
Probabilistic Model Checking
Stefan Pranger

01. 06. 2023

1

Communication Protocol2

Communication Protocol

But ?

or ?

M,start ⊨ ∃G ¬delivered

M,start ⊨ ∀F delivered

3

Communication Protocol

But ?

or ?

Does not make sense with probabilities! We need new descriptions for properties.

We have different models.

M,start ⊨ ∃G ¬delivered

M,start ⊨ ∀F delivered

→

4

Markov Chains

 a set of states and initial state ,

, s.t.

 set of atomic propositions and a labelling function.

Markov Chain M = (S,P, ,AP ,L)s0

S s0

P : S × S → [0,1]

P(s,) = 1 ∀s ∈ S∑
∈Ss′

s′

AP L : S → 2AP

5

What properties are we interested in?6

What properties are we interested in?
What is the probability to eventually send the message (within steps)?n

7

What properties are we interested in?
What is the probability to eventually send the message (within steps)?

What is the probability to reach the destination without every running into an
unsafe area?

n

8

What properties are we interested in?
What is the probability to eventually send the message (within steps)?

What is the probability to reach the destination without every running into an
unsafe area?

What is the probability to send messages successfully and only failing a
maximum amount of times?

n

6
15

9

But �rst... How do we describe models?10

But �rst... How do we describe models?

Describe states through variables:
x ∈ [0,20],y ∈ [0,20],velocity ∈ [0,1], . . .

11

But �rst... How do we describe models?

Describe states through variables:
x ∈ [0,20],y ∈ [0,20],velocity ∈ [0,1], . . .

processor_one_idle,processor_two_idle, . . .

12

But �rst... How do we describe models?

Describe states through variables:

...

x ∈ [0,20],y ∈ [0,20],velocity ∈ [0,1], . . .

processor_one_idle,processor_two_idle, . . .

agent_is_on_slippery, . . .

13

But �rst... How do we describe models?

Describe states through variables:

...

For each possible state we describe the possible variable updates:
If then the agent moves to one
of its adjacent cells each with probability .

If then the process will be
processed by processor one or two.

x ∈ [0,20],y ∈ [0,20],velocity ∈ [0,1], . . .

processor_one_idle,processor_two_idle, . . .

agent_is_on_slippery, . . .

x > 10 & y < 10 & agent_is_on_slippery
1/4

processor_one_idle & processor_two_idle

14

But �rst... How do we describe models?

Describe states through variables:

...

For each possible state we describe the possible variable updates:
If then the agent moves to one
of its adjacent cells each with probability .

If then the process will be
processed by processor one or two.

If then we can decide to use
processor one or two.

x ∈ [0,20],y ∈ [0,20],velocity ∈ [0,1], . . .

processor_one_idle,processor_two_idle, . . .

agent_is_on_slippery, . . .

x > 10 & y < 10 & agent_is_on_slippery
1/4

processor_one_idle & processor_two_idle

processor_one_idle & processor_two_idle

15

The Modelling Language
Modules: Group associated behaviour
module processor1 ... endmodule
module processor2 ... endmodule

PRISM16

The Modelling Language
Modules: Group associated behaviour
module processor1 ... endmodule
module processor2 ... endmodule

Variables (Constants) : Either bool or integer (or double):
x : [0..2] init 0;
b : bool init false;
global temperature : [0..100] init 32;
const double pi = 3.14;

PRISM17

The Modelling Language
Modules: Group associated behaviour
module processor1 ... endmodule
module processor2 ... endmodule

Variables (Constants) : Either bool or integer (or double):
x : [0..2] init 0;
b : bool init false;
global temperature : [0..100] init 32;
const double pi = 3.14;

Updating variables of a module is restricted to each module, e.g. private
access.

PRISM18

The Modelling Language
Modules: Group associated behaviour
module processor1 ... endmodule
module processor2 ... endmodule

Variables (Constants) : Either bool or integer (or double):
x : [0..2] init 0;
b : bool init false;
global temperature : [0..100] init 32;
const double pi = 3.14;

Updating variables of a module is restricted to each module, e.g. private
access.

