predicates or
functions) not contained in Σ in your theory formulas.
Linear Integer Arithmetic. A first example for a theory is linear integer
arithmetic. The constant symbols of this theory consist of the set Z. The
function symbols are + and − and predicate symbols for this theory are =, 6=,
<. ≤, > and ≥. The set of axioms A gives the well-established meaning to these
function and predicate symbols.
Therefore, for the theory of linear integer arithmetic TLIA we have:

• Σ = {......,−3,−2,−1, 0, 1, 2, 3..., ,+,−,=, 6=, <,≤, >,≥}
• A defines the usual meaning to all symbols:

– Constant symbols are mapped to the corresponding value in Z.
– + is interpreted as the function 0 + 0 → 0, 0 + 1 → 1, − follows

it analogous interpretation.

– The predicate symbols are interpreted as their respective comparison
operator in mathematics.

An example for a formula in TLIA:

ϕ := x ≥ 0 ∧ (x+ y ≤ 2 ∨ x+ y ≥ 6) ∧ (x+ y ≥ 1 ∨ x− y ≥ 4).

T-Terms, T-Atoms, T-Literals and T-Formulas

• Constants as well as variables x, y, . . . are T-terms. An application of a
function symbol in Σ where all inputs are T-terms is a T-term.
Examples for T-terms in TLIA are: x+ 2, 5, x− y.

• A T-atom is the application of a predicate symbol in Σ where all inputs
are T-terms.
Examples for T-atoms in LIA are: x+ 2 > 0, 5 ≤ 2, x− y > 10.

7.1. Definitions and Notations 5

• A T-literal is a T-atoms or its negation.
Examples for T-literals are: x + 2 > 0, ¬(x + 2 > 0), x − y > 10,
¬(x− y > 10).

• A T-formula are well-formed predicate logic formulas consisting of T-literals
and logical symbols (logical connectives like ∧,∨, variables like x and quan-
tifiers like ∀x).
An example for a T-formula is: ∀x ∀y x+ y = y + x

The rest of this chapter will consider only the quanitfier-free fragment of a theory.

Models and T-Satisfiability

In SMT, the interpretation of the predicate and function symbols is fixed. The
only unspecified entities are free variables, for which a model has to define an
assignment. A model M within a theory T is therefore an assignment of all free
variables to a constant in Σ.
For example, lets consider the formula ϕ in TLIA:

ϕ := (x+ y > 0) ∧ (x = 0).

Under the model M0 = {x→ 5, y → 1} the formula ϕ evaluates to false. Under
the model M1 = {x→ 0, y → 0} the formula ϕ evaluates to true.
Definition - T-satisfiablility. We say that a formula ϕ is satisfiable in a theory
T, or T-satisfiable, if and only if there is a model M within T, this is M � A for
every A ∈ A, that satisfies ϕ.
Definition - T-valid. We say that a formula ϕ is valid in a theory T, or T-valid,
if and only if all models within T satisfy ϕ.
Definition - T-entailment. A set of formulas ϕ1, . . . ϕn T-entails a formula
ψ, written as ϕ1, . . . ϕn �T ψ, if every model of T that satisfies all formulas
ϕ1, . . . ϕn satisfies ψ as well.
Definition T-decidable. A theory T is decidable if there exists an algorithm
that always terminates with “yes” if ϕ is T-valid or with “no” if ϕ is T-invalid.

7.1.1 Theory of Equality and Uninterpreted Functions

We discuss the theory of equality and uninterpreted functions TEUF in detail.
TEUF is the simplest first-order theory and therefore we will discuss lazy encod-
ing and eager encoding for this theory. Uninterpreted functions are often used as
an abstraction technique to remove unnecessarily complex or irrelevant details
of a system being modeled. An uninterpreted function or function symbol is
one that has no other property other than its name and the function congruence
property: a function always returns the same output for the same input.
Definition - Theory of Equality and Uninterpreted Functions. The

6 Chapter 7. Satisfiability Modulo Theories

theory of equality and uninterpreted functions TEUF has the signature

ΣEUF := {=, a, b, c, . . . , f, g, h, . . . , P,Q,R, . . . },

where

• a, b, c, . . . are constant symbols,

• f, g, h, . . . are function symbols, and

• P,Q,R, . . . are predicate symbols.

