Lecture Notes for

## Logic and Computability

Course Number: IND04033UF

Contact

Bettina Könighofer Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology, Austria bettina.koenighofer@iaik.tugraz.at



# Table of Contents

| 3 | SAT | Solve  | ers                                            | 3  |
|---|-----|--------|------------------------------------------------|----|
|   | 3.1 | The S. | AT-Problem                                     | 3  |
|   | 3.2 | The D  | PLL Algorithm                                  | 4  |
|   |     | 3.2.1  | DPLL with Boolean Constraint Propagation (BCP) | 9  |
|   |     | 3.2.2  | DPLL with Pure Literals (PL)                   | 10 |
|   |     | 3.2.3  | Conflict-driven Clause Learning (CDCL)         | 12 |
|   |     |        | Resolution Proofs                              |    |

# **B** SAT Solvers

Given a propositional logic formula, a SAT solver determines whether there is an assignment to the variables in the formula that satisfies the formula. During the past decade, SAT solvers have been the subject of remarkable efficiency improvements. Many practical problems can be formulated as SAT instances, e.g., in the areas of high-level planning, scheduling, artificial intelligence, circuit testing, and software modeling. The best-performing implementations of SAT solvers are based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm with conflict-driven clause learning (CDCL). In this chapter, we will discuss the basics of the DPLL algorithm with CDCL.

## 3.1 The SAT-Problem

We start this chapter by formalizing the SAT problem.

**Definition - SAT-Problem.** Given a propositional logic formula, the problem of determining whether there exists a model such that the formula evaluates to true is called the *Boolean Satisfiability Problem*, or the SAT problem for short.

The SAT problem represents the first decision problem to be proven *NP*complete. Given its NP-completeness, it is very unlikely that there exists any polynomial algorithm for SAT. Nevertheless, there exists algorithm able to solve many interesting SAT instances.

### 3.2 The DPLL Algorithm

Introduced by Martin **D**avis, Hilary **P**utnam, Donald W. **L**oveland and George Logemann in 1962, the DPLL algorithm forms the basis for most modern SAT solvers. The DPLL algorithm operates on formulas given in *conjunctive normal* form (CNF) and is a complete, backtracking-based binary search algorithm.

In its basis form, the algorithm searches for a satisfying total or partial assignment to the variables that makes the formula true. The algorithm starts with an empty assignment. Then, the algorithm assigns a truth value to a first variable, this splits the search space into two parts. Next, the algorithm assigns a value to second variable, and so on. Every assignment splits the search space into two parts, which are then searched recursively. In case the search in one of the parts fails, the algorithm backtracks and proceeds with a different part of the search space.

#### Notation

We introduce the following notation that we use in the algorithm for updating a variable assignment.

- $\phi$  is formula in CNF, e.g.,  $\phi = (a \lor b \lor \neg d) \land c$
- A is an assignment of truth values to variables in  $\phi$ .
  - A can be given in set representation, e.g.,  $A \coloneqq \{\neg a, b, d\}$ , or
  - A can be given as conjunction of literals, e.g.,  $A := \neg a \land b \land d$ .
  - A is called a *total (complete)* assignment if it assigns a value to all variables in  $\phi$ .
  - A is called a *partial* assignment if is assigns values to some but not all variables in  $\phi$ .
  - A clause can be *satisfied* by an assignment A, *conflicting* with the assignment A (all variables in the clause are given the opposite value in A), or there are some unassigned literals in A left.
- $\phi[A]$ :  $\phi$  with all variables assigned according to the corresponding truth values in A.

$$- \text{ E.g.}, \, \phi[A] = (\bot \lor \top \lor \neg \top) \land c = c.$$

#### Basis DPLL Algorithm - Backtracking Binary Search

The basic algorithm for a recursive implementation of binary search for a satisfying assignment is given as in Listing 3.1.

The procedure starts the recursion with the empty assignment, i.e,  $A \coloneqq true$ . In each recursion, the procedure first checks whether the current assignment A makes the formula  $\phi$  false. To check this, we only need to check if there is a clause that is conflicting with the assignment A. If so, no extension of A will satisfy  $\phi$ , and the procedure returns UNSAT. If not, we check whether the current assignment already satisfies all clauses in which case the algorithm returns SAT.

```
1 # sat(\phi, A) = True iff \phi[A] is satisfiable
2 # sat(\phi, true) = True iff \phi is satisfiable
3 \operatorname{def} \operatorname{sat}(\phi, A):
     if \phi[A] = false:
4
        return False
     if \phi[A] = true:
6
        return True
7
8
     # Some unassigned variables left
9
     l = pick unassigned variable
     if sat(\phi, A \wedge l)
        return True
     if sat(\phi, A \wedge \neg l)
13
        return True
14
     return False
```