Commands:
[] x=0 -> 0.8:(x'=0) + 0.2:(x'=1);
[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: true;

PRISM19

The Modelling Language
Modules: Group associated behaviour
module processor1 ... endmodule
module processor2 ... endmodule

Variables (Constants) : Either bool or integer (or double):
x : [0..2] init 0;
b : bool init false;
global temperature : [0..100] init 32;
const double pi = 3.14;

Updating variables of a module is restricted to each module, e.g. private
access.

Commands:
[] x=0 -> 0.8:(x'=0) + 0.2:(x'=1);
[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: true;

We use it to describe the set of possible states and transitions between them.

PRISM20

The Modelling Language
Formulas and Labels:
formula num_tokens = q1+q2+q3+q+q5;
formula crash = x1=x2 & y1=y2;
label "crashed" = crash
//[moveNorth] !crash & ... -> ...;

PRISM21

The Modelling Language
Formulas and Labels:
formula num_tokens = q1+q2+q3+q+q5;
formula crash = x1=x2 & y1=y2;
label "crashed" = crash
//[moveNorth] !crash & ... -> ...;

Turn-based behaviour:
[] move=0 & ... -> ... & (move'=1);
[] move=1 & ... -> ... & (move'=2);
etc.

PRISM22

The Modelling Language
Formulas and Labels:
formula num_tokens = q1+q2+q3+q+q5;
formula crash = x1=x2 & y1=y2;
label "crashed" = crash
//[moveNorth] !crash & ... -> ...;

Turn-based behaviour:
[] move=0 & ... -> ... & (move'=1);
[] move=1 & ... -> ... & (move'=2);
etc.

Rewards:
rewards
x>0 & x<10 : 2*x;
x=10 : 100;
[a] true : x;
[b] true : 2*x;
endrewards

PRISM23

The Modelling Language
Modelling language allows to design models in a code-like style

Code de-duplication with formulas and labels

PRISM24

The Modelling Language
Modelling language allows to design models in a code-like style

Code de-duplication with formulas and labels

Other concepts include:

Module Renaming
module Proc2 = Proc1 [idle2=idle1, ...] endmodule

Synchronization between modules

Partially Observable Models

Continuous-time Models

Process Algebra Operators

PRISM25

Communication Protocol

dtmc

...

26

Communication Protocol

dtmc

...

Live Coding!

27

Communication Protocol
 dtmc

 label "success" = delivered=1;
 label "lost" = lost=1;

 module msg_delivery
 start: [0..1] init 1;
 try: [0..1] init 0;
 lost: [0..1] init 0;
 delivered: [0..1] init 0;

 [] start=1 -> 1: (start'=0) & (try'=1);
 [] try=1 -> 0.1: (try'=0) & (lost'=1) +
 0.9: (try'=0) & (delivered'=1);
 [] lost=1 -> 1: (lost'=0) & (try'=1);
 [] delivered=1 -> 1: (delivered'=0) & (start'=1);

 endmodule

28

Communication Protocol with Counting
dtmc

label "success" = delivered=1;
label "lost" = lost=1;

...

module msg_delivery

endmodule

Live Coding!

29

Communication Protocol with Counting
dtmc

label "success" = delivered=1;
label "lost" = lost=1;

const int MAX_COUNT;

module msg_delivery
 start: [0..1] init 1;
 try: [0..1] init 0;
 lost: [0..1] init 0;
 delivered: [0..1] init 0;
 delivered_count: [0..MAX_COUNT] init 0;
 lost_count: [0..MAX_COUNT] init 0;

 [] start=1 -> 1: (start'=0) & (try'=1);
 [] try=1 -> 0.1: (try'=0) & (lost'=1) +
 0.9: (try'=0) & (delivered'=1);
 [] lost=1 & lost_count<MAX_COUNT -> 1: (lost'=0) & (try'=1) & (lo
 [] delivered=1 & delivered_count<MAX_COUNT -> 1: (delivered'=0) &
 (start'=1) &
 (delivered_count'=delivere
 (lost_count'=0);

 [] lost=1 & lost_count=MAX_COUNT -> 1: (lost'=0) & (try'=1) & (lo
 [] delivered=1 & delivered_count=MAX_COUNT -> 1: (delivered'=0) &
 (start'=1) &
 (delivered_count'=delivere
 (lost_count'=0);

endmodule

30

Simulating Urban Environments

dtmc

...

module car
 // x and y coordinates, velocity

endmodule

module pedestrian
 // x and y coordinates, viewing direction in {left, right, north}

endmodule

31

Probabilistic Reachability
We start with objectives similar to the ones discussed at the beginning of the
semester:

What is the probability that our system reaches its goal state?

