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So far...

e ... we have talked about:
o Probabilistic Models: Markov Chains and Markov Decision Processes,

o PCTL and how to compute probabilities;

o Schedulers and

o Modelling in PRISM.

« Today we will round the topic off:
o PCTL* for MCs ( + idea for MDPs )

o Stochastic Games

o Case Studies
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PCTL* syntax

Subdivision into state (®)- and path-formulae (¢):

P ::=true

a

P, N Py
—P

Pr(p)

wherea € AP and J C [0,1].

©1 N\ P2
'z

©1 U @y
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We are now allowed to interchangly use state and path formulae as subformulae.
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PCTL* syntax

Subdivision into state (®)- and path-formulae (¢):

P ::=true

a

P, N Py
—P

Pr(p)

wherea € AP and J C [0,1].

©1 N\ P2
'z

©1 U @y

We are now allowed to interchangly use state and path formulae as subformulae.

P=? [ GF "return_to_start" ];

P=2 [ G(! (try = 1) | lost_count<4 U delivered=1 ) | delivered_count=MAX_COUNT ]

Pmax=? [ FG "hatch_closed" ]
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TU

Grazm

Checking Linear Time Properties

 Last building block to model check PCTL*

Let M be a Markov Chain and ¢ be an LTL formula.

We are interested in:

Pr(M,s | ¢) = Pr,{m € Paths(M) | 7 = ¢}
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Computing Probabilities for LT-Properties

« Recall that LT-properties can be expressed using automata.
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Computing Probabilities for LT-Properties

« Recall that LT-properties can be expressed using automata.

« We employ an automata-based approach:
o Convert ¢ into a deterministic Rabin automata A.

o Compute the Product Markov Chain M x A.
o Compute the probability to satisfy ¢ using the product (more on that later).
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Deterministic Rabin Automata

A deterministic Rabin automatonisatuple A = (Q, %, d,qy, Acc) , with

. Q a set of states and initial state gy,
X an alphabet,

e §:Q x X — ( atransition function and

e Acc C 29 x 29,

An automaton A accepts a run m = qpq1qs - - - iff there exists a pair (L, K) € Acc
s.t.:

(In > 0.Ym > n.qm & L) A (F™n > 0.q, € K)
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Product Markov Chain

Let M be a Markov chain and .4 be a DFA. The product
Mx A= (S xQ,P,i{accept},L') is a Markov chain where:

« L'({s,q)) = {accept} ifq € F,
« i = (8¢,q1) is the initial state with g; = d(qo, L(s)) and
« P'((s,q),(s',q")) = P(s,s") ifq' = &(q,L(s")) and 0 otherwise.
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Let M be a Markov chain and .4 be a DFA. The product
Mx A= (S xQ,P,i{accept},L') is a Markov chain where:

« L'({s,q)) = {accept} ifq € F,
« i = (8¢,q1) is the initial state with g; = d(qo, L(s)) and

« P'((s,q),(s',q")) = P(s,s") ifq' = &(q,L(s")) and 0 otherwise.
Post-Lecture-Note: This is the definition of a product with a DFA, the product with
a DRA can be done in a similar way.
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Product Markov Chain

Let M be a Markov chain and .4 be a DFA. The product
Mx A= (Sx%xQ,P, i {accept}, L') is a Markov chain where:
« L'({s,q)) = {accept} ifq € F,
« i = (Sg,q1) is the initial state with ¢; = 6(qg, L(s)) and
« P'((s,q),(s',q")) =P(s,8") if¢ = §(q, L(s')) and 0 otherwise.

Post-Lecture-Note: This is the definition of a product with a DFA, the product with
a DRA can be done in a similar way.

Since A is deterministic it can be interpreted as a witness for its current state on the
product trace:

= (307Q1>, (817Q2>, <327Q3>7 e
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Computing the Probability to Satisfy ¢

« We want to use the product M x A and know

« A's acceptance condition:

(Eln > 0.Ym > n.qp, g Lz) A (Elinfn > 0.g, € Kz)

o for a pair L;, K; € Acc.
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Computing the Probability to Satisfy ¢

We want to use the product M x A and know

A's acceptance condition:

(Eln > 0.Ym > n.qp, g Lz) A (Elinfn > 0.g, € Kz)

for a pair L;, K; € Acc.