Listing 3.1: DPLL algorithm

If A is not total, then there is at least one variable that is not yet assigned. The algorithm picks one of these unassigned variables, and chooses a truth value for it. The choice of the variable and the truth value is immaterial for the correctness of the algorithm, and can thus be a heuristic choice. We update the assignment to the new choice accordingly and perform the recursive call with the new assignment  $A \wedge l$ . The recursive call may have one of two outcomes: it may succeed in finding a satisfying assignment, in which case the recursion is aborted. In case the recursive call returns, we have thus failed to find a satisfying assignment in the part of the search space given by the assignment  $A \wedge l$ . The binary search algorithm then flips the truth value of the last decision to get the new assignment  $A \wedge \neg l$ , and performs a second recursive call in order to search the other half of the search space.

The search with  $A \wedge \neg l$  may fail as well, in which case the recursive call backtracks. In case we return to the top level of the recursion, we have exhausted the search tree without finding a satisfying assignment. We can then conclude that the formula is unsatisfiable.

**Definition - Decision and Decision Level.** Each time the algorithm assigns a new value to a literal l it makes a *decision*. The current depth of the binary search tree is called the *decision level*.

#### CNF as a Set of Clauses

We use a set of clauses  $C_{\phi}$  as a shorthand for a formula  $\phi$  in CNF. For instance, we write

$$C_{\phi} := \{\{\neg a, b\}, \{\neg b, c\}, \{\neg c, \neg a\}\}$$

to mean

$$\phi := (\neg a \lor b) \land (\neg b \lor c) \land (\neg c \lor \neg a).$$

Using sets of clauses to represent formulas in CNF, we can efficiently implement *setting literals* and *checking for unsatisfiability*.

Setting Literals: In order to compute  $\phi[l]$  for a literal l using set representation we perform two steps:

- 1. Remove all clauses that contain l, because these clauses evaluate to true.
- 2. Remove all literals  $\neg l$  from all remaining clauses, because these literals evaluate to *false*.

**Example.** Given  $\phi := (a \lor b \lor c) \land d$  and  $A := \{a\}$ . Compute  $\phi[A]$  using set representation.

Formula  $\phi$  in set representation gives us  $C_{\phi} := \{\{a, b, c\}, \{d\}\}$ . Since  $a \in \{a, b, c\}$ , we remove the first clause from  $C_{\phi}$ , resulting in  $C_{\phi} := \{\{d\}\}$  or  $\phi[A] = d$ .

**Example.** Given  $\phi := (\neg a \lor b \lor c) \land d$  and  $A := \{a\}$ . Compute  $\phi[A]$  using set representation.

Formula  $\phi$  in set representation gives us  $C_{\phi} := \{\{\neg a, b, c\}, \{d\}\}$ . Under  $A := \{a\}$  we remove  $\neg a$  from the first clause, resulting in  $C_{\phi} := \{\{b, c\}, \{d\}\}$ . Therefore,  $\phi[A] := (b \lor c) \land d$ .

Checking for unsatisfying assignments. A formula  $\phi$  under an assignment A evaluates to *false*, if using set representation at least one *clause becomes empty*.

**Checking for satisfying assignments.** A formula  $\phi$  under an assignment A evaluates to *true*, if the resulting *set of clauses becomes empty*, i.e., all clauses evaluate to *true* and are removed from C.

#### Execution of basic DPLL-Algorithm

As an example, we execute the basic DPLL algorithm to find a satisfying assignment for the formula

$$\phi := (\neg a \lor b) \land (\neg b \lor c) \land (\neg c \lor \neg a).$$

First, we represent  $\phi$  using a set of clauses:  $C_{\phi} := \{\{\neg a, b\}, \{\neg b, c\}, \{\neg c, \neg a\}\}$ . In this example, the algorithm selects the literals for the next decision in *lexico-graphical order*, starting with the *positive value*, i.e.,  $(a < \neg a < b < \neg b < \dots)$ .

| Step                    | 1                | 2           | 3        | 4        | 5              | 6           | 7           | 8           | 9              |
|-------------------------|------------------|-------------|----------|----------|----------------|-------------|-------------|-------------|----------------|
| Decision Level          | 0                | 1           | 2        | 3        | 3              | 2           | 1           | 2           | 3              |
| Assignment              | -                | a           | a, b     | a, b, c  | $a, b, \neg c$ | $a, \neg b$ | $\neg a$    | $\neg a, b$ | $\neg a, b, c$ |
| Cl. 1: $\neg a, b$      | $\neg a, b$      | b           | 1        | 1        | 1              | {} X        | 1           | 1           | 1              |
| Cl. 2: $\neg b, c$      | $\neg b, c$      | $\neg b, c$ | c        | 1        | {} X           | 1           | $\neg b, c$ | c           | 1              |
| Cl. 3: $\neg c, \neg a$ | $\neg c, \neg a$ | $\neg c$    | $\neg c$ | {} X     | 1              | $\neg c$    | ✓           | 1           | 1              |
| Decision                | a                | b           | c        | $\neg c$ | $\neg b$       | $\neg a$    | b           | <i>c</i>    | SAT            |