32

Before we talk about Algorithms...33

Before we talk about Algorithms...
How can we represent a MC in code/memory?

34

Before we talk about Algorithms...
How can we represent a MC in code/memory?

⟼

35

Before we talk about Algorithms...
How can we represent a MC in code/memory?

⟼ A =

⎡

⎣

⎢⎢⎢⎢

0

0

0

1

1

0

1

0

0
1
10

0

0

0
9
10

0

0

⎤

⎦

⎥⎥⎥⎥

36

Model Checking with Markov Chains
Explicit CTL model checking allows qualitative model checking.

 ?M,start ⊨ ∃G ¬delivered

37

Model Checking with Markov Chains
Explicit CTL model checking allows qualitative model checking.

 ?

We want to do quantitative model checking.
How likely is the system to fail?

Whats the probability of my message to arrive after infinitely many tries?

M,start ⊨ ∃G ¬delivered

Pr(M,s ⊨ F)serror

Pr(M,s ⊨ F delivered)

38

Paths
A path , s.t.

 is the set of all paths in and

 is the set of all finite path fragments in .

π = … ∈s0s1s2 Sω
P(,) > 0,∀i ≥ 0si si+1

Paths(M) M

Path (M)sfin M

39

Events and Paths
In order to talk about probabilities of certain paths we need to briefly touch
probability spaces.

Outcomes =

Events =

We could, for example, be interested in the events where is thrown first =
.

What is a possible outcome in a specific Markov Chain ?

{HH,HT ,TH,TT}

{HH},{HT},{TH},{TT}

H
{HH},{HT}

M

40

Events and Paths
In order to talk about probabilities of certain paths we need to briefly touch
probability spaces.

Outcomes =

Events =

We could, for example, be interested in the events where is thrown first =
.

What is a possible outcome in a specific Markov Chain ?

 an infinite path !

Outcomes =

Events of interest are that satisfy our property

Formally we introduce the cylinder set of a prefix:

{HH,HT ,TH,TT}

{HH},{HT},{TH},{TT}

H
{HH},{HT}

M

→ π ∈ Paths(M)

Paths(M)

, ,… ∈ Path (M)π̂1 π̂2 sfin

Cyl() = {π ∈ Paths(M) ∣ ∈ pref(π)}π̂i π̂i

41

Events and Paths
What is a possible outcome in a specific Markov Chain ?

 an infinite path !

Outcomes =

Events of interest are that satisfy our property

Formally we introduce the cylinder set of a prefix:

The probability of one event of interest is then:

M

→ π ∈ Paths(M)

Paths(M)

, ,… ∈ Path (M)π̂1 π̂2 sfin

Cyl() = {π ∈ Paths(M) ∣ ∈ pref(π)}π̂i π̂i

Pr(Cyl()) = Pr(Cyl(…)) = P(,)πî s0s1 sn ∏0≤i<n si si+1

42

Reachability Probabilities
Let be a set of states. We are interested inB ⊆ S

Pr(M, ⊨ FB).s0

43

Reachability Probabilities
Let be a set of states. We are interested in

We can characterize all path fragments that satisfy with the set

All are pairwise disjoint, hence:

B ⊆ S

Pr(M, ⊨ FB).s0

π FB

= Path (M) ∩ (S ∖ B BΠFB sfin)∗

∈π̂ ΠFB

Pr(M, ⊨ FB) = Pr(Cyl())s0 ∑ ∈π̂ ΠFB
π̂

44

Computing
We know that , with or simply ' '

Develop algorithm for arbitrary

Pr(M, ⊨ C U B)s0

FB ≡ C U B C = S true U B
C

45

Computing
We know that , with or simply ' '

Develop algorithm for arbitrary

2-step algorithm:

1) Identify three disjoint
subsets of :

: The set of states
with probability of 1 to
reach .

: The set of states
with probability of 0 to
reach .

: The set of states
with probability

 to reach .