= we need to compute the probability to see infinitely many labels from K; and
only finitely many labels from L; for some 2.
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Bottom Strongly Connected Components

« Consider the underlying directed graph G = (V, E) for a given Markov chain
M and a component C' € V.

o (Cis strongly connected if Vs,t € C':
o sisreachable from t and

o tisreachable from s.
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Bottom Strongly Connected Components

« Consider the underlying directed graph G = (V, E) for a given Markov chain
M and a component C' € V.

o (Cis strongly connected if Vs,t € C':
o sisreachable from t and

o tisreachable from s.

« (' is bottom strongly connected if no state outside of C is reachable from C.

« For Markov chains we have that a bottom strongly connected component
o cannot be left and

o all states will be visited infinitely often with a probability of one.
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Computing the Probability to Satisty ¢

According to the acceptance condition Acc = {(Lg, Ky),...(Lm,Kn)} of A:

e Identify BSCCs C; such that:
o For some i € [0,m)]:

Cjﬂ(SXLi):QaHdeﬂ(SXKi)#Q)

°LetU:U Cj

J, Cj accepting
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Computing the Probability to Satisty ¢

According to the acceptance condition Acc = {(Lg, Ky),...(Lm,Kn)} of A:

e Identify BSCCs C; such that:
o For some i € [0,m)]:

Cjﬂ(SXLi):@aHdeﬂ(SXKZ’)#Q)

°LetU:U Cj

J, Cj accepting

e We then have the following:

Pr(M,s = ¢) = Pr(M x A, (s,q;) = FU)
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LT-Properties over MDP M

Some Remarks:

e The concept of BSCCs needs to be enriched to account for nondeterminism.

« = Concept of Maximum End Components
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LT-Properties over MDP M

Some Remarks:

e The concept of BSCCs needs to be enriched to account for nondeterminism.
e = Concept of Maximum End Components

« Memoryless schedulers do not suffice to realize LT properties.
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Probabilistic Model Zoo

POSG

/

Stochastic games
POPTA

CTMDP IMC MDP/PA \
" .
Hidden
AN Markov
Models

LTS
cTmMC Kripke Structure oTMG

-

Markov Automaton

Timed automata (TA)
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Stochastic Games

e Generalization of MDPs
o Multiple players decide on action in their respective states

o They do this either turn-based or concurrently:
o Stochastic Multiplayer Games/Turn-based Stochastic Games

o Concurrent Stochastic Games
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Stochastic Games

e Generalization of MDPs
o Multiple players decide on action in their respective states

o They do this either turn-based or concurrently:
o Stochastic Multiplayer Games/Turn-based Stochastic Games

o Concurrent Stochastic Games

 Different properties:
o Zero-sum: A single value that is maximized by player 1, minimized by player

2.

o Nonzero-sum: Players cooperate to achieve their individual goals.
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Stochastic Multiplayer Game - Definition

Stochastic Multiplayer Game G = (S,1I1, Act, P, sy, AP, L)

S aset of states and initial state sg,

IT a set of players,
Act a set of actions,

P:Sx Act x S — [0,1],s.t.

ZS’GS]P)(S’G” S,) =1 \V/(S,a) S S X Act

AP set of atomic states and L : S — 247 alabelling function.
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3; }  Solving Zero-Sum Reachability in Turn-based
Stochastic Games

« Which players minimize and which players should maximize?
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3; 8 Solving Zero-Sum Reachability in Turn-based
Stochastic Games

« Which players minimize and which players should maximize?
e = this will become part of the property, by using
 adifferent logic : Probabilistic Alternating-time Temporal Logic (PATL)
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Solving Zero-Sum Reachability in Turn-based
Stochastic Games

Which players minimize and which players should maximize?