 Table 3.1: Execution of the DPLL algorithm

Note, that the order is arbitrary and may also be different (e.g. lexicographical order, starting with the negative value:  $(\neg a < a < \neg b < b < ...)$  or non-lexicographical order, starting with the positive value:  $(b < \neg b < a < \neg a < c < \neg c < ...))$ .

Table 3.1 states the individual steps performed by the algorithm. We give the current time step, the current decision level, the current assignment, the status of the individual clauses under the current assignment, and the next decision that the algorithm makes. The goal is to find an assignment that satisfies all clauses. In the individual steps we keep track about what clauses are already satisfied by the current assignment (we mark them with a  $\checkmark$ ), and for the yet unsatisfied clauses which literals we still have left to satisfy the clause. We mark a contradicting clause with the empty set. A contracting clause causes the algorithm to perform the backtracking step. In detail, the following happens:

- 1. In step 1, the algorithm starts at decision level 0 and an empty assignment  $A = \{\}$ . The first decision of the algorithm is a.
- 2. In step 2, the decision level is incremented, the current partial assignment  $A = \{a\}$ . We evaluate the clauses under A and can remove  $\neg a$  from the first clause and the third clause. Next, the algorithm checks whether there is an empty clause (which would mean that a clause is conflicting with the current assignment) or whether all clauses are satisfied under the assignment. Since neither is the case, the algorithm makes the second decision: b.
- 3. In step 3, we increment the decision level and  $A = \{a\} \cup b = \{a, b\}$ . Having b in A satisfies the first clause and the clause can be removed from the set of clauses that still need to be satisfied. From the second clause, we have to remove the  $\neg b$  literal. Since the current assignment is neither satisfying nor conflicting, the algorithm makes the next decision c.
- 4. In step 4, the decision level is 3, and the assignment  $A = \{a, b, c\}$  results in a conflict. The new assigned literal c makes the second clause true, but set representing the third clause becomes empty. The algorithm backtracks to decision level 2, flips its last decision and assigns the negative value to the variable c next.
- 5. In step 5, the decision level is again 3, since it performed a back tracking

step in the tree, before making the decision  $\neg c$ . The new assignment is  $A = \{a, b, \neg c\}$ . This assignment again results in a conflict, this time the second clause becomes empty. The algorithm has to backtrack to decision level 1, and flips the value for the variable *b* in the assignment, i.e, the next decision is  $\neg b$ .

- 6. The assignment  $A = \{a, \neg b\}$  results in an empty first clause. Therefore, the algorithm backtracks one more time to decision level 0, and makes the decision  $\neg a$ .
- 7.  $A = \{\neg a\}$  immediately satisfies the first and third clause and only the second clause remains to be satisfied. Following the lexicographical order, the next decision is b.
- 8. In step 8, A is  $\{\neg a, b\}$ , therefore we remove  $\neg b$  from clause 2. The next decision is c.
- 9. In step 9, the total assignment  $\{\neg a, b, c\}$  satisfies all three clauses. Therefore, the algorithm returns SAT and the satisfying assignment  $A = \{\neg a, b, c\}$ .

Figure 3.1 illustrates the binary search on which the algorithm performed the search and shows the decision levels.

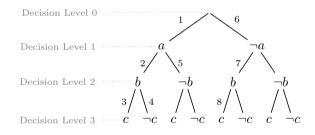



Figure 3.1: Binary Search Tree

#### **Decision Heuristic**

SAT solvers that implement DPLL make heuristic choices when they need to pick a variable and a value for a decision. There are several commonly used methods for making such decisions. A very basic way of performing decisions is a greedy approach that picks the decision that satisfies the largest number of clauses. This heuristic can be further improved in several different ways.

In this course for simplicity, we will always define the order for decision making for every example.

#### 3.2.1 DPLL with Boolean Constraint Propagation (BCP)

We now discuss a series of improvements over the basic binary search algorithm. A standard optimization is called Boolean Constraint Propagation (BCP).

**Definition - Unit Clause.** A clause c is said to be a unit clause under some assignment A if the following two conditions hold:

1. The clause c is not satisfied by A.

2. All but one of the variables in c are given a value by A.

Therefore, there is a single literal left in the set representing the clause under the assignment.