Pr(M, ⊨ C U B)s0

FB ≡ C U B C = S true U B
C

S
S=1

B

S=0

B

S?

∈ (0,1) B

46

Computing
We know that , with or simply ' '

Develop algorithm for arbitrary

2-step algorithm:

1) Identify three disjoint
subsets of :

: The set of states
with probability of 1 to
reach .

: The set of states
with probability of 0 to
reach .

: The set of states
with probability

 to reach .

2) Compute the probabilities for all .

Pr(M, ⊨ C U B)s0

FB ≡ C U B C = S true U B
C

S
S=1

B

S=0

B

S?

∈ (0,1) B

s ∈ S?

47

Computing and
We can use DFS to compute these sets:

S=1 S=048

Computing and
We can use DFS to compute these sets:

S=1 S=049

50

Computing
We are left with computing the probabilities for

S?

s ∈ S?

51

Computing
We are left with computing the probabilities for

S?

s ∈ S?

52

Computing
We are left with computing the probabilities for

The probability to reach in one
step:

and the probability to reach via a
path fragment :

Together

S?

s ∈ S?

S=1
P(s,u)∑u∈S=1

S=1
(s t … u)

P(s, t) ⋅∑t∈S?
xt

= P(s, t) ⋅ + P(s,u)xs ∑
t∈S?

xt ∑
u∈S=1

53

Computing
Let us rewrite this into matrix notation:

S?

= (P(s, t)A?)s,t∈S?

x = (xs)s∈S?

b = (P(s,u)∑u∈S=1
)s∈S?

54

Computing
Let us rewrite this into matrix notation:

S?

= (P(s, t)A?)s,t∈S?

x = (xs)s∈S?

b = (P(s,u)∑u∈S=1
)s∈S?

= P(s, t) ⋅ + P(s,u) ⇝ x = ⋅ x + b = (I −) ⋅ x = bxs ∑
t∈S?

xt ∑
u∈S=1

A? A?

55

Communication Protocol56

Communication Protocol

= ,b =A?

⎡

⎣
⎢

0

0

0

1

0

1

0
1
10

0

⎤

⎦
⎥

⎡

⎣
⎢

0
9
10

0

⎤

⎦
⎥ ⋅ x = () → x = ()
⎡

⎣
⎢

1

0

0

−1

1

−1

0

− 1
10

1

⎤

⎦
⎥

0
9
10

0

1

1

1

57

Done58

Transient State Probabilities
We will consider a slightly different algorithm:

contains the probability to be in state after steps in entry .

We call

the transient state probability for state .

= A ⋅ A ⋅ A ⋅ A ⋅ ⋯ ⋅ AA
n

t n (s, t)A
n

(t) = (s, t)ΘM
n ∑

s∈S

A
n

t

59

Transient State Probabilities
Let's consider , the vector of transient state probabilities for the th
step.

We can compute in a modified Markov chain:

where:

 if

 if

 if

i.e. all become sinks and cannot be left anymore.

((t)ΘM
n)s∈S n

Pr(M, ⊨ B)s0 F
≤n

= (S, , ,AP ,L)MB s0 PB

(s, t) = P(s, t)PB s ∉ B

(s,s) = 1PB s ∈ B

(s, t) = 0PB s ∈ B and t ∉ B

s ∈ B B

60

Transient State Probabilities
 if

 if

 if

i.e. all become sinks and cannot be left anymore.

We then have

and therefore

(s, t) = P(s, t)PB s ∉ B

(s,s) = 1PB s ∈ B

(s, t) = 0PB s ∈ B and t ∉ B

s ∈ B B

Pr(M,s ⊨ B) = Pr(,s ⊨ B)F
≤n

MB F
=n

Pr(M,s ⊨ B) = (t)F
≤n ∑

t∈B

ΘMB
n

61

Computing via
Transient State Probabilities
We have the following algorithm to compute :

, i.e. the unit vector with at the th position and else.

For

Pr(M, s ⊨ B)F
≤n

Pr(M,s ⊨ B)F
≤n

(t) =ΘM

0 ei 1 i 0

k = 0 up to n − 1 : (t) = A ⋅ (t)ΘM

k+1 ΘM

k

Pr(M,s ⊨ B) = (t)F
≤n ∑t∈B ΘMB

n

62

