
Lecture Notes for

Logic and Computability

Course Number: IND04033UF

Contact

Bettina Könighofer
Institute for Applied Information Processing and Communications (IAIK)

Graz University of Technology, Austria
bettina.koenighofer@iaik.tugraz.at

mailto:bettina.koenighofer@iaik.tugraz.at

Table of Contents

3 SAT Solvers 3
3.1 The SAT-Problem . 3
3.2 The DPLL Algorithm . 4

3.2.1 DPLL with Boolean Constraint Propagation (BCP) . . . 9
3.2.2 DPLL with Pure Literals (PL) 10
3.2.3 Conflict-driven Clause Learning (CDCL) 12
3.2.4 Resolution Proofs . 17

1

3
SAT Solvers

Given a propositional logic formula, a SAT solver determines whether there is
an assignment to the variables in the formula that satisfies the formula. During
the past decade, SAT solvers have been the subject of remarkable efficiency
improvements. Many practical problems can be formulated as SAT instances,
e.g., in the areas of high-level planning, scheduling, artificial intelligence, circuit
testing, and software modeling. The best-performing implementations of SAT
solvers are based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm
with conflict-driven clause learning (CDCL). In this chapter, we will discuss the
basics of the DPLL algorithm with CDCL.

3.1 The SAT-Problem

We start this chapter by formalizing the SAT problem.
Definition - SAT-Problem. Given a propositional logic formula, the prob-

lem of determining whether there exists a model such that the formula evaluates
to true is called the Boolean Satisfiability Problem, or the SAT problem for short.

The SAT problem represents the first decision problem to be proven NP-
complete. Given its NP-completeness, it is very unlikely that there exists any
polynomial algorithm for SAT. Nevertheless, there exists algorithm able to solve
many interesting SAT instances.

3

4 Chapter 3. SAT Solvers

3.2 The DPLL Algorithm

Introduced by Martin Davis, Hilary Putnam, Donald W. Loveland and George
Logemann in 1962, the DPLL algoritm forms the basis for most modern SAT
solvers. The DPLL algorithm operates on formulas given in conjunctive normal
form (CNF) and is a complete, backtracking-based binary search algorithm.

In its basis form, the algorithm searches for a satisfying total or partial
assignment to the variables that makes the formula true. The algorithm starts
with an empty assignment. Then, the algorithm assigns a truth value to a first
variable, this splits the search space into two parts. Next, the algorithm assigns
a value to second variable, and so on. Every assignment splits the search space
into two parts, which are then searched recursively. In case the search in one of
the parts fails, the algorithm backtracks and proceeds with a different part of
the search space.

Notation

We introduce the following notation that we use in the algorithm for updating
a variable assignment.

• φ is formula in CNF, e.g., φ = (a ∨ b ∨ ¬d) ∧ c
• A is an assignment of truth values to variables in φ.

– A can be given in set representation, e.g., A := {¬a, b, d}, or
– A can be given as conjunction of literals, e.g., A := ¬a ∧ b ∧ d.
– A is called a total (complete) assignment if it assigns a value to all

variables in φ.

– A is called a partial assignment if is assigns values to some but not
all variables in φ.

– A clause can be satisfied by an assignment A, conflicting with the
assignment A (all variables in the clause are given the opposite value
in A), or there are some unassigned literals in A left.

• φ[A]: φ with all variables assigned according to the corresponding truth
values in A.
– E.g., φ[A] = (⊥ ∨> ∨ ¬>) ∧ c = c.

Basis DPLL Algorithm - Backtracking Binary Search

The basic algorithm for a recursive implementation of binary search for a satis-
fying assignment is given as in Listing 3.1.

The procedure starts the recursion with the empty assignment, i.e, A := true.
In each recursion, the procedure first checks whether the current assignment A
makes the formula φ false. To check this, we only need to check if there is a
clause that is conflicting with the assignment A. If so, no extension of A will

3.2. The DPLL Algorithm 5

satisfy φ, and the procedure returns UNSAT. If not, we check whether the current
assignment already satisfies all clauses in which case the algorithm returns SAT.

