
Lecture Notes for

Logic and Computability

Course Number: IND04033UF

Contact

Bettina Könighofer
Institute for Applied Information Processing and Communications (IAIK)

Graz University of Technology, Austria
bettina.koenighofer@iaik.tugraz.at

mailto:bettina.koenighofer@iaik.tugraz.at

Table of Contents

2 Propositional Logic 3
2.1 Declarative Sentences . 4
2.2 Syntax of Propositional Logic . 4
2.3 Semantics of Propositional Logic 7
2.4 Semantic Entailment, Equivalence, Satisfiability and Validity . . 12
2.5 Encoding Example . 14

1

2
Propositional Logic

Why are we interested in logic as computer scientists? Our aim is to develop
languages to formulate specifications and to model systems in such a way that
we can reason about them formally.

Example. Consider the following argument: If the plane arrives late and
there are no taxis at the airport, then Alice is late for her appointment. Alice is
not late for her appointment. The plane did arrive late. Therefore, there were
taxis at the airport.

We can reason intuitively that the argument is valid. If there are no taxis,
Alice would be late to the appointment since the plane was late. Since she was
not late, it must be the case that there were taxis at the airport. So the sentence
after the ’therefore’ logically follows from the sentences before it.

Example. If the sun is shining and John does not have his sunscreen with
him, then he will get sunburn. John is not sunburnt. The sun is shining.
Therefore, John has his sunscreen with him.
Again, the argument is valid. Notice, that both arguments actually have the
same logical structure:

If p and not q, then r. Not r. p. Therefore, q.
By only considering the logical structure of the sentences instead of what the
sentence really means, we are able to perform reasoning formally and automati-
cally. Therefore, we need languages able to express sentences in such a way that
brings out their logical structure. In this course, we will discuss the languages
of propositional logic and predicate logic. We will begin with the language of
propositional logic.

3

4 Chapter 2. Propositional Logic

2.1 Declarative Sentences

Propositional logic, like most branches of logic, is only concerned with sentences
that make statements, so called declarative sentences, or propositions. Declara-
tive sentences state a fact, or describe a state of affairs. A declarative sentence
can be declared as true or false. It must be one or the other. (It can’t be both,
nor can it be undefined). True and false are referred to as truth values.
Example. Examples for declarative sentences are:

• 10 divided by 5 is 3.

• Mozart was born in Austria.

• Santa Clause lives at the North Pole.

• It’s raining in Graz right now.

• If it rains the street is wet.

All of these sentences can be determined to be either true or false. The first
sentence can easily be demonstrated to be false, since it holds that “10 divided
by 5 is 2”. The second and third sentence need to be examined more closely.
You need to know who Mozart and Santa Clause are and you need to gather
evidence about them to find out whether or not those statements are true. The
fourth sentence has no absolute truth value, but at any given point in time it is
either true or false.

Non-declarative sentences are, amongst others, questions, orders, and greet-
ings.

Example. Examples for non-declerative sentences are:

• Do you like ice cream?

• Take the dog for a walk!

• Hello!

• May the force be with you!

2.2 Syntax of Propositional Logic

Propositional logic formulas consist of atomic propositions, logical operators, and
parentheses.

Atomic Propositions

Atomic propositions are declarative sentences, or parts of declarative sentences,
that can be assigned a truth value and cannot be split up into two or more
sentences that can be assigned a truth value themselves. For brevity, atomic
propositions are shortened to a single lower case letter.

2.2. Syntax of Propositional Logic 5

An atomic proposition can be represented by a propositional symbols, or
propositional variable such as p, p1 or q.

Example.

p : It is Sunday.
q : Students have to present their solutions at the exercise classes.

These statements can be true or false and cannot be shortened any further, so
they are atomic propositions.

Logical Operators

We form compound statements from atomic statements, by joining them using
connectives.

Example. As an example, consider the sentence:

John is happy and he his hungry.

This is a compound statement: the word ‘and’ is an example of a connective.
The atomic propositions are p : “John is happy” and p : “John is hungry”.

The symbols ¬ (not), ∧ (and), ∨ (or), → (implies), and ↔ (equivalent) are
used to represent the connectives and are called the logical operators.

Example. Given the sentence:

“Two straight lines can either be parallel or intersecting, but not both.”