The key observation is that in order to extend A to a satisfying assignment for any formula that contains a unit clause c, we must make the following assignment:

• If  $l \in c$ , then this literal must be set accordingly resulting in  $A = A \wedge l$ .

A possible implementation is given in Listing 3.2, which applies the unit rule exhaustively before making a decision. We say that an assignment of a variable that is made due to a unit clause is *not a decision* but *an implication*. Therefore, by applying BCP, *the decision level is not increased*.

```
1 # sat(\phi, A) = True iff \phi[A] is satisfiable
_2 # sat(\phi, true) = True iff \phi is satisfiable
3 \operatorname{def} \operatorname{sat}(\phi, A):
     while unit clause occurs:
4
        # l is only unassigned literal in unit clause
5
        A = A \wedge l
6
7
8
     if \phi[A] = false:
        return False
9
     if \phi[A] = true:
       return True
     # Some unassigned variables left
     l = pick unassigned variable
14
     if sat(\phi, A \wedge l)
16
        return True
     if sat(\phi, A \wedge \neg l)
        return True
18
     return False
19
```

Listing 3.2: DPLL algorithm with BCP

#### Example: Execution of DPLL-Algorithm with BCP

Given the formula  $\phi := (\neg a \lor b) \land (\neg b \lor c) \land (\neg c \lor \neg a)$  and the decision heuristic  $(a < \neg a < b < \neg b < \dots)$ , we execute DPLL with BCP and show the individual steps in Table 3.2.

The algorithm now checks whether there exists a unit clause before making a decision. In the table we assume, that we can extend the current assignment only by one literal per time step, therefore we can either make an implication because of a unit clause or make a decision if there is no unit clause.

In this example we apply BCP in step 2, 3, and 6 and we do not increase the decision level in these cases. Due to BCP, the algorithm was able to find with the same decision heuristic a satisfying assignment with a fewer number of time steps.

| Step                    | 1           | 2           | 3        | 4        | 5           | 6           | 7              |
|-------------------------|-------------|-------------|----------|----------|-------------|-------------|----------------|
| Decision Level          | 0           | 1           | 1        | 1        | 1           | 2           | 2              |
| Assignment              | -           | a           | a, b     | a, b, c  | $\neg a$    | $\neg a, b$ | $\neg a, b, c$ |
| Cl. 1: $\neg a, b$      | $\neg a, b$ | b           | 1        | 1        | 1           | 1           | 1              |
| Cl. 2: $\neg b, c$      | $\neg b, c$ | $\neg b, c$ | с        | 1        | $\neg b, c$ | с           | ✓              |
| Cl. 3: $\neg c, \neg a$ | 3           | $\neg c$    | $\neg c$ | {} X     | 1           | ~           | ✓              |
| BCP                     | -           | b           | с        | -        | -           | c           | -              |
| Decision                | a           | -           | -        | $\neg a$ | b           | -           | SAT            |

Table 3.2: Execution of the DPLL algorithm with BCP

#### 3.2.2 DPLL with Pure Literals (PL)

The next optimization that we consider is the pure literal rule and is one of the standard techniques used in DPLL-based SAT solvers.

**Definition - Pure Literal.** A literal is *pure* if its negation does not appear in the formula.

As example consider the set of clauses  $C_{\phi} := \{\{a, \neg b, c\} \{a, \neg c\}, \{b, \neg c\}\}$ . The literal *a* is pure, since  $\neg a$  is not contained in any clause.

The *pure literal rule* repeatedly sets a pure literal to true, until there are no more pure literals, thereby satisfying all clauses that contain the pure literal. Note that the order in which the pure literals are chosen does not affect whether the procedure succeeds.

The pseudo-code of DPLL including the rule for pure literals is given in Listing 3.3. If an unassigned literal becomes pure, the algorithm sets this literal to *true*. Similar than for PCB, if a literal is set because of the pure literals rule, it does not count as decision and does not increase the decision level.

```
1 # sat(\phi, A) = True iff \phi[A] is satisfiable
2 # sat(\phi, true) = True iff \phi is satisfiable
3 \operatorname{def} \operatorname{sat}(\phi, A):
     while unit clause occurs:
4
        # l is only unassigned literal in unit clause
5
        A = A \wedge l
6
7
     while pure literal l exists:
8
        A = A \wedge l
9
     if \phi[A] = false:
12
        return False
     if \phi[A] = true:
13
14
       return True
     # Some unassigned variables left
     l = pick unassigned variable
17
     if sat(\phi, A \wedge l)
18
        return True
19
     if sat(\phi, A \wedge \neg l)
20
        return True
21
     return False
```