1 # sat(φ, A) = True iff φ[A] is satisfiable
2 # sat(φ, true) = True iff φ is satisfiable
3 def sat(φ, A):
4 if φ[A] = false:
5 return False
6 if φ[A] = true:
7 return True
8

9 # Some unassigned variables left
10 l = pick unassigned variable
11 if sat(φ, A ∧ l)
12 return True
13 if sat(φ, A ∧ ¬l)
14 return True
15 return False

Listing 3.1: DPLL algorithm

If A is not total, then there is at least one variable that is not yet assigned.
The algorithm picks one of these unassigned variables, and chooses a truth value
for it. The choice of the variable and the truth value is immaterial for the
correctness of the algorithm, and can thus be a heuristic choice. We update the
assignment to the new choice accordingly and perform the recursive call with
the new assignment A ∧ l. The recursive call may have one of two outcomes: it
may succeed in finding a satisfying assignment, in which case the recursion is
aborted. In case the recursive call returns, we have thus failed to find a satisfying
assignment in the part of the search space given by the assignment A ∧ l. The
binary search algorithm then flips the truth value of the last decision to get the
new assignment A ∧ ¬l, and performs a second recursive call in order to search
the other half of the search space.

The search with A ∧ ¬l may fail as well, in which case the recursive call
backtracks. In case we return to the top level of the recursion, we have exhausted
the search tree without finding a satisfying assignment. We can then conclude
that the formula is unsatisfiable.

Definition - Decision and Decision Level. Each time the algorithm
assigns a new value to a literal l it makes a decision. The current depth of the
binary search tree is called the decision level.

6 Chapter 3. SAT Solvers

CNF as a Set of Clauses

We use a set of clauses Cφ as a shorthand for a formula φ in CNF. For instance,
we write

Cφ := {{¬a, b}, {¬b, c}, {¬c,¬a}}
to mean

φ := (¬a ∨ b) ∧ (¬b ∨ c) ∧ (¬c ∨ ¬a).

Using sets of clauses to represent formulas in CNF, we can efficiently imple-
ment setting literals and checking for unsatisfiability.

Setting Literals: In order to compute φ[l] for a literal l using set represen-
tation we perform two steps:

1. Remove all clauses that contain l, because these clauses evaluate to true.

2. Remove all literals ¬l from all remaining clauses, because these literals
evaluate to false.

Example. Given φ := (a∨ b∨ c)∧ d and A := {a}. Compute φ[A] using set
representation.

Formula φ in set representation gives us Cφ := {{a, b, c}, {d}}. Since a ∈
{a, b, c}, we remove the first clause from Cφ, resulting in Cφ := {{d}} or φ[A] = d.

Example. Given φ := (¬a ∨ b ∨ c) ∧ d and A := {a}. Compute φ[A] using
set representation.

Formula φ in set representation gives us Cφ := {{¬a, b, c}, {d}}. Under
A := {a} we remove ¬a from the first clause, resulting in Cφ := {{b, c}, {d}}.
Therefore, φ[A] := (b ∨ c) ∧ d.

Checking for unsatisfying assignments. A formula φ under an assign-
ment A evaluates to false, if using set representation at least one clause becomes
empty.

Checking for satisfying assignments. A formula φ under an assignment
A evaluates to true, if the resulting set of clauses becomes empty, i.e., all clauses
evaluate to true and are removed from C.

Execution of basic DPLL-Algorithm

As an example, we execute the basic DPLL algorithm to find a satisfying assign-
ment for the formula

φ := (¬a ∨ b) ∧ (¬b ∨ c) ∧ (¬c ∨ ¬a).

First, we represent φ using a set of clauses: Cφ := {{¬a, b}, {¬b, c}, {¬c,¬a}}.
In this example, the algorithm selects the literals for the next decision in lexico-
graphical order, starting with the positive value, i.e., (a < ¬a < b < ¬b < . . .).