The axioms AEUF are the following:

1. ∀x. x = x (reflexivity)

2. ∀x, y. x = y → y = x (symmetry)

3. ∀x, y, z. x = y ∧ y = z → x = z (transitivity)

4. ∀x, y. (
∧n

i=1 xi = yi)→ f(x) = f(y) (congruence)

5. ∀x, y. (
∧n

i=1 xi = yi)→ (P (x)↔ P (y)) (equivalence)

With the theory of uninterpreted function and equality it is often possible to
show properties of systems that use complex functions by abstracting away the
complexity of the functions, e.g., in order to analyse properties of encryption
schemas. For example, suppose we want to prove that the following set of theory
literals is unsatisfiable:

{a · (f(b) + f(c)) = d, b · (f(a) + f(c)) 6= d, a = b}.

At first, it may appear that this requires reasoning in the theory of arithmetic.
However, if we replace + and · with uninterpreted functions p andm respectively,
we get a new set of literals:

{m(a, p(f(b), f(c))) = d, m(b, p(f(a), f(c))) 6= d, a = b}.

We can prove that the conjunction of these literals is unsatisfiable without any
arithmetic, just by using the defined uninterpreted functions.

7.2 Eager Encoding

The eager approach to SMT solving involves translating the original formula
to an equisatisfiable Boolean formula in a preprocessing step. The translation is
done by encoding enough relevant consequences of the theory T into the Boolean
formula. The eager approach applies in principle to any theory with a decidable
satisfiability problem, possibly however at the cost of a significant blow-up in
the translation.
The main idea of eager encoding is that the input formula is translated into a
propositional formula with all relevant theory-specific information encoded into

7.2. Eager Encoding 7

the formula. The resulting large propositional formula can then be given to any
off-the-shelf SAT solver. Given a formula ϕ, algorithms based on eager encoding
(i.e., direct encoding of axioms) operate in three steps:

1. Replace any unique T-atom in the original formula ϕ with a fresh Boolean
variable to get a Boolean formula ϕ̂.

2. Generate a Boolean formula ϕcons that constrains the values of the intro-
duced Boolean variables to preserve the information of the theory.

3. Invoke a SAT solver on the Boolean formula ϕprop := ϕ̂ ∧ ϕcons that cor-
responds to an equisatisfiable propositional formula to ϕ.

The translations used in the eager approach are of course theory specific. In
the following Sections, we will discuss the translation of a formula within TEUF

to an equisatisfiable propositional formula. The translation consists of two sep-
arate steps to construct the propositional formula ϕprop. First, we remove all
function instances using the Ackermann algorithm. In a second step, we remove
all equality instances by a graph-based algorithm.

Elimination of Function Applications - via Ackermann Algorithm

The first step in the transformation to a Boolean formula is to eliminate applica-
tions of function and predicate symbols of non-zero arity. These applications are
replaced by new propositional symbols and additional constraints are added on
this fresh variables to maintain functional consistency (the congruence property).
In detail, given an input formula ϕEUF in TEUF , the Ackermann construction
algorithm works as follows:

• It generates the formula ϕ̂EUF by replacing every function application in
ϕEUF with a fresh variables.

• It generates the formula ϕFC which encodes all required functional con-
gruence constraints.

• ϕE = ϕ̂EUF ∧ ϕFC is equisatisfiable with ϕEUF and contains no uninter-
preted function symbols. Therefore, ϕE is in TE .

Example. Given the formula

ϕUEF := (f(a) = f(b)) ∧ ¬(f(b) = f(c)).

Apply the Ackermann construction algorithm to compute an equisatisfiable for-
mula in TE .
Solution. In ϕUEF we have three instances of the function f . Therefore, we
need three fresh variables fa, fb, and fc, one for each instance. Replacing the
function instances with the fresh variables yields to:

ϕ̂EUF := (fa = fb) ∧ ¬(fb = fc).

Second, we encode the functional consistency constraints for f :

ϕFC := ((a = b)→ fa = fb) ∧ ((b = c)→ fb = fc) ∧ ((a = c)→ fa = fc).

