

Probabilistic Model Checking

Stefan Pranger

22. 06. 2023

- ... we have talked about:
	- Probabilistic Models: Markov Chains and Markov Decision Processes,

4

- ... we have talked about:
	- Probabilistic Models: Markov Chains and Markov Decision Processes,
	- $\circ~$ PCTL and how to compute probabilities;

5

- ... we have talked about:
	- Probabilistic Models: Markov Chains and Markov Decision Processes,
	- PCTL and how to compute probabilities;
	- \circ Schedulers and

6

- ... we have talked about:
	- Probabilistic Models: Markov Chains and Markov Decision Processes,
	- PCTL and how to compute probabilities;
	- \circ Schedulers and
	- Modelling in PRISM.

So far...

7

AIK

- ... we have talked about:
	- Probabilistic Models: Markov Chains and Markov Decision Processes,
	- PCTL and how to compute probabilities;
	- Schedulers and
	- Modelling in PRISM.
- Today we will round the topic off: \circ PCTL* for MCs (+ idea for MDPs)
	- o Stochastic Games
	- Case Studies

PCTL* syntax

Subdivision into *state* (Φ)- and *path*-formulae (φ):

where $a \in \overline{AP}$ and $J \subseteq [0,1]$.

PCTL* syntax

Subdivision into *state* (Φ)- and *path*-formulae (φ):

where $a \in \overline{AP}$ and $J \subseteq [0,1]$.

We are now allowed to interchangly use state and path formulae as subformulae.

PCTL* syntax

Subdivision into *state* (Φ)- and *path*-formulae (φ):

where $a \in \overline{AP}$ and $J \subseteq [0,1]$.

We are now allowed to interchangly use state and path formulae as subformulae.

```
P=? [ GF "return_to_start" ];
P=? [ G(! (try = 1) | lost_count<4 U delivered=1 ) | delivered_count=MAX_COUNT ]
Pmax=? [ FG "hatch_closed" ]
...
```


Checking Linear Time Properties

Last building block to model check PCTL*

Checking Linear Time Properties

Last building block to model check PCTL*

Let ${\mathcal M}$ be a Markov Chain and φ be an LTL formula.

We are interested in:

$$
Pr(\mathcal{M}, s \models \varphi) = Pr_s\{\pi \in Paths(\mathcal{M}) \mid \pi \models \varphi\}
$$

Computing Probabilities for LT-Properties

Recall that LT-properties can be expressed using automata.

Computing Probabilities for LT-Properties

- Recall that LT-properties can be expressed using automata.
- We employ an automata-based approach:
	- Convert φ into a *deterministic Rabin automata A*.
	- Compute the Product Markov Chain $M\times\mathcal{A}.$
	- Compute the probability to satisfy φ using the product (*more on that later*).

Deterministic Rabin Automata

A deterministic $Rabin$ automatonisatuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, Acc)$, with

- \emph{Q} a set of states and initial state q_0 ,
- Σ an alphabet,
- $\delta:Q\times\Sigma\to Q$ a transition function and
- $Acc \subseteq 2^Q \times 2^Q$.

An automaton ${\mathcal A}$ accepts a run $\pi = q_0q_1q_2\ldots$ iff there exists a pair $(L,K) \in Acc$ s.t.:

$$
(\exists n\geq 0. \forall m\geq n. \, q_m \not\in L) \land (\exists^{\inf} n\geq 0. q_n \in K)
$$

Product Markov Chain

Let ${\mathcal M}$ be a Markov chain and ${\mathcal A}$ be a DFA. The product $\mathcal{M} \times \mathcal{A} = (S \times Q, \mathbb{P}', i, \{accept\}, L')$ is a Markov chain where:

- $L'(\langle s, q \rangle) = \{accept\} \text{ if } q \in F,$
- $i = \langle s_0, q_1 \rangle$ is the initial state with $q_1 = \delta(q_0,L(s))$ and
- $\mathbb{P}'(\langle s, q \rangle, \langle s', q' \rangle) = \mathbb{P}(s, s')$ if $q' = \delta(q, L(s'))$ and 0 otherwise.

