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Communication Protocol

But  ?

or  ?

M,start ⊨ ∃G ¬delivered

M,start ⊨ ∀F delivered
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Communication Protocol

But  ?

or  ?

Does not make sense with probabilities!  We need new descriptions for properties.

We have different models.

M,start ⊨ ∃G ¬delivered

M,start ⊨ ∀F delivered

→
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Markov Chains

 a set of states and initial state ,

, s.t.

 set of atomic propositions and  a labelling function.

Markov Chain M = (S,P, ,AP ,L)s0

S s0

P : S × S → [0,1]

P(s, ) = 1 ∀s ∈ S∑
∈Ss′

s′

AP L : S → 2AP
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What properties are we interested in?6



What properties are we interested in?
What is the probability to eventually send the message (within  steps)?n

7



What properties are we interested in?
What is the probability to eventually send the message (within  steps)?

What is the probability to reach the destination without every running into an
unsafe area?

n
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What properties are we interested in?
What is the probability to eventually send the message (within  steps)?

What is the probability to reach the destination without every running into an
unsafe area?

What is the probability to send  messages successfully and only failing a
maximum amount of  times?

n

6
15

9



But �rst... How do we describe models?10



But �rst... How do we describe models?

Describe states through variables:
x ∈ [0,20],y ∈ [0,20],velocity ∈ [0,1], . . .
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But �rst... How do we describe models?

Describe states through variables:
x ∈ [0,20],y ∈ [0,20],velocity ∈ [0,1], . . .

processor_one_idle,processor_two_idle, . . .
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But �rst... How do we describe models?

Describe states through variables:

...

x ∈ [0,20],y ∈ [0,20],velocity ∈ [0,1], . . .

processor_one_idle,processor_two_idle, . . .

agent_is_on_slippery, . . .
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But �rst... How do we describe models?

Describe states through variables:

...

For each possible state we describe the possible variable updates:
If  then the agent moves to one
of its adjacent cells each with probability .

If  then the process will be
processed by processor one or two.

x ∈ [0,20],y ∈ [0,20],velocity ∈ [0,1], . . .

processor_one_idle,processor_two_idle, . . .

agent_is_on_slippery, . . .

x > 10 & y < 10 & agent_is_on_slippery
1/4

processor_one_idle & processor_two_idle
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But �rst... How do we describe models?

Describe states through variables:

...

For each possible state we describe the possible variable updates:
If  then the agent moves to one
of its adjacent cells each with probability .

If  then the process will be
processed by processor one or two.

If  then we can decide to use
processor one or two.

x ∈ [0,20],y ∈ [0,20],velocity ∈ [0,1], . . .

processor_one_idle,processor_two_idle, . . .

agent_is_on_slippery, . . .

x > 10 & y < 10 & agent_is_on_slippery
1/4

processor_one_idle & processor_two_idle

processor_one_idle & processor_two_idle
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The  Modelling Language
Modules: Group associated behaviour
module processor1 ... endmodule
module processor2 ... endmodule
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The  Modelling Language
Modules: Group associated behaviour
module processor1 ... endmodule
module processor2 ... endmodule

Variables (Constants) : Either bool or integer (or double):
x : [0..2] init 0;
b : bool init false;
global temperature : [0..100] init 32;
const double pi = 3.14;
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The  Modelling Language
Modules: Group associated behaviour
module processor1 ... endmodule
module processor2 ... endmodule

Variables (Constants) : Either bool or integer (or double):
x : [0..2] init 0;
b : bool init false;
global temperature : [0..100] init 32;
const double pi = 3.14;

Updating variables of a module is restricted to each module, e.g. private
access.
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The  Modelling Language
Modules: Group associated behaviour
module processor1 ... endmodule
module processor2 ... endmodule

Variables (Constants) : Either bool or integer (or double):
x : [0..2] init 0;
b : bool init false;
global temperature : [0..100] init 32;
const double pi = 3.14;

Updating variables of a module is restricted to each module, e.g. private
access.

Commands:
[] x=0 -> 0.8:(x'=0) + 0.2:(x'=1);
[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: true;
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The  Modelling Language
Modules: Group associated behaviour
module processor1 ... endmodule
module processor2 ... endmodule

Variables (Constants) : Either bool or integer (or double):
x : [0..2] init 0;
b : bool init false;
global temperature : [0..100] init 32;
const double pi = 3.14;

Updating variables of a module is restricted to each module, e.g. private
access.