3.2. The DPLL Algorithm 7

Step 1 2 3 4 5 6 7 8 9
Decision Level 0 1 2 3 3 2 1 2 3
Assignment - a a, b a, b, c a, b,¬c a,¬b ¬a ¬a, b ¬a, b, c
Cl. 1: ¬a, b ¬a, b b 3 3 3 {} 7 3 3 3

Cl. 2: ¬b, c ¬b, c ¬b, c c 3 {} 7 3 ¬b, c c 3

Cl. 3: ¬c,¬a ¬c,¬a ¬c ¬c {} 7 3 ¬c 3 3 3

Decision a b c ¬c ¬b ¬a b c SAT

Table 3.1: Execution of the DPLL algorithm

Note, that the order is arbitrary and may also be different (e.g. lexicographical
order, starting with the negative value: (¬a < a < ¬b < b < ...) or non-
lexicographical order, starting with the positive value: (b < ¬b < a < ¬a < c <
¬c < ...)).

Table 3.1 states the individual steps performed by the algorithm. We give the
current time step, the current decision level, the current assignment, the status
of the individual clauses under the current assignment, and the next decision
that the algorithm makes. The goal is to find an assignment that satisfies all
clauses. In the individual steps we keep track about what clauses are already
satisfied by the current assignment (we mark them with a 3), and for the yet
unsatisfied clauses which literals we still have left to satisfy the clause. We
mark a contradicting clause with the empty set. A contracting clause causes the
algorithm to perform the backtracking step. In detail, the following happens:

1. In step 1, the algorithm starts at decision level 0 and an empty assignment
A = {}. The first decision of the algorithm is a.

2. In step 2, the decision level is incremented, the current partial assignment
A = {a}. We evaluate the clauses under A and can remove ¬a from
the first clause and the third clause. Next, the algorithm checks whether
there is an empty clause (which would mean that a clause is conflicting
with the current assignment) or whether all clauses are satisfied under
the assignment. Since neither is the case, the algorithm makes the second
decision: b.

3. In step 3, we increment the decision level and A = {a}∪b = {a, b}. Having
b in A satisfies the first clause and the clause can be removed from the set
of clauses that still need to be satisfied. From the second clause, we have
to remove the ¬b literal. Since the current assignment is neither satisfying
nor conflicting, the algorithm makes the next decision c.

4. In step 4, the decision level is 3, and the assignment A = {a, b, c} results in
a conflict. The new assigned literal c makes the second clause true, but set
representing the third clause becomes empty. The algorithm backtracks to
decision level 2, flips its last decision and assigns the negative value to the
variable c next.

5. In step 5, the decision level is again 3, since it performed a back tracking

8 Chapter 3. SAT Solvers

step in the tree, before making the decision ¬c. The new assignment is
A = {a, b,¬c}. This assignment again results in a conflict, this time the
second clause becomes empty. The algorithm has to backtrack to decision
level 1, and flips the value for the variable b in the assignment, i.e, the next
decision is ¬b.

6. The assignment A = {a,¬b} results in an empty first clause. Therefore,
the algorithm backtracks one more time to decision level 0, and makes the
decision ¬a.

7. A = {¬a} immediately satisfies the first and third clause and only the
second clause remains to be satisfied. Following the lexicographical order,
the next decision is b.

8. In step 8, A is {¬a, b}, therefore we remove ¬b from clause 2. The next
decision is c.

9. In step 9, the total assignment {¬a, b, c} satisfies all three clauses. There-
fore, the algorithm returns SAT and the satisfying assignmentA = {¬a, b, c}.

Figure 3.1 illustrates the binary search on which the algorithm performed
the search and shows the decision levels.

a

b

c ¬c

¬b

c ¬c

¬a

b

c ¬c

¬b

c ¬c

1

2

3 4

5

6

7

8

Decision Level 0

Decision Level 1

Decision Level 2

Decision Level 3

Figure 3.1: Binary Search Tree

Decision Heuristic

SAT solvers that implement DPLL make heuristic choices when they need to
pick a variable and a value for a decision. There are several commonly used
methods for making such decisions. A very basic way of performing decisions
is a greedy approach that picks the decision that satisfies the largest number of
clauses. This heuristic can be further improved in several different ways.