—> this will become part of the property, by using

a different logic : Probabilistic Alternating-time Temporal Logic (PATL)

For the purposes of this course:

player robot1
robotModule
endplayer

<<robot1>> Pmax=? [ G !"crash"]

o The player "robot1" controls all actions defined in 'robotModule' *
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Solution Method

e Adapt the Value Iteration approach from the MDP problem:

« Let Sp; and Spy be the sets of states of the maximizer and and minimizer resp.

(0) = 1,Vse B
azg n) — 0,Vs € S_
ZIZgO) — 0’ Vs e S \ S:()

2 = max{zs,es P(s,a,s") - zyla € Act(s)}, Vs € (SN Sp1) \ S—g
o = min{zsles P(s,a,8') - zyla € Act(s)}, Vs € (SN Sp2)\ S=g
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« We can compute schedulers that maximize the probability to stay safe in an
uncertain environment.
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« We can compute schedulers that maximize the probability to stay safe in an
uncertain environment.

« In planning/reinforcement learning there are often goals that are beyond the
scope of safety.
o = Need to ensure safety while hindering exploration as little as possible.
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Shields

Recap:

« We can compute schedulers that maximize the probability to stay safe in an
uncertain environment.

« In planning/reinforcement learning there are often goals that are beyond the
scope of safety.
o = Need to ensure safety while hindering exploration as little as possible.

« A shield ensures that the probability to stay safe never drops beyond a certain
threshold
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Shields

e We can use the computation results from probabilistic model checking to
construct a shield:
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e We can use the computation results from probabilistic model checking to
construct a shield:

When using an absolute threshold:

« Actionis s allowedif: ) ,_cP(s,a,s") - xzy >
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Shields

e We can use the computation results from probabilistic model checking to
construct a shield:

When using an absolute threshold:

« Actionis s allowedif: ), cP(s,a,s") - zy >

When using a relative threshold:

o Actionis s allowedif: ) . .¢P(s,a,s') g > -,
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Shields

o We distinguish between: e and:
o Absolute thresholds for safety and o Post-Shielding and

o Relative thresholds for safety, o Pre-Shielding.
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Shields

o We distinguish between: e and:
o Absolute thresholds for safety and o Post-Shielding and
o Relative thresholds for safety, o Pre-Shielding.

e Let'slook at some examples:

Pre-Safety-Shield with absolute comparison (gamma = 0.8):
state 1d [label]: ’allowed actions’ [<value>: (<action id label)>]:

O [move =0 & x1=0 & y1=0 & x2=4 & y2 =4]: 1.0:(0 {e}); 1:(1 {s})
3 [move =0 & x1=1 & y1=0 & x2=3 & y2 =4]: 0.9:(0 {e}); 1:(2 {w})
4 [move =0 & x1=1 & y1=0 & x2=4 & y2 =4]: 0.9:(1 {s}); 1:(3 {n})

Post-Safety-Shield with relative comparison (lambda = 0.95):
state 1d [label]: ’forwarded actions’ [<action id> label: <forwarded action id> label]:

=4]: 0{e}:0{e}; 1{s}:1{s}

0 & y1=0 & x2=4 & y2
3 [move =0 & x1=1 & y1=0 & x2=3 & y2 =4]: 0{e}:2{w}; 2{w}:2{w}
1 & y1=0 & x2=4 & y2 =4]: 1{s}:3{n}; 3{n}:3{n}
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ﬂ Summary Slide
ModelBuilder: Solver: , \
Result
\Model Description/ * sparse, : X;’
/ e symbolic, * ’
e hybrid « LES, .
o etc. ——>| Scheduler/Shield

\ Properties

/

/
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Revisit: The Probabilistic Model Zoo

Two more /

primitives: Stochastic games
 Partial POPTA

\\ Vs <\

oTer \2 2

LTS
cTMe Kripke Structure DTMC

Observability

o Continuous- Markov Automaton

Time

Timed automa
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