

Probabilistic Model Checking

Stefan Pranger

22.06.2023

IAIK 3

- ... we have talked about:
 - Probabilistic Models: Markov Chains and Markov Decision Processes,

ΑΙΚ

4

- ... we have talked about:
 - Probabilistic Models: Markov Chains and Markov Decision Processes,
 - PCTL and how to compute probabilities;

ΑΙΚ

5

- ... we have talked about:
 - Probabilistic Models: Markov Chains and Markov Decision Processes,
 - PCTL and how to compute probabilities;
 - Schedulers and

ΑΙΚ

6

- ... we have talked about:
 - Probabilistic Models: Markov Chains and Markov Decision Processes,
 - PCTL and how to compute probabilities;
 - Schedulers and
 - Modelling in PRISM.

- ... we have talked about:
 - Probabilistic Models: Markov Chains and Markov Decision Processes,
 - PCTL and how to compute probabilities;
 - Schedulers and
 - Modelling in PRISM.
- Today we will round the topic off:
 PCTL* for MCs (+ idea for MDPs)
 - Stochastic Games
 - Case Studies

PCTL* syntax

Subdivision into *state* (Φ)- and *path*-formulae (φ):

$\varphi ::= \Phi$
$\mid arphi_1 \wedge arphi_2$
$ \neg arphi$
$\mid {f X} arphi$
$\mid arphi_1 ~ {f U} ~ arphi_2$

where $a \in AP$ and $J \subseteq [0,1]$.

PCTL* syntax

Subdivision into *state* (Φ)- and *path*-formulae (φ):

where $a\in AP$ and $J\subseteq [0,1]$.

We are now allowed to interchangly use state and path formulae as subformulae.

PCTL* syntax

Subdivision into *state* (Φ)- and *path*-formulae (φ):

where $a\in AP$ and $J\subseteq [0,1]$.

We are now allowed to interchangly use state and path formulae as subformulae.

```
P=? [ GF "return_to_start" ];
P=? [ G(! (try = 1) | lost_count<4 U delivered=1 ) | delivered_count=MAX_COUNT ]
Pmax=? [ FG "hatch_closed" ]
...</pre>
```


Checking Linear Time Properties

• Last building block to model check PCTL*

Checking Linear Time Properties

• Last building block to model check PCTL*

Let $\mathcal M$ be a Markov Chain and arphi be an LTL formula.

We are interested in:

$$Pr(\mathcal{M},s\modelsarphi)=Pr_s\{\pi\in Paths(\mathcal{M})\mid \pi\modelsarphi\}$$

Computing Probabilities for LT-Properties

• Recall that LT-properties can be expressed using automata.

Computing Probabilities for LT-Properties

- Recall that LT-properties can be expressed using automata.
- We employ an automata-based approach:
 - Convert φ into a *deterministic Rabin automata* \mathcal{A} .
 - $\circ~$ Compute the Product Markov Chain $M imes \mathcal{A}.$
 - $\circ~$ Compute the probability to satisfy φ using the product (more on that later).

Deterministic Rabin Automata

A $deterministic \ Rabin \ automaton is a tuple \ \mathcal{A} = (Q, \Sigma, \delta, q_0, Acc)$, with

- Q a set of states and initial state q_0 ,
- Σ an alphabet,
- + $\delta: Q imes \Sigma o Q$ a transition function and
- $Acc \subseteq 2^Q imes 2^Q$.

An automaton $\mathcal A$ accepts a run $\pi = q_0 q_1 q_2 \dots$ iff there exists a pair $(L,K) \in Acc$ s.t.:

$$(\exists n \geq 0. orall m \geq n. q_m
otin L) \land (\exists^{\inf} n \geq 0. q_n \in K)$$

Product Markov Chain

Let \mathcal{M} be a Markov chain and \mathcal{A} be a DFA. The product $\mathcal{M} \times \mathcal{A} = (S \times Q, \mathbb{P}', i, \{accept\}, L')$ is a Markov chain where:

- $L'(\langle s,q
 angle)=\{accept\} ext{ if }q\in F$,
- + $i=\langle s_0,q_1
 angle$ is the initial state with $q_1=\delta(q_0,L(s))$ and
- $\mathbb{P}'(\langle s,q
 angle,\langle s',q'
 angle)=\mathbb{P}(s,s')$ if $q'=\delta(q,L(s'))$ and 0 otherwise.