To model this sentence as a formula, we define the atomic propositions p :=
“lines are parallel”, and q := “lines are intersecting”. Then, the sentence can be
modelled by the formula ϕ = (p ∨ q) ∧ ¬(p ∧ q).

Example. Given the sentence:

“Tomorrow is Tuesday, if and only if today is Monday.”

To model this sentence as a formula, we define the atomic propositions m :=
“today is Monday”, and t := “tomorrow is Tuesday”. Then, the sentence can be
modelled by the formula ϕ = (m↔ t) ≡ (m→ t) ∧ (t→ m).

Example. The atomic propositions are defined by a := ”k is even”, b := ”k is
greater than seven”, and c := ”k is prime”. Using the defined atomic propositions,
we can formally model the following sentences:

• ”Number k is even or greater than 7” is modelled by a ∨ b
• ”If k is both even and prime, then in particular it is even” is modelled by
a ∧ c→ a

• ”Either k is even, or k is prime, and not both” is modelled by (a∨c)∧¬(a∧c)

6 Chapter 2. Propositional Logic

Definition of the Syntax of Propositional Logic

Formulas in propositional logic are strings over the alphabet of atomic proposi-
tions, logical operators and parentheses. However, the string pq()(∧) does not
make a lot of of sense as far as propositional logic is concerned. We have to define
those strings which we want to call formulas. We call such formulas well-formed.

Definition. The well-formed formulas of propositional logic are those which
we obtain by using the construction rules below, and only those, finitely many
times:

• Every propositional symbol is a well-formed formula. We use p, p1, p2 . . . ,
q, q1, q2 . . . as propositional symbols.

• For any well-formed formula ϕ, ¬ϕ is also a well-formed formula.

• For any two well-formed formulas ϕ and ψ, the following are also well-
formed formulas: ϕ ∧ ψ, ϕ ∨ ψ , ϕ→ ψ and ϕ↔ ψ.

• Any well-formed formula ϕ may be enclosed in parentheses and will still
be a well-formed formula, i.e., (ϕ).

Note: No other string of symbols is a propositional formula.
The definition of well-formed formulas in propositional logic can also be de-

fined using a grammar in Backus-Naur form (BNF). In that form, the above
definition reads more compactly as:

ϕ := < automic proposition> | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ϕ→ ϕ | ϕ↔ ϕ | (ϕ)

Parentheses and Operator Precedence

Parentheses determine evaluation order. The operator precedence define how
strongly an operator is binding to its sub-formulas. Precedence rules can be
given:

Highest ¬ ∧ ∨ → ↔ Lowest

E.g., p ∧ q ∨ r → p evaluates as ((p ∧ q) ∨ r) → p. Associativity rules can be
given:

Associate to the left: ∨ ∧
Associate to the right: → ↔

Example. The formula p∧q∧r → p→ r evaluates as ((p∧q)∧r)→ (p→ r).
The operator precedence is very useful in reducing the number of parentheses.

For example, the ¬ operator has highest precedence. So, e.g., ¬p ∧ q evaluates
as (¬p) ∧ q, and, for the other evaluation order, you would write ¬(p ∧ q).

2.3. Semantics of Propositional Logic 7

Parse Trees

How can we show that a string is a well-formed formula? Consider the following
formula: ϕ = (a ∨ b) ∧ (¬(c→ d)).

The easiest way to verify whether some formula ϕ is a well-formed formula
is by trying to draw its parse tree. The parse tree for ϕ is given below.

∧

∨

a b

¬

→

c d

At its top level, the formula is a conjunction. The left sub-formula is a dis-
junction and the top level connective of the right sub-formula is first a negation
followed by an implication.

To verify if ϕ is well-formed, we need to check whether all leaves are atomic
variables. All other nodes are labeled with logical operators. In the case of ¬
there is only one subtree coming out of that node. In the cases ∧, ∨, →, and ↔
we must have two subtrees.

When drawing the parse tree do not forget about the operator precedence to
decide on the current top level connective.