Listing 3.3: DPLL algorithm with Pure Literals

#### Example: Execution of DPLL-Algorithm with Pure Literals

We apply the DPLL-algorithm with the pure-literals rule on the same formula  $\phi := (\neg a \lor b) \land (\neg b \lor c) \land (\neg c \lor \neg a)$  and decision heuristic  $(a < \neg a < b < \neg b < \dots)$ . The formula  $\phi$  contains the pure literal  $\neg a$ , therefore the pure-literal rule is applied in the first step and satisfies the clauses 1 and 3. The single remaining second clause gives us two pure literals:  $\neg b$  and c. The algorithm picks  $\neg b$ . The assignment  $A = \{\neg a, \neg b\}$  satisfies all clauses.

| Step                    | 1                | 2           | 3                |
|-------------------------|------------------|-------------|------------------|
| Decision Level          | 0                | 0           | 0                |
| Assignment              | -                | $\neg a$    | $\neg a, \neg b$ |
| Cl. 1: $\neg a, b$      | $\neg a, b$      | 1           | 1                |
| Cl. 2: $\neg b, c$      | $\neg b, c$      | $\neg b, c$ | 1                |
| Cl. 3: $\neg c, \neg a$ | $\neg c, \neg a$ | <b>√</b>    | ✓                |
| BCP                     | -                | -           | -                |
| PL                      | $\neg a$         | $\neg b$    | -                |
| Decision                | -                | -           | SAT              |

Table 3.3: Execution of the DPLL-algorithm with BCP and PL.

Note that when filling out a column in the table, we go from top to bottom. This means, first we try to apply BCP. If no unit clause exist, we try to apply the pure-literal rule. Only if there is no pure literal either, we make a decision and increase the decision level.

#### 3.2.3 Conflict-driven Clause Learning (CDCL)

The idea of conflict-driven clause learning is not to repeat steps that lead to a conflict.

Let us assume we are given a formula in CNF formula with the clauses

$$C_{\phi} := \{\{a, \neg c\}, \{b, \neg c\}, \{\neg a, \neg b, c\}, \{\neg a, \neg b\}, \{\neg a, b\}\{a, \neg b\}, \{a, b\}\}$$

and iterate trough the algorithm with the order  $\neg c < c < \neg a < a < \neg b < b$ .

When executing the DPLL-algorithm with the given decision heuristic, then the first decision is to set c to false and the second decision is to set a to false. Under the assignment  $A = \{\neg a, \neg c\}$ , the sixth and seventh clauses become unit clauses. The clause  $\{a, \neg b\}$  implies b = false. But with b = false, the last clause  $\{a, b\}$  becomes conflicting. If we set b = true, the clause  $\{a, \neg b\}$  becomes conflicting. We therefore have to revert our last decision, and flip a to true. These execution steps are shown in Table 3.2.

| Step                       | 1        | 2                | 3                | 4                        | 5           |
|----------------------------|----------|------------------|------------------|--------------------------|-------------|
| Decision Level             | 0        | 1                | 2                | 2                        | 2           |
| Assignment                 | -        | $\neg c$         | $\neg a, \neg c$ | $\neg a, \neg b, \neg c$ | $a, \neg c$ |
| Cl. 1: $a, \neg c$         | 1        | 1                | 1                | 1                        |             |
| Cl. 2: $b, \neg c$         | 2        | 1                | 1                | 1                        |             |
| Cl. 3: $\neg a, \neg b, c$ | 3        | $\neg a, \neg b$ | 1                | 1                        |             |
| Cl. 4: $\neg a, \neg b$    | 4        | 4                | 1                | 1                        |             |
| Cl. 5: $\neg a, b$         | 5        | 5                | 1                | 1                        |             |
| Cl. 6: $a, \neg b$         | 6        | 6                | $\neg b$         | 1                        |             |
| Cl. 7: $a, b$              | 7        | 7                | b                | {} X                     |             |
| BCP                        | -        | -                | $\neg b$         | -                        |             |
| PL                         | -        | -                | -                | -                        |             |
| Decision                   | $\neg c$ | $\neg a$         | -                | a                        |             |

Figure 3.2: DPLL-algorithm with BCP and PL.

Assume, that we proceed in the search with  $A = \{\neg c, a\}$ , but the search would again fail. The algorithm needs to backtrack to the decision on c, i.e., it will assign c to true after backtracking. The partial assignment is now  $A = \{c\}$ . The algorithm will now re-do all the steps from before. It will repeat the decision a = false which result in conflicts, tracks back, flips the decision to a = true, and the search again fails. This effort is clearly wasted: we run into the same conflicts that we have seen before, since the variable c has nothing to do with the conflict. Figure 3.3 illustrates that searching the left part of the search tree was unnecessary effort.