8 Chapter 7. Satisfiability Modulo Theories

The resulting equisatisfiable formula in TE is ϕE := ϕ̂EUF ∧ ϕFC .

Example. Given the formula ϕEUF :=

(z = f(x, z)↔ f(x, y) = x) ∧ (y 6= x ∨ f(y, z) = f(x, y) ∨ x = z)→ f(x, z) = z.

Apply the Ackermann construction algorithm to compute an equisatisfiable for-
mula in TE .
Solution.

ϕFC ≡(x = x ∧ y = z)→ (fxy = fxz)∧
(x = y ∧ y = z)→ (fxy = fyz)∧
(x = y ∧ z = z)→ (fxz = fyz)

ϕ̂EUF ≡(z = fxz ↔ fxy = x)∧
(y 6= x ∨ fyz = fxy ∨ x = z)→ fxz = z

Formula in Theory of Equality : ϕE ≡ ϕFC ∧ ϕ̂EUF

Example. Given the formula ϕEUF := f(x) = f(g(y)) ∧ f(y) 6= y ∨ f(x) =
f(y) ∧ f(y) = y ∨ f(y) = f(x) ∧ y 6= f(g(y)) ∨ f(y) = g(x) ∧ f(y) = y.

Apply the Ackermann construction algorithm to compute an equisatisfiable for-
mula in TE .
Solution.

ϕFC ≡ (x = y)→ (fx = fy)∧
(x = gy)→ (fx = fgy)∧
(y = gy)→ (fy = fgy)∧

(x = y)→ (gx = gy)

ϕ̂EUF ≡ fx = fgy ∧ fy 6= y∨
fx = fy ∧ fy = y∨
fy = fx ∧ y 6= fgy∨
fy = gx ∧ fy = y

ϕE ≡ ϕFC ∧ ϕ̂EUF

Elimination of Equalities - Graph-based Reduction

For an input formula ϕE in TE , the graph based reduction algorithm, introduced
by Bryant and Velev, computes an equisatisfiable propositional formula. The al-
gorithm computes ϕ̂E to preserve the logical structure, reflexivity and symmetry
properties, and ϕTC to preserve transitivity.
The formula ϕ̂E is computed via the following steps:

7.2. Eager Encoding 9

1. Every reflexivity instance a = a in ϕE is replaced by true.

2. Every equality atom is rewritten such that the first term precedes the
second term with respect to some total order.

3. Every equality atom a = b is replaced by a fresh propositional variable
ea=b. This results in the formula ϕ̂E .

To compute ϕTC , we construct a so-called non-polar equality graph: This graph
has a node for every term and an edge for every equality and disequality in the
formula (there is no difference between equality and disequality in the graph).
This graph is then made chordal.
Definition - Chords, Chord-free Cycles, and Chordal Graphs. In a
graph G, let n1 and n2 be two non-adjacent nodes in a cycle. An edge between
n1 and n2 is called a chord. A cycle is said to be chord-free, if in the cycle there
exist no non-adjacent nodes that are connected by an edge. A graph is called
chordal, if it contains no chord-free cycles with size greater than 3.
A graph can be made chordal by adding additional edges. By only having
such triangles in the graph, we avoid an exponential blow-up in the number
of transitivity constraints. Based on the chordal graph, we can compute the
transitivity constraints. For every triangle (x, y, z) in the graph, we add the
following constraints:

(ex=y ∧ ey=z → ex=z) ∧ (ex=y ∧ ex=z → ey=z) ∧ (ey=z ∧ ex=z → ex=y)

We connect the transitivity constraints for all triangles via conjunction to obtain
ϕTC . The resulting equisatisfiable propositional formula:

ϕprop := ϕ̂E ∧ ϕTC .

Example. Perform the graph-based reduction on the following formula to com-
pute an equisatisfiable formula in propositional logic.

fx = fa ∧ fy 6= y ∨ fx = fy ∧ fy = y ∨ fy = fx ∧ y 6= fa ∨ fy = gx ∧ fy = y

Solution.