In this course for simplicity, we will always define the order for decision
making for every example.

3.2. The DPLL Algorithm 9

3.2.1 DPLL with Boolean Constraint Propagation (BCP)

We now discuss a series of improvements over the basic binary search algorithm.
A standard optimization is called Boolean Constraint Propagation (BCP).

Definition - Unit Clause. A clause c is said to be a unit clause under
some assignment A if the following two conditions hold:

1. The clause c is not satisfied by A.

2. All but one of the variables in c are given a value by A.

Therefore, there is a single literal left in the set representing the clause under
the assignment.

The key observation is that in order to extend A to a satisfying assignment
for any formula that contains a unit clause c, we must make the following as-
signment:

• If l ∈ c, then this literal must be set accordingly resulting in A = A ∧ l.
A possible implementation is given in Listing 3.2, which applies the unit rule

exhaustively before making a decision. We say that an assignment of a variable
that is made due to a unit clause is not a decision but an implication. Therefore,
by applying BCP, the decision level is not increased.

1 # sat(φ, A) = True iff φ[A] is satisfiable
2 # sat(φ, true) = True iff φ is satisfiable
3 def sat(φ, A):
4 while unit clause occurs:
5 # l is only unassigned literal in unit clause
6 A = A ∧ l
7

8 if φ[A] = false:
9 return False

10 if φ[A] = true:
11 return True
12

13 # Some unassigned variables left
14 l = pick unassigned variable
15 if sat(φ, A ∧ l)
16 return True
17 if sat(φ, A ∧ ¬l)
18 return True
19 return False

Listing 3.2: DPLL algorithm with BCP

Example: Execution of DPLL-Algorithm with BCP

Given the formula φ := (¬a∨ b)∧ (¬b∨ c)∧ (¬c∨¬a) and the decision heuristic
(a < ¬a < b < ¬b < . . .), we execute DPLL with BCP and show the individual
steps in Table 3.2.

10 Chapter 3. SAT Solvers

The algorithm now checks whether there exists a unit clause before making
a decision. In the table we assume, that we can extend the current assignment
only by one literal per time step, therefore we can either make an implication
because of a unit clause or make a decision if there is no unit clause.

In this example we apply BCP in step 2, 3, and 6 and we do not increase the
decision level in these cases. Due to BCP, the algorithm was able to find with
the same decision heuristic a satisfying assignment with a fewer number of time
steps.

Step 1 2 3 4 5 6 7
Decision Level 0 1 1 1 1 2 2
Assignment - a a, b a, b, c ¬a ¬a, b ¬a, b, c
Cl. 1: ¬a, b ¬a, b b 3 3 3 3 3

Cl. 2: ¬b, c ¬b, c ¬b, c c 3 ¬b, c c 3

Cl. 3: ¬c,¬a 3 ¬c ¬c {} 7 3 3 3

BCP - b c - - c -
Decision a - - ¬a b - SAT

Table 3.2: Execution of the DPLL algorithm with BCP

3.2.2 DPLL with Pure Literals (PL)

The next optimization that we consider is the pure literal rule and is one of the
standard techniques used in DPLL-based SAT solvers.

Definition - Pure Literal. A literal is pure if its negation does not appear
in the formula.

As example consider the set of clauses Cφ := {{a,¬b, c}{a,¬c}, {b,¬c}}. The
literal a is pure, since ¬a is not contained in any clause.

The pure literal rule repeatedly sets a pure literal to true, until there are
no more pure literals, thereby satisfying all clauses that contain the pure literal.
Note that the order in which the pure literals are chosen does mot affect whether
the procedure succeeds.