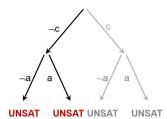



Figure 3.3: Search Tree for DPLL.

#### **Conflict Graph**

In order to not repeat steps that lead to the same conflicts, the data structure that CDCL maintains for this is the *conflict graph*, also called implication graph.

The conflict graph is a directed graph with labeled nodes. It is constructed as follows:

- 1. For every decision, create a new node that is labeled with that decision.
- 2. For every implication detected by BCP, create a new node that is labeled with that implication. Every implication detected by BCP is triggered by a unit clause. Create an edge from the nodes that correspond to the literals in the unit clause to the new node. We label the edge with the unit clause.
- 3. In case of a conflict, add a node labeled with  $\perp$ , and add edges from the nodes that correspond to the unit clauses causing the conflict. The node is called the conflict node.

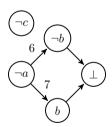



Figure 3.4: Conflict graph for step 4 of Table 3.2.

Figure 3.4 gives the state of the implication graph for our example when the first conflict is reached. The root nodes of the graph are the decisions on c and a. The node on the right-hand side labeled with  $\perp$  is the node for the conflict. The inner nodes, labeled with values for  $\neg b$  and b, were created for the implications detected by BCP.

The conflict graph reveals that the decision on the variable c does not has an impact on the conflict.

#### **Clause Learning**

CDCL generates *new clauses* from the existing set of clauses by traversing the implication graph. SAT solver implement different strategies on how the new clauses are generated and how many will be added per conflict.

In this course, we apply the following simple rule for generating a learned clause for a conflict:

Once we reach a conflict, we analyze the conflict by drawing a conflict graph. We form the new learned clause by *negating all decisions that are involved in the conflict.* These negated literals form the new learned clause and is added to the set of clauses.

**Example.** If we analyse the conflict in Figure 3.4, the learned clause would be  $\{a\}$ .

**Backtracking Level:** After a conflict is reached and a new learned clause is added, the DPLL algorithm needs to perform backtracking. Again, different strategies exists on which level the SAT solver backtracks after adding a learned clause.

In this course we apply the following rule for deciding the backtracking level:

After reaching a conflict and adding a learned clause, we backtrack to the level where the *newly added clause becomes a unit clause*. This way, the newly added clause is immediately used with BCP.

#### Example 1: Execution of DPLL-Algorithm with CDCL

We have given a similar formula  $\phi$  as before with the clauses

$$C_{\phi} := \{\{a, \neg c\}, \{b, \neg c\}, \{\neg a, \neg b, c\}, \{\neg a, \neg b\}, \{\neg a, b\}, \{a, b\}, \{$$

and decision heuristic  $\neg c < c < \neg a < a < \neg b < b$ . Table 3.4 states the individual steps. The conflict is reached in time step 4 and results in the conflict graph shown in Figure 3.5. The learned clause *a* is added, and the algorithm continues at decision level 0 and applies BCP.

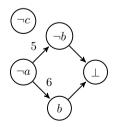



Figure 3.5: Conflict graph for step 4 of Table 3.4.

| Step                       | 1        | 2                | 3                | 4                        | (1) | 5                     | 6                     | 7                   |
|----------------------------|----------|------------------|------------------|--------------------------|-----|-----------------------|-----------------------|---------------------|
| Decision Level             | 0        | 1                | 2                | 2                        | 0   | 0                     | 0                     | 0                   |
| Assignment                 | -        | $\neg c$         | $\neg a, \neg c$ | $\neg a, \neg b, \neg c$ | -   | a                     | $a, \neg b$           | $a, \neg b, \neg c$ |
| Cl. 1: $a, \neg c$         | 1        | 1                | 1                | 1                        | 1   | 1                     | 1                     | ✓                   |
| Cl. 2: $b, \neg c$         | 2        | 1                | 1                | 1                        | 2   | 2                     | $\neg c$              | ✓                   |
| Cl. 3: $\neg a, \neg b, c$ | 3        | $\neg a, \neg b$ | 1                | 1                        | 3   | $\neg b, c$           | 1                     | ✓                   |
| Cl. 4: $\neg a, \neg b$    | 4        | 4                | 1                | 1                        | 4   | $\neg b$              | 1                     | ✓                   |
| Cl. 5: $a, \neg b$         | 5        | 5                | $\neg b$         | 1                        | 5   | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | ✓                   |
| Cl. 6: $a, b$              | 6        | 6                | b                | {} X                     | 6   | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | ✓                   |
| Cl. 7: a                   |          |                  |                  | learned $a$              | 7   | 1                     | <ul> <li>✓</li> </ul> | ✓                   |
| BCP                        | -        | -                | $\neg b$         | -                        | a   | $\neg b$              | $\neg c$              | -                   |
| PL                         | -        | -                | -                | -                        | -   | -                     | -                     | -                   |
| Decision                   | $\neg c$ | $\neg a$         | -                | -                        | -   | -                     |                       | SAT                 |

 Table 3.4: DPLL algorithm with clause learning. Clauses written in gray denote a learned clause.