ϕTC ≡(efx=fa ∧ ey=fa → efx=y)∧
(efx=fa ∧ efx=y → ey=fa)∧
(ey=fa ∧ efx=y → efx=fa)∧
(efx=y ∧ ey=fy → efx=fy)∧
(efx=y ∧ efx=fy → ey=fy)∧
(ey=fy ∧ efx=fy → efx=fy)

ϕ̂E ≡efx=fa ∧ ¬efy=y∨
efx=fy ∧ efy=y∨
efy=fx ∧ ¬ey=fa∨
efy=gx ∧ efy=y

10 Chapter 7. Satisfiability Modulo Theories

Boolean Formula : ϕprop ≡ ϕTC ∧ ϕ̂E

Example. Perform graph-based reduction to translate a formula in TE into an
equisatisfiable formula in propositional logic.

(z = fxz ↔ fxy = x) ∧ (¬y = x ∨ fyz = fxy ∨ x = z)→ z = fxz

Solution. ϕ̂E ≡ (ez=fxz ↔ efxy=x) ∧ (¬ey=x ∨ efyz=fxy ∨ ex=z)→ ez=fxz

ϕTC := true
ϕprop ≡ ϕTC ∧ ϕ̂E

7.3 Lazy Encoding

Lazy encoding is based on the interaction between a SAT solver and a so-called
theory solver. A theory solver is an algorithm that can decide satisfiability of
the conjunctive fragment of a theory. In contrast to eager encoding, where a
sufficient set of constraints is computed at the beginning, lazy encoding starts
with no constraints at all, and lazily adds constraints only when required.
The principle of lazy encoding is shown in Figure 7.1. To decide if a T-formula
φ is T-satisfiable, the propositional skeleton skel(φ) is given to a SAT solver.
If the SAT solver returns unsatisfiable, the procedure is done and we know
that φ is not T-satisfiable. If, however, the SAT solver returns satisfiable, we
obtain a satisfying assignment for the truth values of the theory atoms in φ.
This assignment is a formula in the conjunctive fragment of T, which we pass
to the theory solver. If the theory solver returns satisfiable, we have found
an assignment of truth values to the theory literals that is consistent with T.
Thus we know that φ is T-satisfiable. If, however, the theory solver returns
unsatisfiable, we have to look for another assignment, as the present one is not
consistent with T. To obtain a different assignment, we negate the inconsistent
assignment - which conveniently turns it into a clause - and add it as a so-called
blocking clause to the CNF of skel(ϕ). The blocking clause ensures that the next
satisfying assignment obtained from the SAT solver (if one exists) is different
from the current one.
This loop is repeated until we encounter one of the following two terminal cases:

1. The SAT solver suggests an assignment that the theory solver finds to be
consistent with T, in which case ϕ is T-satisfiable.

2. We have added so many blocking clauses that the SAT solver cannot find
any more assignments, in which case ϕ is not T-satisfiable.

As every blocking clause excludes (at least) one of only finitely many assign-
ments, the loop is guaranteed to terminate.

7.3. Lazy Encoding 11

Figure 7.1: The propositional skeleton of φ is given to a SAT solver. If a satisfying
assignment is found, it is checked by a theory solver. If the assignment
is consistent with the theory, φ is T-satisfiable. Otherwise, a blocking
clause is generated and the SAT solver searches for a new assignment.
This is repeated until either a T-consistent assignment is found, or the
SAT solver cannot find any more assignments.

7.3.1 Theory Solvers and Congruence Closure

Theory Solvers. Theory solvers are specialized on deciding a specific back-
ground theory, or a fragment of a background theory TEUF . The common prac-
tice is to write theory solvers just for deciding conjunctions of literals; i.e., atomic
formulas and their negations. The main advantage of theory-specific solvers is
that one can use whatever specialized algorithms and data structures are best
for the theory in question, which typically leads to better performance.
The role of the theory solver is to accept a set of literals and report whether the
set is T-satisfiable or not. The congruence closure algorithm is the most common
theory solver for TEUF .
Congruence Closure
Given a conjunction of TEUF -literals, the congruence closure algorithm computes
a set of congruence classes, such that all terms in the same congruence class are
equal. Congruence classes are computed in the following way.