Product Markov Chain

Let ${\mathcal M}$ be a Markov chain and ${\mathcal A}$ be a DFA. The product $\mathcal{M} \times \mathcal{A} = (S \times Q, \mathbb{P}', i, \{accept\}, L')$ is a Markov chain where:

- $L'(\langle s, q \rangle) = \{accept\} \text{ if } q \in F,$
- $i = \langle s_0, q_1 \rangle$ is the initial state with $q_1 = \delta(q_0,L(s))$ and
- $\mathbb{P}'(\langle s, q \rangle, \langle s', q' \rangle) = \mathbb{P}(s, s')$ if $q' = \delta(q, L(s'))$ and 0 otherwise.

Post-Lecture-Note: This is the definition of a product with a DFA, the product with a DRA can be done in a similar way.

Product Markov Chain

Let ${\mathcal M}$ be a Markov chain and ${\mathcal A}$ be a DFA. The product $\mathcal{M} \times \mathcal{A} = (S \times Q, \mathbb{P}', i, \{accept\}, L')$ is a Markov chain where:

- $L'(\langle s,q \rangle) = \{accept\}$ if $q \in F$,
- $i = \langle s_0, q_1 \rangle$ is the initial state with $q_1 = \delta(q_0,L(s))$ and
- $\mathbb{P}'(\langle s, q \rangle, \langle s', q' \rangle) = \mathbb{P}(s, s')$ if $q' = \delta(q, L(s'))$ and 0 otherwise. *Post-Lecture-Note:* This is the definition of a product with a DFA, the product with a DRA can be done in a similar way.

Since ${\cal A}$ is deterministic it can be interpreted as a witness for its current state on the product trace:

$$
\pi^+ = \langle s_0, q_1 \rangle, \langle s_1, q_2 \rangle, \langle s_2, q_3 \rangle, \ldots
$$

Computing the Probability to Satisfy φ

- We want to use the product $\mathcal{M}\times\mathcal{A}$ and know
- $\mathcal A$'s acceptance condition:

$$
(\exists n\geq 0. \forall m\geq n. \, q_m \notin L_i) \land (\exists^{\inf} n\geq 0. q_n \in K_i)
$$

• for a pair
$$
L_i, K_i \in Acc
$$
.

Computing the Probability to Satisfy φ

- We want to use the product $\mathcal{M}\times\mathcal{A}$ and know
- $\mathcal A$'s acceptance condition:

$$
(\exists n\geq 0. \forall m\geq n. \, q_m \notin L_i) \land (\exists^{\inf} n\geq 0. q_n \in K_i)
$$

- for a pair $L_i, K_i \in Acc.$
- \Rightarrow we need to compute the probability to see infinitely many labels from K_i and only finitely many labels from L_i for some $i.$

Bottom Strongly Connected Components

- Consider the underlying directed graph $G=(V,E)$ for a given Markov chain ${\mathcal M}$ and a component $C\in V.$
- \overline{C} is strongly connected if $\forall s,t \in \overline{C}$: s is reachable from t and
	- \circ t is reachable from s.

Bottom Strongly Connected Components

- Consider the underlying directed graph $G=(V,E)$ for a given Markov chain ${\mathcal M}$ and a component $C\in V.$
- \overline{C} is strongly connected if $\forall s,t \in \overline{C}$: \circ s is reachable from t and
	- \circ t is reachable from s.
- C is \emph{bottom} strongly connected if no state outside of C is reachable from $C.$

Bottom Strongly Connected Components

- Consider the underlying directed graph $G=(V,E)$ for a given Markov chain ${\mathcal M}$ and a component $C\in V.$
- \overline{C} is strongly connected if $\forall s,t \in \overline{C}$: \circ s is reachable from t and
	- \circ t is reachable from s.
- C is \emph{bottom} strongly connected if no state outside of C is reachable from $C.$
- For Markov chains we have that a bottom strongly connected component cannot be left and
	- all states will be visited infinitely often with a probability of one.