Product Markov Chain

Let \mathcal{M} be a Markov chain and \mathcal{A} be a DFA. The product $\mathcal{M} \times \mathcal{A} = (S \times Q, \mathbb{P}', i, \{accept\}, L')$ is a Markov chain where:

- $L'(\langle s,q
 angle)=\{accept\} ext{ if }q\in F$,
- + $i=\langle s_0,q_1
 angle$ is the initial state with $q_1=\delta(q_0,L(s))$ and
- $\mathbb{P}'(\langle s,q
 angle,\langle s',q'
 angle)=\mathbb{P}(s,s')$ if $q'=\delta(q,L(s'))$ and 0 otherwise.

Post-Lecture-Note: This is the definition of a product with a DFA, the product with a DRA can be done in a similar way.

Product Markov Chain

Let \mathcal{M} be a Markov chain and \mathcal{A} be a DFA. The product $\mathcal{M} \times \mathcal{A} = (S \times Q, \mathbb{P}', i, \{accept\}, L')$ is a Markov chain where:

- $L'(\langle s,q
 angle)=\{accept\} ext{ if }q\in F,$
- + $i=\langle s_0,q_1
 angle$ is the initial state with $q_1=\delta(q_0,L(s))$ and
- $\mathbb{P}'(\langle s,q\rangle,\langle s',q'\rangle) = \mathbb{P}(s,s')$ if $q' = \delta(q,L(s'))$ and 0 otherwise. *Post-Lecture-Note:* This is the definition of a product with a DFA, the product with a DRA can be done in a similar way.

Since \mathcal{A} is deterministic it can be interpreted as a witness for its current state on the product trace:

$$\pi^+ = \langle s_0, q_1
angle, \langle s_1, q_2
angle, \langle s_2, q_3
angle, \dots$$

Computing the Probability to Satisfy arphi

- We want to use the product $\mathcal{M}\times\mathcal{A}$ and know
- \mathcal{A} 's acceptance condition:

$$(\exists n \geq 0. orall m \geq n. q_m
otin L_i) \land (\exists^{\inf} n \geq 0. q_n \in K_i)$$

• for a pair
$$L_i, K_i \in Acc$$
.

IIAI 20

Computing the Probability to Satisfy arphi

- We want to use the product $\mathcal{M}\times\mathcal{A}$ and know
- \mathcal{A} 's acceptance condition:

$$(\exists n \geq 0. orall m \geq n. q_m
otin L_i) \land (\exists^{\inf} n \geq 0. q_n \in K_i)$$

- for a pair $L_i, K_i \in Acc.$
- \Rightarrow we need to compute the probability to see infinitely many labels from K_i and only finitely many labels from L_i for some i.

11AIK 21

Bottom Strongly Connected Components

- Consider the underlying directed graph G=(V,E) for a given Markov chain ${\mathcal M}$ and a component $C\in V.$
- C is strongly connected if $\forall s, t \in C$: \circ s is reachable from t and
 - t is reachable from s.

Bottom Strongly Connected Components

- Consider the underlying directed graph G=(V,E) for a given Markov chain ${\mathcal M}$ and a component $C\in V.$
- C is strongly connected if $\forall s,t \in C$: \circ s is reachable from t and
 - t is reachable from s.
- C is *bottom* strongly connected if no state outside of C is reachable from C.

IAI 23

Bottom Strongly Connected Components

- Consider the underlying directed graph G=(V,E) for a given Markov chain ${\mathcal M}$ and a component $C\in V.$
- C is strongly connected if $\forall s,t \in C$: \circ s is reachable from t and
 - t is reachable from s.
- C is *bottom* strongly connected if no state outside of C is reachable from C.
- For Markov chains we have that a bottom strongly connected component

 cannot be left and
 - all states will be visited infinitely often with a probability of one.