2.3 Semantics of Propositional Logic

So far, we have discussed propositional logical formulas. We noted that formulas
derive from declarative sentences, or statements. We would now like to determine
whether a formula is true or false based on the truth values of the statements
that comprise the formula and the meaning of the logical operators. Truth is
a semantic notion, in that it ascribes a type of meaning to certain formulas.
There are different notations for truth values, see Table 2.1.

true false
T F
1 0
> ⊥

Figure 2.1: Different notations of truth values.

The semantics of propositional logic are the rules we give for our propositional

8 Chapter 2. Propositional Logic

connectives. They are defined in the truth tables below.

ϕ ψ ϕ ∧ ψ ϕ ∨ ψ ϕ→ ψ ϕ↔ ψ
F F F F T T
F T F T T F
T F F T F F
T T T T T T

Figure 2.2: Truth tables for ∧, ∨, →, and ↔.

ϕ ¬ϕ
F T
T F

Figure 2.3: Truth table for negation.

How can you check that a formula ϕ and a formula ψ are semantically equiv-
alent? For example, to understand the meaning (= the semantics) of an impli-
cation, consider the formula ϕ = p → q and the formula ψ = ¬p ∨ q. By using
the truth tables for ¬ and ∨ you can check that p → q evaluates to T if and
only if ¬p ∨ q does so. Since this is the case, this means that ϕ and ψ are are
semantically equivalent.

What is the caveat in using truth tables? Given a formula ϕ which contains
the propositional atoms p1, p2, . . . , pn. The truth table of ϕ has 2n rows. Each
row listing one of the possible combinations of truth values for p1, p2, . . . , pn.
Since the number of rows grows exponentially, truth tables are not practical for
large formulas.

Models

Models are also called valuations, interpretations, or assignments.
Definition. A model M of a propositional formula ϕ is an assignment of

each propositional variable in ϕ to a truth value.
Example. Consider the formula ϕ = ¬p∧ q. The map which assigns ⊥ to p

and > to q is a model M for ϕ, i.e,: M = {p = ⊥, q = >}.
Furthermore, we distinguish between:

• Satisfying Model: truth assignment such that the formula resolves to true.

• Falsifying Model: truth assignment such that the formula resolves to false.

Let M be a model for a formula ϕ. Formally, we use the following notation:

• ϕM: The formula ϕ is evaluated under the model M.

• M � ϕ: The model satisfies the formula.

• M 2 ϕ: The model does not satisfy the formula.

2.3. Semantics of Propositional Logic 9

We call � the semantic entailment relation.

Evaluation of a Logical Formula under a given Model

How can we determine the truth value of a formula ϕ for a given model M?
Given the meaning of the atomic propositions defined by M, we can use the
parse tree of ϕ to propagate the truth values upwards. The associated truth
value of the root is the truth value of ϕ.

Example. Let ϕ = (a ∨ b) ∧ (¬(c → d)) and M1 = {a = ⊥, b = >, c =
>, d = ⊥}.

The parse tree if given below. We assign the truth values of the atomic
propositions to the lowest level. Then the truth values are propagated upwards,
e.g., since ⊥ ∨ > = >, the left sub-tree evaluates to true. > → ⊥ evaluates to
false, etc. Finally, to evaluate the meaning of ϕ, we compute >∧> which is >.
Formally, we have ϕM1 = >, or M1 � ϕ.

∧

∨

a b

¬

→

c d

>

⊥ >

>

⊥

> ⊥

>

Example. Let us evaluate the same formula ϕ = (a∨ b)∧ (¬(c→ d)) under
a different model M2 = {a = ⊥, b = >, c = ⊥, d = ⊥}. As illustrated below,
the formula now evaluates to false. Formally, we have ϕM2 = ⊥, or M2 2 ϕ.

∧

∨

a b

¬

→

c d

>

⊥ >

⊥

>

⊥ ⊥

⊥

10 Chapter 2. Propositional Logic

Example: If the truth values for the formula

(a ∨ b) ∧ (¬(c→ d))

are

a = F, b = T, c = T, d = F

and the truth values are assigned to the resulting parse tree

∧

∨

a b

¬

→

c d

F T

T F

then the sections of the formula can be evaluated bottom up. In the case at
hand F ∨ T evaluates to true, T → F evaluates to false, resulting in the parse
tree

∧

∨

a b

¬

→

c d

T

F T F

T F

which can be further evaluated. ¬F evaluates to true, resulting in the parse
tree

∧

∨

a b

¬

→

c d

T

F T

T

F

T F

2.3. Semantics of Propositional Logic 11

Now only the section T ∧ T remains. It evaluates to true, resulting in the
final parse tree

∧

∨

a b

¬

→

c d

T

F T

T

F

T F

T

Since the top most node of the parse tree evaluates to true the formula is
true.