24

Computing the Probability to Satisfy φ

According to the acceptance condition $Acc = \{(L_0, K_0), \dots (L_m, K_m)\}$ of \mathcal{A} :

- Identify BSCCs C_j such that: For some $i\in [0,m]$:
	- $C_j \cap (S \times L_i) = \emptyset$ and $C_j \cap (S \times K_i) \neq \emptyset$

• Let
$$
U = \bigcup_{j, C_j \text{ accepting}} C_j
$$

Computing the Probability to Satisfy φ

According to the acceptance condition $Acc = \{(L_0, K_0), \dots (L_m, K_m)\}$ of \mathcal{A} :

Identify BSCCs C_j such that: For some $i\in [0,m]$:

$$
C_j \cap (S \times L_i) = \emptyset \text{ and } C_j \cap (S \times K_i) \neq \emptyset
$$

• Let
$$
U = \bigcup_{j, C_j \text{ accepting}} C_j
$$

We then have the following:

$$
\Pr(\mathcal{M}, s \models \varphi) = \Pr(\mathcal{M} \times \mathcal{A}, \langle s, q_i \rangle \models \mathbf{F} U)
$$

LT-Properties over MDP ${\mathcal{M}}$

Some Remarks:

- The concept of BSCCs needs to be enriched to account for nondeterminism.
- Concept of *Maximum End Components* ⇒

LT-Properties over MDP ${\mathcal{M}}$

Some Remarks:

- The concept of BSCCs needs to be enriched to account for nondeterminism.
- Concept of *Maximum End Components* ⇒
- Memoryless schedulers do not suffice to realize LT properties.

LT-Properties over MDP ${\mathcal{M}}$

Some Remarks:

- The concept of BSCCs needs to be enriched to account for nondeterminism.
- Concept of *Maximum End Components* ⇒
- Memoryless schedulers do not suffice to realize LT properties.

POSG

Timed automata (TA)

POMDP

Figure from Sebastian Junge

Hidden **Markov Models**

Stochastic Games

- Generalization of MDPs
	- Multiple players decide on action in their respective states
	- They do this either turn-based or concurrently:
	- *Stochastic Multiplayer Games*/*Turn-based Stochastic Games*
	- *Concurrent Stochastic Games*

Stochastic Games

- Generalization of MDPs
	- Multiple players decide on action in their respective states
	- They do this either turn-based or concurrently:
	- *Stochastic Multiplayer Games*/*Turn-based Stochastic Games*
	- *Concurrent Stochastic Games*
- Different properties:
	- Zero-sum: A single value that is maximized by player 1, minimized by player 2.
	- Nonzero-sum: Players cooperate to achieve their individual goals.

33

Stochastic Multiplayer Game - Definition

Stochastic Multiplayer Game $\mathcal{G} = (S, \Pi, Act, \mathbb{P}, s_0, AP, L)$

- S a set of states and initial state $s_{0},$
- Π a set of players,
- Act a set of actions,
- $\mathbb{P}: S \times Act \times S \rightarrow [0,1]$, s.t.

$$
\sum\nolimits_{s' \in S} \mathbb{P}(s,a,s') = 1 \ \forall (s,a) \in S \times Act
$$

 AP set of atomic states and $L : S \rightarrow 2^{AP}$ a labelling function.

Solving Zero-Sum Reachability in Turn-based Stochastic Games

Which players minimize and which players should maximize?

35

Solving Zero-Sum Reachability in Turn-based Stochastic Games

- Which players minimize and which players should maximize?
- \Rightarrow this will become part of the property, by using
- a different logic : Probabilistic Alternating-time Temporal Logic (PATL)

36

Solving Zero-Sum Reachability in Turn-based Stochastic Games

- Which players minimize and which players should maximize?
- \Rightarrow this will become part of the property, by using
- a different logic : Probabilistic Alternating-time Temporal Logic (PATL)
- For the purposes of this course:

```
player robot1
robotModule
endplayer
...
<<robot1>> Pmax=? [ G !"crash"]
```
The player "robot1" controls all actions defined in 'robotModule' *

Solution Method

- Adapt the Value Iteration approach from the MDP problem:
- Let S_{P1} and S_{P2} be the sets of states of the maximizer and and minimizer resp.