The pseudo-code of DPLL including the rule for pure literals is given in
Listing 3.3. If an unassigned literal becomes pure, the algorithm sets this literal
to true. Similar than for PCB, if a literal is set because of the pure literals rule,
it does not count as decision and does not increase the decision level.

3.2. The DPLL Algorithm 11

1 # sat(φ, A) = True iff φ[A] is satisfiable
2 # sat(φ, true) = True iff φ is satisfiable
3 def sat(φ, A):
4 while unit clause occurs:
5 # l is only unassigned literal in unit clause
6 A = A ∧ l
7

8 while pure literal l exists:
9 A = A ∧ l

10

11 if φ[A] = false:
12 return False
13 if φ[A] = true:
14 return True
15

16 # Some unassigned variables left
17 l = pick unassigned variable
18 if sat(φ, A ∧ l)
19 return True
20 if sat(φ, A ∧ ¬l)
21 return True
22 return False

Listing 3.3: DPLL algorithm with Pure Literals

Example: Execution of DPLL-Algorithm with Pure Literals

We apply the DPLL-algorithm with the pure-literals rule on the same formula
φ := (¬a∨b)∧(¬b∨c)∧(¬c∨¬a) and decision heuristic (a < ¬a < b < ¬b < . . .).
The formula φ contains the pure literal ¬a, therefore the pure-literal rule is
applied in the first step and satisfies the clauses 1 and 3. The single remaining
second clause gives us two pure literals: ¬b and c. The algorithm picks ¬b. The
assignment A = {¬a,¬b} satisfies all clauses.

Step 1 2 3
Decision Level 0 0 0
Assignment - ¬a ¬a,¬b
Cl. 1: ¬a, b ¬a, b 3 3

Cl. 2: ¬b, c ¬b, c ¬b, c 3

Cl. 3: ¬c,¬a ¬c,¬a 3 3

BCP - - -
PL ¬a ¬b -
Decision - - SAT

Table 3.3: Execution of the DPLL-algorithm with BCP and PL.

Note that when filling out a column in the table, we go from top to bottom.
This means, first we try to apply BCP. If no unit clause exist, we try to apply

12 Chapter 3. SAT Solvers

the pure-literal rule. Only if there is no pure literal either, we make a decision
and increase the decision level.

3.2.3 Conflict-driven Clause Learning (CDCL)

The idea of conflict-driven clause learning is not to repeat steps that lead to a
conflict.

Let us assume we are given a formula in CNF formula with the clauses

Cφ := {{a,¬c}, {b,¬c}, {¬a,¬b, c}, {¬a,¬b}, {¬a, b}{a,¬b}, {a, b}

and iterate trough the algorithm with the order ¬c < c < ¬a < a < ¬b < b.
When executing the DPLL-algorithm with the given decision heuristic, then

the first decision is to set c to false and the second decision is to set a to false.
Under the assignment A = {¬a,¬c}, the sixth and seventh clauses become unit
clauses. The clause {a,¬b} implies b = false. But with b = false, the last
clause {a, b} becomes conflicting. If we set b = true, the clause {a,¬b} becomes
conflicting. We therefore have to revert our last decision, and flip a to true.
These execution steps are shown in Table 3.2.

Step 1 2 3 4 5
Decision Level 0 1 2 2 2
Assignment - ¬c ¬a,¬c ¬a,¬b,¬c a,¬c
Cl. 1: a,¬c 1 3 3 3 . . .
Cl. 2: b,¬c 2 3 3 3 . . .
Cl. 3: ¬a,¬b, c 3 ¬a,¬b 3 3 . . .
Cl. 4: ¬a,¬b 4 4 3 3 . . .
Cl. 5: ¬a, b 5 5 3 3 . . .
Cl. 6: a,¬b 6 6 ¬b 3 . . .
Cl. 7: a, b 7 7 b {} 7 . . .

BCP - - ¬b - . . .
PL - - - - . . .
Decision ¬c ¬a - a . . .

Figure 3.2: DPLL-algorithm with BCP and PL.