Commands:
[] x=0 -> 0.8:(x'=0) + 0.2:(x'=1);
[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: true;

We use it to describe the set of possible states and transitions between them.
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The  Modelling Language
Formulas and Labels:
formula num_tokens = q1+q2+q3+q+q5;
formula crash = x1=x2 & y1=y2;
label "crashed" = crash
//[moveNorth] !crash & ... -> ...;
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The  Modelling Language
Formulas and Labels:
formula num_tokens = q1+q2+q3+q+q5;
formula crash = x1=x2 & y1=y2;
label "crashed" = crash
//[moveNorth] !crash & ... -> ...;

Turn-based behaviour:
[] move=0 & ... -> ... & (move'=1);
[] move=1 & ... -> ... & (move'=2);
etc.
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The  Modelling Language
Formulas and Labels:
formula num_tokens = q1+q2+q3+q+q5;
formula crash = x1=x2 & y1=y2;
label "crashed" = crash
//[moveNorth] !crash & ... -> ...;

Turn-based behaviour:
[] move=0 & ... -> ... & (move'=1);
[] move=1 & ... -> ... & (move'=2);
etc.

Rewards:
rewards
x>0 & x<10 : 2*x;
x=10 : 100;
[a] true : x;
[b] true : 2*x;
endrewards

PRISM23



The  Modelling Language
Modelling language allows to design models in a code-like style

Code de-duplication with formulas and labels
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The  Modelling Language
Modelling language allows to design models in a code-like style

Code de-duplication with formulas and labels

Other concepts include:

Module Renaming
module Proc2 = Proc1 [ idle2=idle1, ... ] endmodule

Synchronization between modules

Partially Observable Models

Continuous-time Models

Process Algebra Operators

PRISM25



Communication Protocol

dtmc

...
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Communication Protocol

dtmc

...

Live Coding!
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Communication Protocol
    dtmc

    label "success" = delivered=1;
    label "lost" = lost=1;

    module msg_delivery
        start: [0..1] init 1;
        try: [0..1] init 0;
        lost: [0..1] init 0;
        delivered: [0..1] init 0;

        [] start=1      -> 1: (start'=0) & (try'=1);
        [] try=1        -> 0.1: (try'=0) & (lost'=1) +
                           0.9: (try'=0) & (delivered'=1);
        [] lost=1       -> 1: (lost'=0) & (try'=1);
        [] delivered=1  -> 1: (delivered'=0) & (start'=1);

    endmodule
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Communication Protocol with Counting
dtmc

label "success" = delivered=1;
label "lost" = lost=1;

...

module msg_delivery

endmodule

Live Coding!
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Communication Protocol with Counting
dtmc

label "success" = delivered=1;
label "lost" = lost=1;

const int MAX_COUNT;

module msg_delivery
    start: [0..1] init 1;
    try: [0..1] init 0;
    lost: [0..1] init 0;
    delivered: [0..1] init 0;
    delivered_count: [0..MAX_COUNT] init 0;
    lost_count: [0..MAX_COUNT] init 0;

    [] start=1      -> 1: (start'=0) & (try'=1);
    [] try=1        -> 0.1: (try'=0) & (lost'=1) +
                       0.9: (try'=0) & (delivered'=1);
    [] lost=1       & lost_count<MAX_COUNT       -> 1: (lost'=0) & (try'=1) & (lo
    [] delivered=1  & delivered_count<MAX_COUNT  -> 1: (delivered'=0) &
                                                       (start'=1) &
                                                       (delivered_count'=delivere
                                                       (lost_count'=0);

    [] lost=1       & lost_count=MAX_COUNT       -> 1: (lost'=0) & (try'=1) & (lo
    [] delivered=1  & delivered_count=MAX_COUNT  -> 1: (delivered'=0) &
                                                       (start'=1) &
                                                       (delivered_count'=delivere
                                                       (lost_count'=0);

endmodule
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Simulating Urban Environments

dtmc

...

module car
 // x and y coordinates, velocity

endmodule

module pedestrian
 // x and y coordinates, viewing direction in {left, right, north}

endmodule
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Probabilistic Reachability
We start with objectives similar to the ones discussed at the beginning of the
semester:

What is the probability that our system reaches its goal state?