$$
\begin{aligned} x_s^{(0)}&=1, \forall s\in B\\ x_s^{(n)}&=0, \forall s\in S_{=0}\\ x_s^{(0)}&=0,\end{aligned} \qquad \forall s\in S\setminus S_{=0}
$$

$$
x_{s}^{(n+1)} = \text{ max} \{ \sum\nolimits_{s' \in S} \mathbb{P}(s, a, s') \cdot x_{s'} | a \in Act(s) \}, \ \forall s \in (S \cap S_{P1}) \setminus S_{=0} \newline x_{s}^{(n+1)} = \text{ min} \{ \sum\nolimits_{s' \in S} \mathbb{P}(s, a, s') \cdot x_{s'} | a \in Act(s) \}, \ \ \forall s \in (S \cap S_{P2}) \setminus S_{=0}
$$

Shields

Recap:

We can compute schedulers that maximize the probability to stay safe in an uncertain environment.

Shields

Recap:

- We can compute schedulers that maximize the probability to stay safe in an uncertain environment.
- In planning/reinforcement learning there are often goals that are beyond the scope of safety.

⇔ \Rightarrow Need to ensure safety while hindering exploration as little as possible.
	-

40

AIK

Recap:

- We can compute schedulers that maximize the probability to stay safe in an uncertain environment.
- In planning/reinforcement learning there are often goals that are beyond the scope of safety.
	- \Rightarrow Need to ensure safety while hindering exploration as little as possible.
- A shield ensures that the probability to stay safe never drops beyond a certain threshold

We can use the computation results from probabilistic model checking to construct a shield:

We can use the computation results from probabilistic model checking to construct a shield:

When using an absolute threshold:

Action is s allowed if: $\sum_{s' \in S} \mathbb{P}(s, a, s') \cdot x_{s'} > \gamma$

We can use the computation results from probabilistic model checking to construct a shield:

When using an absolute threshold:

Action is s allowed if: $\sum_{s' \in S} \mathbb{P}(s, a, s') \cdot x_{s'} > \gamma$

When using a relative threshold:

Action is s allowed if: $\sum_{s' \in S} \mathbb{P}(s, a, s') \cdot x_{s'} > \lambda \cdot x_s$

- We distinguish between:
	- Absolute thresholds for safety and
	- Relative thresholds for safety,
- and:
	- Post-Shielding and
		- o Pre-Shielding.

- We distinguish between:
	- Absolute thresholds for safety and
	- \circ Relative thresholds for safety,
- Let's look at some examples:

```
Pre-Safety-Shield with absolute comparison (gamma = 0.8):
state id [label]: 'allowed actions' [<value>: (<action id label)>]:
0 \lceil \text{move} = 0 \& x1 = 0 \& y1 = 0 \& x2 = 4 \& y2 = 4]: 1.0:(0 \{e\}); 1:(1 \{s\})3 \lceil \text{move} = 0 \& \text{x1=1} \& \text{y1=0} \& \text{x2=3} \& \text{y2=4} : 0.9:(0 \{e\}); 1:(2 \{w\})4 \lceil \text{move} = 0 \& x1 = 1 \& y1 = 0 \& x2 = 4 \& y2 = 4}: 0.9:(1 \{s\}); 1:(3 \{n\})Post-Safety-Shield with relative comparison (lambda = 0.95):
state id [label]: 'forwarded actions' [<action id> label: <forwarded action id> label]:
```

```
0 [\text{move} = 0 \& x1=0 \& y1=0 \& x2=4 \& y2 =4]: 0{e}:0{e}; 1{s}:1{s}:1{s}3 [move =0 & x1=1 & y1=0 & x2=3 & y2 =4]: 0{e}:2{w}:2{w}:2{w}4 \lceil \text{move} = 0 \& x1 = 1 \& y1 = 0 \& x2 = 4 \& y2 = 4]: 1\{s\}: 3\{n\}; 3\{n\}: 3\{n\}
```
- and:
	- Post-Shielding and
	- o Pre-Shielding.

Summary Slide

Revisit: The Probabilistic Model Zoo

Timed automa

Revisit: The Probabilistic Model Zoo

Timed automa