Assume, that we proceed in the search with A = {¬c, a}, but the search
would again fail. The algorithm needs to backtrack to the decision on c, i.e., it
will assign c to true after backtracking. The partial assignment is now A = {c}.
The algorithm will now re-do all the steps from before. It will repeat the decision
a = false which result in conflicts, tracks back, flips the decision to a = true,
and the search again fails. This effort is clearly wasted: we run into the same
conflicts that we have seen before, since the variable c has nothing to do with
the conflict. Figure 3.3 illustrates that searching the left part of the search tree
was unnecessary effort.

3.2. The DPLL Algorithm 13

Figure 3.3: Search Tree for DPLL.

Conflict Graph

In order to not repeat steps that lead to the same conflicts, the data structure
that CDCL maintains for this is the conflict graph, also called implication graph.

The conflict graph is a directed graph with labeled nodes. It is constructed
as follows:

1. For every decision, create a new node that is labeled with that decision.

2. For every implication detected by BCP, create a new node that is labeled
with that implication. Every implication detected by BCP is triggered by
a unit clause. Create an edge from the nodes that correspond to the literals
in the unit clause to the new node. We label the edge with the unit clause.

3. In case of a conflict, add a node labeled with ⊥, and add edges from the
nodes that correspond to the unit clauses causing the conflict. The node
is called the conflict node.

¬a

¬c

b

¬b

⊥
7

6

Figure 3.4: Conflict graph for step 4 of Table 3.2.

Figure 3.4 gives the state of the implication graph for our example when the
first conflict is reached. The root nodes of the graph are the decisions on c and a.
The node on the right-hand side labeled with ⊥ is the node for the conflict. The
inner nodes, labeled with values for ¬b and b, were created for the implications
detected by BCP.

The conflict graph reveals that the decision on the variable c does not has
an impact on the conflict.

14 Chapter 3. SAT Solvers

Clause Learning

CDCL generates new clauses from the existing set of clauses by traversing the
implication graph. SAT solver implement different strategies on how the new
clauses are generated and how many will be added per conflict.

In this course, we apply the following simple rule for generating a learned
clause for a conflict:

Once we reach a conflict, we analyze the conflict by drawing a conflict graph.
We form the new learned clause by negating all decisions that are involved in
the conflict. These negated literals form the new learned clause and is added to
the set of clauses.

Example. If we analyse the conflict in Figure 3.4, the learned clause would
be {a}.

Backtracking Level: After a conflict is reached and a new learned clause
is added, the DPLL algorithm needs to perform backtracking. Again, different
strategies exists on which level the SAT solver backtracks after adding a learned
clause.

In this course we apply the following rule for deciding the backtracking level:
After reaching a conflict and adding a learned clause, we backtrack to the

level where the newly added clause becomes a unit clause. This way, the newly
added clause is immediately used with BCP.

Example 1: Execution of DPLL-Algorithm with CDCL

We have given a similar formula φ as before with the clauses

Cφ := {{a,¬c}, {b,¬c}, {¬a,¬b, c}, {¬a,¬b}, {¬a, b}{a,¬b}, {a, b}

and decision heuristic ¬c < c < ¬a < a < ¬b < b. Table 3.4 states the individual
steps. The conflict is reached in time step 4 and results in the conflict graph
shown in Figure 3.5. The learned clause a is added, and the algorithm continues
at decision level 0 and applies BCP.

¬a

¬c

b

¬b

⊥
6

5

Figure 3.5: Conflict graph for step 4 of Table 3.4.