32



Before we talk about Algorithms...33



Before we talk about Algorithms...
How can we represent a MC in code/memory?
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Before we talk about Algorithms...
How can we represent a MC in code/memory?

⟼
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Before we talk about Algorithms...
How can we represent a MC in code/memory?

⟼ A =

⎡

⎣

⎢⎢⎢⎢

0

0

0

1

1

0

1

0

0
1
10

0

0

0
9
10

0

0

⎤

⎦

⎥⎥⎥⎥
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Model Checking with Markov Chains
Explicit CTL model checking allows qualitative model checking.

 ?M,start ⊨ ∃G ¬delivered
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Model Checking with Markov Chains
Explicit CTL model checking allows qualitative model checking.

 ?

We want to do quantitative model checking.
How likely is the system to fail?

Whats the probability of my message to arrive after infinitely many tries?

M,start ⊨ ∃G ¬delivered

Pr(M,s ⊨ F  )serror

Pr(M,s ⊨ F delivered)
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Paths
A path , s.t. 

 is the set of all paths in  and

 is the set of all finite path fragments in .

π = … ∈s0s1s2 Sω
P( , ) > 0,∀i ≥ 0si si+1

Paths(M) M

Path (M)sfin M
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Events and Paths
In order to talk about probabilities of certain paths we need to briefly touch
probability spaces.

Outcomes = 

Events = 

We could, for example, be interested in the events where  is thrown first = 
.

What is a possible outcome in a specific Markov Chain ?

{HH,HT ,TH,TT}

{HH},{HT},{TH},{TT}

H
{HH},{HT}

M
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Events and Paths
In order to talk about probabilities of certain paths we need to briefly touch
probability spaces.

Outcomes = 

Events = 

We could, for example, be interested in the events where  is thrown first = 
.

What is a possible outcome in a specific Markov Chain ?

 an infinite path !

Outcomes = 

Events of interest are  that satisfy our property

Formally we introduce the cylinder set of a prefix:

{HH,HT ,TH,TT}

{HH},{HT},{TH},{TT}

H
{HH},{HT}

M

→ π ∈ Paths(M)

Paths(M)

, ,… ∈ Path (M)π̂1 π̂2 sfin

Cyl( ) = {π ∈ Paths(M) ∣ ∈ pref(π)}π̂i π̂i
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Events and Paths
What is a possible outcome in a specific Markov Chain ?

 an infinite path !

Outcomes = 

Events of interest are  that satisfy our property

Formally we introduce the cylinder set of a prefix:

The probability of one event of interest is then:

M

→ π ∈ Paths(M)

Paths(M)

, ,… ∈ Path (M)π̂1 π̂2 sfin

Cyl( ) = {π ∈ Paths(M) ∣ ∈ pref(π)}π̂i π̂i

Pr(Cyl( )) = Pr(Cyl( … )) = P( , )πî s0s1 sn ∏0≤i<n si si+1
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Reachability Probabilities
Let  be a set of states. We are interested inB ⊆ S

Pr(M, ⊨ FB).s0
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Reachability Probabilities
Let  be a set of states. We are interested in

We can characterize all path fragments  that satisfy  with the set

All  are pairwise disjoint, hence:

B ⊆ S

Pr(M, ⊨ FB).s0

π FB

= Path (M) ∩ (S ∖ B BΠFB sfin )∗

∈π̂ ΠFB

Pr(M, ⊨ FB) = Pr(Cyl( ))s0 ∑ ∈π̂ ΠFB
π̂
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Computing 
We know that , with  or simply ' '

Develop algorithm for arbitrary 

Pr(M, ⊨ C U B)s0

FB ≡ C U B C = S true U B
C
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Computing 
We know that , with  or simply ' '

Develop algorithm for arbitrary 

2-step algorithm:

1) Identify three disjoint
subsets of :

: The set of states
with probability of 1 to
reach .

: The set of states
with probability of 0 to
reach .

: The set of states
with probability 

 to reach .

Pr(M, ⊨ C U B)s0

FB ≡ C U B C = S true U B
C

S
S=1

B

S=0

B

S?