#### Example 2: Execution of DPLL-Algorithm with Clause Learning

We have given the following formula in CNF in set representation:  $C_{\phi} = \{a, \neg c, \neg e\}, \{\neg a, \neg e\}, \{b, e\}, \{\neg b, d, e\}, \{\neg b, \neg d\}, \{c, \neg d\}, \{c, d\}$  with the decision heuristic  $\neg a < a < \neg b < b < \neg c < c < \neg d < d < \neg e < e$ .

| Step                       | 1                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                | 4                 |          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (2)                   | 7                |
|----------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|
| Decision Level             |                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                | 2                 |          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                     | 1                |
| Assignment -               |                   | $\neg a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\neg a, \neg b$ | $\neg a, \neg b,$ | $\neg a$ | $, \neg b,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\neg a, \neg b,$     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\neg a$              | $\neg a, b$      |
|                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | e                 |          | c, e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\neg c, \neg$        | d, e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                  |
| Cl. 1: $a, \neg c, \neg e$ | 1                 | $\neg c, \neg e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\neg c, \neg e$ | $\neg c$          |          | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\neg c, \neg e$      | $\neg c, \neg e$ |
| Cl. 2: $\neg a, \neg e$    | 2                 | <ul> <li>Image: A start of the start of</li></ul> | ✓                | 1                 |          | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ✓                     | ✓                |
| Cl. 3: $b, e$              | 3                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e                | 1                 |          | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>✓</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                     | ✓                |
| Cl. 4: $\neg b, d, e$      | 4                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                | 1                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                     | d, e             |
| Cl. 5: $\neg b, \neg d$    | 5                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                | 1                 |          | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                     | $\neg d$         |
| Cl. 6: $c, \neg d$         | 6                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                | 6                 |          | $\neg d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>✓</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                     | 6                |
| Cl. 7: $c, d$              | 7                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                | 7                 |          | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | {}                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                     | 7                |
| Cl. 8: <i>a</i> , <i>b</i> |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $a \lor$              | <i>b</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b                     | 1                |
| Cl. 9: a                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                  |
| BCP                        | -                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e                | $\neg c$          | -        | $\neg d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b                     | $\neg d$         |
|                            | PL -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                | -                 |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                     | -                |
| Decision                   | Decision $\neg a$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                | -                 |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                     | -                |
|                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 10                | (1)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                  |
| Step                       |                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                | 10                | (1)      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                    | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                    |                  |
| Decision Le                |                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                | 1                 | 0        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                     |                  |
| Assignment                 |                   | $\neg a, b,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\neg a, b,$     | $\neg a, b, c$    | -        | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $a, \neg e$           | a, b,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                  |
|                            |                   | $\neg d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $c, \neg d$      | $\neg d, \neg e$  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | $\neg e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\neg d, \neg$        | ne –             |
| Cl. 1: $a, \neg c$         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\neg e$         | 1                 | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                     | <ul> <li>Image: A start of the start of</li></ul> | <ul> <li>✓</li> </ul> | _                |
| Cl. 2: $\neg a$ , –        | <i>e</i>          | <b>√</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                | 1                 | 2        | $\neg e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ✓                     | <b>\</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                  |
| Cl. 3: $b, e$              |                   | <i>✓</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                | ✓<br>○            | 3        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>b</u>              | <b>√</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | _                |
| Cl. 4: $\neg b, d$         |                   | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e                | {} X              | 4        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\neg b, d$           | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | {}                    |                  |
| Cl. 5: $\neg b, \neg$      | י <i>d</i>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | <i>✓</i>          | 5        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                     | $\neg d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                  |
| Cl. 6: $c, \neg d$         |                   | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | 1                 | 6        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                     | _                |
| Cl. 7: $c, d$              |                   | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>\</i>         | ✓<br>✓            | 7        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | c                     |                  |
| Cl. 8: $a, b$              |                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                | 1                 | 8        | <ul> <li>Image: A start of the start of</li></ul> | <u> </u>              | <i>\</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                  |
| Cl. 9: a                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | a                 | 9        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /                     | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                     |                  |
| BCP                        |                   | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\neg e$         | -                 | a        | $\neg e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b                     | $\neg d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                     |                  |
| PL                         |                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                | -                 | -        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                     | _                |
| Decision                   |                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                | -                 | -        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UNSA                  | YT               |

Figure 3.6: DPLL algorithm with decisions, BCP, PL and clause learning.