If the truth values for the same formula

(a ∨ b) ∧ (¬(c→ d))

are

a = F, b = T, c = F, d = F

the formula evaluates to false, as can be seen in the parse tree

∧

∨

a b

¬

→

c d

T

F T

F

T

F F

F

12 Chapter 2. Propositional Logic

2.4 Semantic Entailment, Equivalence, Satisfia-
bility and Validity

Next, we discuss elementary concepts of semantics in propositional logic: the
concepts of semantic entailment, semantic equivalence, validity, and satisfiability.

Semantic Entailment

We say that a formula ϕ semantically entails a formula ψ, if any model that
satisfies ϕ also satisfies ψ, i.e., we have ϕ � ψ if M � ϕ implies M � ψ.

Definition. Let ϕ and ψ be formulas in propositional logic. We say that
ϕ � ψ if and only if every model M that satisfies ϕ (M � ϕ) also satisfies ψ
(M � ψ).

Example. It holds that a � a ∨ b, a ∨ b 2 a, (p ∧ q) � p, and (p ∨ q) 2 p.
Example. It holds that ⊥ � ϕ. The definition of semantic entailment re-

quires that all models that satisfy the entailing formula also satisfy the entailed
formula. Since a contradiction does not have any satisfying models, a contradic-
tion entails any possible formula.

Figure 2.4 gives a visual representation of the semantic entailment relation.
In the illustration we have the following area encodings.

• Big circles represents the sets of all possible models.

• Dark gray areas represent the models that satisfy formula ϕ.

• Light gray areas represent the models that satisfy formula ψ.

• Gridded areas represent the models that satisfy formulas ϕ and ψ.

• White areas represent the models that neither satisfy formula ϕ nor ψ.

Semantic Equivalence

Two formulas ϕ and ψ are called semantically equivalent if both evaluate to true
under the same models.

Definition. Let ϕ and ψ be formulas in propositional logic. We say that ϕ
and ψ are semantically equivalent if and only if ϕ � ψ and ψ � ϕ holds.

In that case we write ϕ ≡ ψ.
Example. a→ b ≡ ¬b→ ¬a and a→ b ≡ ¬a ∨ b.

Validity

A formula is called valid, if the formula evaluates to true under all possible
models.

2.4. Semantic Entailment, Equivalence, Satisfiability and Validity 13

ϕ � ψ ϕ � ψ, ψ � ϕ

F � ψ ϕ � ψ, ϕ � T

ϕ 2 ψ ϕ 2 ψ

Figure 2.4: Visualisation of the semantic entailment relation.

Definition. Let ϕ be a formula of propositional logic. We call ϕ valid if � ϕ
holds.
A valid formula is also called a tautology.

Example. The formula ϕ = (p ∨ ¬p) is valid.
Example. It holds that ψ � >. All possible models satisfy a tautology.

Thus, any formula entails true.

Satisfiability

One of the most important questions in logic is the question whether there exists
a model under which the formula evaluates to true.

Definition. Given a formula ϕ in propositional logic, we say that ϕ is
satisfiable if it has a model in which is evaluates to true.

Example. Let ϕ = (p ∨ ¬q) → p. ϕ is satisfiable since it evaluated to
true under the model M = {p = >, q = >}. Note, that ϕ is not valid, since it
evaluates to false under M′ = {p = ⊥, q = ⊥}.
A formula that is not satisfiable is called a contradiction, i.e., the formula eval-

14 Chapter 2. Propositional Logic

uates to false under all possible models.
Example. The formula ϕ = (p ∧ ¬p) is not satisfiable.

A simple way of checking satisfiablity or validity for small formulas is using its
truth table.