∈ (0,1) B
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Computing 
We know that , with  or simply ' '

Develop algorithm for arbitrary 

2-step algorithm:

1) Identify three disjoint
subsets of :

: The set of states
with probability of 1 to
reach .

: The set of states
with probability of 0 to
reach .

: The set of states
with probability 

 to reach .

2) Compute the probabilities for all .

Pr(M, ⊨ C U B)s0

FB ≡ C U B C = S true U B
C

S
S=1

B

S=0

B

S?

∈ (0,1) B

s ∈ S?
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Computing  and 
We can use DFS to compute these sets:

S=1 S=048



Computing  and 
We can use DFS to compute these sets:

S=1 S=049



50



Computing 
We are left with computing the probabilities for 

S?

s ∈ S?
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Computing 
We are left with computing the probabilities for 

S?

s ∈ S?
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Computing 
We are left with computing the probabilities for 

The probability to reach  in one
step: 

and the probability to reach  via a
path fragment : 

Together

S?

s ∈ S?

S=1
P(s,u)∑u∈S=1

S=1
(s t … u)

P(s, t) ⋅∑t∈S?
xt

= P(s, t) ⋅ + P(s,u)xs ∑
t∈S?

xt ∑
u∈S=1
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Computing 
Let us rewrite this into matrix notation:

S?

= (P(s, t)A? )s,t∈S?

x = (xs)s∈S?

b = ( P(s,u)∑u∈S=1
)s∈S?
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Computing 
Let us rewrite this into matrix notation:

S?

= (P(s, t)A? )s,t∈S?

x = (xs)s∈S?

b = ( P(s,u)∑u∈S=1
)s∈S?

= P(s, t) ⋅ + P(s,u) ⇝ x = ⋅ x + b = (I − ) ⋅ x = bxs ∑
t∈S?

xt ∑
u∈S=1

A? A?
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Communication Protocol

= ,b =A?

⎡

⎣
⎢

0

0

0

1

0

1

0
1
10

0

⎤

⎦
⎥

⎡

⎣
⎢

0
9
10

0

⎤

⎦
⎥ ⋅ x = ( ) → x = ( )
⎡

⎣
⎢

1

0

0

−1

1

−1

0

− 1
10

1

⎤

⎦
⎥

0
9
10

0

1

1

1
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Done58



Transient State Probabilities
We will consider a slightly different algorithm:

contains the probability to be in state  after  steps in entry .

We call

the transient state probability for state .

= A ⋅ A ⋅ A ⋅ A ⋅ ⋯ ⋅ AA
n

t n (s, t)A
n

(t) = (s, t)ΘM
n ∑

s∈S

A
n

t
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Transient State Probabilities
Let's consider , the vector of transient state probabilities for the th
step.

We can compute  in a modified Markov chain:

where:

 if 

 if 

 if 

i.e. all  become sinks and  cannot be left anymore.

( (t)ΘM
n )s∈S n

Pr(M, ⊨ B)s0 F
≤n

= (S, , ,AP ,L)MB s0 PB

(s, t) = P(s, t)PB s ∉ B

(s,s) = 1PB s ∈ B

(s, t) = 0PB s ∈ B and t ∉ B

s ∈ B B
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Transient State Probabilities
 if 

 if 

 if 

i.e. all  become sinks and  cannot be left anymore.

We then have

and therefore

(s, t) = P(s, t)PB s ∉ B

(s,s) = 1PB s ∈ B

(s, t) = 0PB s ∈ B and t ∉ B

s ∈ B B

Pr(M,s ⊨ B) = Pr( ,s ⊨ B)F
≤n

MB F
=n

Pr(M,s ⊨ B) = (t)F
≤n ∑

t∈B

ΘMB
n
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Computing  via
Transient State Probabilities
We have the following algorithm to compute :

, i.e. the unit vector with  at the th position and  else.

For  

Pr(M, s ⊨ B)F
≤n

Pr(M,s ⊨ B)F
≤n

(t) =ΘM

0 ei 1 i 0

k = 0 up to n − 1 : (t) = A ⋅ (t)ΘM

k+1 ΘM

k

Pr(M,s ⊨ B) = (t)F
≤n ∑t∈B ΘMB

n
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