3.2. The DPLL Algorithm 15

Step 1 2 3 4 (1) 5 6 7
Decision Level 0 1 2 2 0 0 0 0
Assignment - ¬c ¬a,¬c ¬a,¬b,¬c - a a,¬b a,¬b,¬c
Cl. 1: a,¬c 1 3 3 3 1 3 3 3

Cl. 2: b,¬c 2 3 3 3 2 2 ¬c 3

Cl. 3: ¬a,¬b, c 3 ¬a,¬b 3 3 3 ¬b, c 3 3

Cl. 4: ¬a,¬b 4 4 3 3 4 ¬b 3 3

Cl. 5: a,¬b 5 5 ¬b 3 5 3 3 3

Cl. 6: a, b 6 6 b {} 7 6 3 3 3

Cl. 7: a learned a 7 3 3 3

BCP - - ¬b - a ¬b ¬c -
PL - - - - - - - -
Decision ¬c ¬a - - - - SAT

Table 3.4: DPLL algorithm with clause learning. Clauses written in gray denote a
learned clause.

Example 2: Execution of DPLL-Algorithm with Clause Learning

We have given the following formula in CNF in set representation:
Cφ = {a,¬c,¬e}, {¬a,¬e}, {b, e}, {¬b, d, e}, {¬b,¬d}, {c,¬d}, {c, d} with the de-
cision heuristic ¬a < a < ¬b < b < ¬c < c < ¬d < d < ¬e < e.

16 Chapter 3. SAT Solvers

Step 1 2 3 4 5 6 (2) 7
Decision Level 0 1 2 2 2 2 1 1
Assignment - ¬a ¬a,¬b ¬a,¬b, ¬a,¬b, ¬a,¬b, ¬a ¬a, b

e ¬c, e ¬c,¬d, e
Cl. 1: a,¬c,¬e 1 ¬c,¬e ¬c,¬e ¬c 3 3 ¬c,¬e ¬c,¬e
Cl. 2: ¬a,¬e 2 3 3 3 3 3 3 3

Cl. 3: b, e 3 3 e 3 3 3 3 3

Cl. 4: ¬b, d, e 4 4 3 3 3 3 4 d, e
Cl. 5: ¬b,¬d 5 5 3 3 3 3 5 ¬d
Cl. 6: c,¬d 6 6 6 6 ¬d 3 6 6
Cl. 7: c, d 7 7 7 7 d {} 7 7 7
Cl. 8: a, b a ∨ b b 3

Cl. 9: a
BCP - - e ¬c ¬d - b ¬d
PL - - - - - - - -
Decision ¬a ¬b - - - - - -

Step 8 9 10 (1) 11 12 13 14
Decision Level 1 1 1 0 0 0 0 0
Assignment ¬a, b, ¬a, b, ¬a, b, c - a a,¬e a, b, a, b,

¬d c,¬d ¬d,¬e ¬e ¬d,¬e
Cl. 1: a,¬c,¬e ¬c,¬e ¬e 3 1 3 3 3 3

Cl. 2: ¬a,¬e 3 3 3 2 ¬e 3 3 3

Cl. 3: b, e 3 3 3 3 3 b 3 3

Cl. 4: ¬b, d, e e e {} 7 4 4 ¬b, d d {} 7

Cl. 5: ¬b,¬d 3 3 3 5 5 5 ¬d 3

Cl. 6: c,¬d 3 3 3 6 6 6 6 3

Cl. 7: c, d c 3 3 7 7 7 7 c
Cl. 8: a, b 3 3 3 8 3 3 3 3

Cl. 9: a a 9 3 3 3 3

BCP c ¬e - a ¬e b ¬d -
PL - - - - - - - -
Decision - - - - - - - UNSAT

Figure 3.6: DPLL algorithm with decisions, BCP, PL and clause learning.

We encounter a conflict at step 6. The corresponding conflict graph given in
Figure 3.7 reveals that both decisions ¬a and ¬b can be blamed for the conflict.
Therefore, we learn {a, b} as our 8th clause. The algorithm backtracks to decision
level 1. Here the new clause is a unit clause and we are able to set b by BCP.

In step 10, the next conflict is reached. From the conflict graph given in
Figure 3.8 we learn the 9th clause: {a}. The algorithm backtracks to decision
level 0 and applies BCP.