1. All terms for which there is a (positive) equality in the conjunction of
literals are put into the same congruence class. All remaining terms are
put in singleton classes.

2. Any two classes that contain common terms are merged. This accounts
for the transitivity of the equality predicate.

3. Classes are merged based on function congruence. That is, if two classes
both contain an instance of the same uninterpreted function, and cor-
responding parameters are already in the same congruence class (which
means that they are equal), the classes of the function instances are merged.

4. Repeat step 2 and 3 until no more merging can be done.

12 Chapter 7. Satisfiability Modulo Theories

5. In the last step, all the disequalities from the set of input literals are
checked against the merged congruence classes. If there is a disequality
that contradicts the congruence classes (both its terms are in the same
congruence class), the conjunction of literals is unsatisfiable. If no such
disequality exists, the conjunction of literals is satisfiable.

Example. Use the congruence closure algorithm to check whether the following
formula is satisfiable. f(a) = e∧f(c) 6= f(e)∧a = f(b)∧f(b) 6= c∧b 6= a∧f(a) =
d ∧ d 6= f(c) ∧ b = d ∧ a 6= e ∧ c = d

Solution.

{f(a), e}, {a, f(b)}, {f(a), d}, {b, d}, {c, d}, {f(c)}, {f(e)}
{f(a), e, d}, {a, f(b)}, {b, d}, {c, d}, {f(c)}, {f(e)}
{f(a), e, d, b, c}, {a, f(b)}, {f(c)}, {f(e)}
{f(a), e, d, b, c}, {a, f(b)}, {f(c), f(e)}
{f(a), e, d, b, c}, {a, f(b), f(c), f(e)}

Checking the disequality f(c) 6= f(e) leads to the result that the assignment is
UNSAT, since f(c) and f(e) are in the same congruence class.
Example. Use the congruence closure algorithm to check whether the following
formula is satisfiable. ϕ := f(b) = a ∧ c 6= d ∧ f(e) = b ∧ d 6= f(b) ∧ f(a) =
f(e) ∧ b 6= f(b) ∧ a 6= e ∧ f(a) = e ∧ a = c ∧ f(b) 6= e ∧ d = f(c)

Solution.

{f(b), a}, {f(e), b}, {f(a), f(e)}, {f(a), e}, {a, c}, {d, f(c)}
{f(b), a}, {f(e), b}, {f(a), f(e), e}, {a, c}, {d, f(c)}
{f(b), a}, {f(a), f(e), e, b}, {a, c}, {d, f(c)}
{f(b), a, c}, {f(a), f(e), e, b}, {d, f(c)}
{f(b), a, c, f(a), f(e), e, b}, {d, f(c)}

Checking the disequality f(b) 6= e leads to the result that the assignment is
UNSAT, since f(b) and e are in the same congruence class.
Example. Use the congruence closure algorithm to check whether the following
formula is satisfiable: ϕ := x = y∧v = w∧z = f(w)∧z 6= x∧w 6= f(y)∧f(x) =
w ∧ f(z) = f(x) ∧ f(z) = f(v)

Solution.
{x, y}, {v, w}, {z, f(w)}, {f(x), w}, {f(z), f(x)}, {f(z), f(v)}
{x, y}, {v, w, f(x)}, {z, f(w)}, {f(z), f(x)}, {f(z), f(v)}
{x, y}, {v, w, f(x), f(z)}, {z, f(w)}, {f(z), f(v)}
{x, y}, {v, w, f(x), f(z), f(v)}, {z, f(w)}
z 6= xX
w 6= f(y)X
ϕ is SAT

7.3. Lazy Encoding 13

Chapter 7 was based on the following books.

• A. Biere, M. Heule, H. van Maaren, and T. Walsh: Handbook of Satisfia-
bility. Volume 185 of Frontiers in Artificial Intelligence and Applications,
IOS Press, (2009)

• Georg Hofferek: Controller Synthesis with Uninterpreted Functions. PhD
Thesis. 2014. Graz University of Technology.

	Title Page
	Table of Contents
	Satisfiability Modulo Theories
	Definitions and Notations
	Theory of Equality and Uninterpreted Functions

	Eager Encoding
	Lazy Encoding
	Theory Solvers and Congruence Closure