Example. Consider the formula ϕ = a ∧ ¬(b→ c). Its truth table is shown
in Figure 2.5. The formula is satisfiable since there is an entry at the table that
is true. The formula is not valid since there are entries at the table that are
false.

a b c b→ c ¬(b→ c) ϕ
F F F T F F
F F T T F F
F T F F T F
F T T T F F
T F F T F F
T F T T F F
T T F F T T
T T T T F F

Figure 2.5: Truth table of ϕ = a ∧ ¬(b → c).

2.5 Encoding Example

In order to solve a problem using propositional logic, we need to find a proper
encoding in propositional logic such that a satisfying assignment of the formula
represents a solution for our problem. A satisfying assignment (if one exists) can
be automatically found by a SAT solver. A SAT solver is a tool that takes as
input a propositional formula and outputs either a satisfying assignment to the
variables used in the formula if the formula can be satisfied or UNSAT if it can
not.

Example. We use propositional logic to solve Sudoku. Rules: A Sudoku
grid consists of a 9x9 square, which is partitioned into nine 3x3 squares. The
goal is to write one number from 1 to 9 in each cell in such a way, that each row,
each column, and each 3x3-square contains each number exactly once. Usually
several numbers are already given.

2.5. Encoding Example 15

6 7 1 5
3 9 8
2 3 4 9
7 4

4 9 8
1 4

6 7 9 3
9 2 5

2 8 7 6
Sudoku

In order to model SUDOKU, we first need to define the propositional vari-
ables that we want to use in our formula.

One way to solve the problem is to define variables xijk for every row i, for
every column j, and for every value k. This encoding yields to 729 variables
ranging from x111 to x999. Next, we need to define the constraints for the rows,
the columns, the 3x3-squares and the predefined numbers.

• Row-constraints: If a cell in a row has a certain value, then no other cell
in that row can have that value. For each i, and each k we have:

xi1k → ¬xi2k ∧ ¬xi3k ∧ ... ∧ ¬xi9k

xi2k → ¬xi1k ∧ ¬xi2k ∧ ... ∧ ¬xi9k
...

xi9k → ¬xi1k ∧ ¬xi2k ∧ ... ∧ ¬xi8k

• Column-constraints: If a cell in a column has a certain value, then no
other cell in that column can have that value. For each j, and each k we
have:

x1jk → ¬x2jk ∧ ¬x3jk ∧ ... ∧ ¬x9jk
x2jk → ¬x1jk ∧ ¬x2jk ∧ ... ∧ ¬x9jk

...

x9jk → ¬x1jk ∧ ¬x2jk ∧ ... ∧ ¬x8jk

• Square-constraints: If a cell in a 3x3 square has a certain value, then no
other cell in that square can have that value. For the first square, we have
for each k:

x11k → ¬x12k ∧ ¬x13k ∧ ¬x21k ∧ ¬x22k ∧ ¬x23k ∧ ¬x31k ∧ ¬x32k ∧ ¬x33k

...

x33k → ¬x11k ∧ ¬x12k ∧ ¬x13k ∧ ¬x21k ∧ ¬x22k ∧ ¬x23k ∧ ¬x31k ∧ ¬x32k
The constraints for the remaining squares are similar.

16 Chapter 2. Propositional Logic

• Predefined-number-constraints: If a cell has a predefined value, we need to
set the corresponding variable to true, e.g., the cell in the fifth row and
the fifth column has the value 9. Therefore we have

x559.

• Cell-constraints: Each cell must contain a number ranging from one to
nine. For each i, and each j we have

xij1 ∨ xij2 ∨ ... ∨ xij9.

On its own, this constraint would allow for a cell to have more than one
value. However, this is not possible due to the other constraints.

To construct the final propositional formula, all constraints need to be con-
nected via conjunctions. A satisfying assignment for the final formula represents
one possible solution for the Sudoku puzzle. In case that there does not exists a
solution, the SAT sovler would return UNSAT.

Declaration of Sources

This chapter was based on the following book.
Michael Huth, Mark Dermot Ryan: Logic in Computer Science: Modelling

and Reasoning about Systems. June 2004. Cambridge University Press. ISBN:978-
0-521-54310-1

	Title Page
	Table of Contents
	Propositional Logic
	Declarative Sentences
	Syntax of Propositional Logic
	Semantics of Propositional Logic
	Semantic Entailment, Equivalence, Satisfiability and Validity
	Encoding Example