3.2. The DPLL Algorithm 17

We again encounter a conflict in step 14. Since the algorithm reached a
conflict at decision level 0, the algorithm determines and returns as result that
the formula is unsatisfiable, i.e., there does not exist a satisfying assignment.
For completeness, Figure 3.9 shows the conflict graph for the last conflict, which
is no longer needed to generate a new clause. Note, that the graph does not
contain a decision node (a node without an incoming edge).

¬a

¬b

¬c

e

¬d

d

⊥
1

3

1

6

7

Figure 3.7: Conflict graph for step 6.

¬a b ¬d c

e

¬e

⊥
8

1

5

4

7

4

1

Figure 3.8: Conflict graph for step 10.

a ¬e b

¬d

d

⊥
9 2 3

4

5

4

Figure 3.9: Conflict graph for step 14.

3.2.4 Resolution Proofs

We have seen that CDCL generates new clauses. We can proof that the new
clauses are implied by the existing clauses using the resolution rule.

Definition - Resolution Rule. Let c1 = (φ∨ a) and c2 = (ψ ∨¬a) be two
clauses, where φ and ψ denote disjunctions of arbitrary literals. Then the clause
φ ∨ ψ is implied by c1 ∧ c2.

The resolution rule is a derived natural deduction rule and can be written as
follows:

18 Chapter 3. SAT Solvers

(a ∨ φ) (¬a ∨ ψ)
(φ ∨ ψ)

Definition - Resolution Proof. A resolution proof is a natural deduction
proof, that proofs the new clause from the existing clauses by applying the
resolution rule only.

The resolution proof for a learned clause can be automatically generated
traversing a conflict graph from the conflict node to the root nodes and applying
the resolution rule on the clauses that are marked on the edges.

Example. Give the resolution proof for the learned clause a ∨ b from the
conflict graph given in Figure 3.7.

To construct the resolution proof, we start by the conflict and apply the
resolution rule on clause 6 containing the literal d and clause 7 containing the
literal ¬d. The conclusion after applying the resolution rule is c. The formula c
forms then the first premise for the next application of the resolution rule, and
clause 1 forms the second premise. The result is a ∨ ¬e. Finally, the formula
a ∨ ¬e and clause 3 serve as premises for the last application of the resolution
rule. The conclusion is the learned clause a ∨ b that we wanted to proof from a
set of given clauses. Figure 3.10 gives the resolution proof in tree representation.

6 c ∨ ¬d 7 c ∨ d
c 1 a ∨ ¬c ∨ ¬e

a ∨ ¬e 3 b ∨ e
a ∨ b

Figure 3.10: Resolution proof for conflict graph in Figure 3.7.

Example. Give the resolution proof for the learned clause a from the conflict
graph given in Figure 3.8.

The proof is given in Figure 3.11.

1 a ∨ ¬c ∨ ¬e 4 ¬b ∨ d ∨ e
a ∨ ¬b ∨ ¬c ∨ d 7 c ∨ d

a ∨ ¬b ∨ d 5 ¬b ∨ ¬d
a ∨ ¬b 8 a ∨ b

a

Figure 3.11: Resolution proof for conflict graph in Figure 3.8.

Finally, the resolution proof can be used to automatically generate a proof
that a formula is UNSAT from a given conflict graph at decision level 0.

Example. Show that the formla is UNSAT from the conflict graph given

3.2. The DPLL Algorithm 19

in Figure 3.9. The proof is given in Figure 3.12. Therefore, from a given set of
clauses we proved that the formula is indeed UNSAT.

4 ¬b ∨ d ∨ e 5 ¬b ∨ ¬d
¬b ∨ e 3 b ∨ e

e 2 ¬a ∨ ¬e
¬a 9 a

⊥

Figure 3.12: Resolution proof for conflict graph in Figure 3.9.

	Title Page
	Table of Contents
	SAT Solvers
	The SAT-Problem
	The DPLL Algorithm
	DPLL with Boolean Constraint Propagation (BCP)
	DPLL with Pure Literals (PL)
	Conflict-driven Clause Learning (CDCL)
	Resolution Proofs