We encounter a conflict at step 6. The corresponding conflict graph given in Figure 3.7 reveals that both decisions  $\neg a$  and  $\neg b$  can be blamed for the conflict. Therefore, we learn  $\{a, b\}$  as our 8<sup>th</sup> clause. The algorithm backtracks to decision level 1. Here the new clause is a unit clause and we are able to set b by BCP.

In step 10, the next conflict is reached. From the conflict graph given in Figure 3.8 we learn the 9<sup>th</sup> clause:  $\{a\}$ . The algorithm backtracks to decision level 0 and applies BCP.

We again encounter a conflict in step 14. Since the algorithm reached a conflict at decision level 0, the algorithm determines and returns as result that the formula is unsatisfiable, i.e., there does not exist a satisfying assignment. For completeness, Figure 3.9 shows the conflict graph for the last conflict, which is no longer needed to generate a new clause. Note, that the graph does not contain a decision node (a node without an incoming edge).

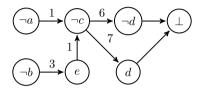



Figure 3.7: Conflict graph for step 6.

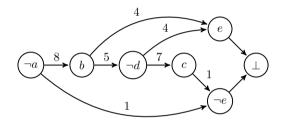



Figure 3.8: Conflict graph for step 10.

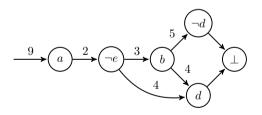



Figure 3.9: Conflict graph for step 14.

#### 3.2.4 Resolution Proofs

We have seen that CDCL generates new clauses. We can proof that the new clauses are implied by the existing clauses using the resolution rule.

**Definition - Resolution Rule.** Let  $c_1 = (\phi \lor a)$  and  $c_2 = (\psi \lor \neg a)$  be two clauses, where  $\phi$  and  $\psi$  denote disjunctions of arbitrary literals. Then the clause  $\phi \lor \psi$  is implied by  $c_1 \land c_2$ .

The resolution rule is a derived natural deduction rule and can be written as follows:

$$\frac{(a \lor \phi) \qquad (\neg a \lor \psi)}{(\phi \lor \psi)}$$

**Definition - Resolution Proof.** A *resolution proof* is a natural deduction proof, that proofs the new clause from the existing clauses by applying the resolution rule only.

The resolution proof for a learned clause can be automatically generated traversing a conflict graph from the *conflict node* to the *root nodes* and applying the resolution rule on the clauses that are marked on the edges.

**Example.** Give the resolution proof for the learned clause  $a \lor b$  from the conflict graph given in Figure 3.7.

To construct the resolution proof, we start by the conflict and apply the resolution rule on clause 6 containing the literal d and clause 7 containing the literal  $\neg d$ . The conclusion after applying the resolution rule is c. The formula c forms then the first premise for the next application of the resolution rule, and clause 1 forms the second premise. The result is  $a \lor \neg e$ . Finally, the formula  $a \lor \neg e$  and clause 3 serve as premises for the last application of the resolution rule. The conclusion is the learned clause  $a \lor b$  that we wanted to proof from a set of given clauses. Figure 3.10 gives the resolution proof in tree representation.

$$\underbrace{ \underbrace{ \underbrace{ \begin{array}{c} 6 \\ c \lor \neg d \\ \hline \end{array} \underbrace{ \begin{array}{c} 7 \\ c \lor d \\ \hline \hline \end{array} \underbrace{ \begin{array}{c} 1 \\ a \lor \neg c \lor \neg e \\ \hline \hline \hline \end{array} \underbrace{ \begin{array}{c} 1 \\ a \lor \neg c \lor \neg e \\ \hline \hline \hline \end{array} \underbrace{ \begin{array}{c} 3 \\ b \lor e \\ \hline \hline \end{array} } } }$$

Figure 3.10: Resolution proof for conflict graph in Figure 3.7.

**Example.** Give the resolution proof for the learned clause a from the conflict graph given in Figure 3.8.

The proof is given in Figure 3.11.

Figure 3.11: Resolution proof for conflict graph in Figure 3.8.

Finally, the resolution proof can be used to automatically generate a proof that a formula is UNSAT from a given conflict graph at decision level 0.

**Example.** Show that the formla is UNSAT from the conflict graph given

in Figure 3.9. The proof is given in Figure 3.12. Therefore, from a given set of clauses we proved that the formula is indeed UNSAT.

Figure 3.12: Resolution proof for conflict graph in Figure 3.9.