Computing the Probability to Satisfy φ

According to the acceptance condition $Acc = \{(L_0, K_0), \dots (L_m, K_m)\}$ of \mathcal{A} :

• Identify BSCCs C_j such that: \circ For some $i \in [0,m]$:

$$C_j \cap (S imes L_i) = \emptyset ext{ and } C_j \cap (S imes K_i)
eq \emptyset$$

• Let
$$U = igcup_{j, \, C_j \, accepting} C_j$$

IIAII 25

Computing the Probability to Satisfy φ

According to the acceptance condition $Acc = \{(L_0, K_0), \dots (L_m, K_m)\}$ of \mathcal{A} :

• Identify BSCCs C_j such that: \circ For some $i \in [0,m]$:

$$C_j \cap (S imes L_i) = \emptyset ext{ and } C_j \cap (S imes K_i)
eq \emptyset$$

• Let
$$U = igcup_{j, \, C_j \, accepting} C_j$$

• We then have the following:

$$\Pr(\mathcal{M}, s \models arphi) = \Pr(\mathcal{M} imes \mathcal{A}, \langle s, q_i
angle \models \mathbf{F}U)$$

LT-Properties over MDP ${\cal M}$

Some Remarks:

- The concept of BSCCs needs to be enriched to account for nondeterminism.
- \Rightarrow Concept of *Maximum End Components*

LT-Properties over MDP ${\cal M}$

Some Remarks:

- The concept of BSCCs needs to be enriched to account for nondeterminism.
- \Rightarrow Concept of *Maximum End Components*
- Memoryless schedulers do not suffice to realize LT properties.

LT-Properties over MDP ${\cal M}$

Some Remarks:

- The concept of BSCCs needs to be enriched to account for nondeterminism.
- \Rightarrow Concept of *Maximum End Components*
- Memoryless schedulers do not suffice to realize LT properties.

POSG

Timed automata (TA)

Figure from Sebastian Junge

Stochastic Games

- Generalization of MDPs
 - $\circ~$ Multiple players decide on action in their respective states
 - They do this either turn-based or concurrently:
 - Stochastic Multiplayer Games/Turn-based Stochastic Games
 - Concurrent Stochastic Games

Stochastic Games

- Generalization of MDPs
 - $\circ~$ Multiple players decide on action in their respective states
 - They do this either turn-based or concurrently:
 - Stochastic Multiplayer Games/Turn-based Stochastic Games
 - Concurrent Stochastic Games
- Different properties:
 - Zero-sum: A single value that is maximized by player 1, minimized by player 2.
 - Nonzero-sum: Players cooperate to achieve their individual goals.

IIAII 33

Stochastic Multiplayer Game - Definition

Stochastic Multiplayer Game $\mathcal{G} = (S, \Pi, Act, \mathbb{P}, s_0, AP, L)$

- S a set of states and initial state s_0 ,
- Π a set of players,
- *Act* a set of actions,
- + $\mathbb{P}: S imes Act imes S o [0,1]$, s.t.

$$\sum\nolimits_{s' \in S} \mathbb{P}(s, a, s') = 1 \ orall (s, a) \in S imes Act$$

- AP set of atomic states and $L:S
ightarrow 2^{AP}$ a labelling function.

IAIK 34

Solving Zero-Sum Reachability in Turn-based Stochastic Games

• Which players minimize and which players should maximize?

IAI 35

Solving Zero-Sum Reachability in Turn-based Stochastic Games

- Which players minimize and which players should maximize?
- \Rightarrow this will become part of the property, by using
- a different logic : Probabilistic Alternating-time Temporal Logic (PATL)

1AI 36

Solving Zero-Sum Reachability in Turn-based Stochastic Games

- Which players minimize and which players should maximize?
- \Rightarrow this will become part of the property, by using
- a different logic : Probabilistic Alternating-time Temporal Logic (PATL)
- For the purposes of this course:

```
player robot1
robotModule
endplayer
...
<<robot1>> Pmax=? [ G !"crash"]
```

 $\circ~$ The player "robot1" controls all actions defined in 'robotModule' *

Solution Method

- Adapt the Value Iteration approach from the MDP problem:
- Let S_{P1} and S_{P2} be the sets of states of the maximizer and and minimizer resp.

$$egin{aligned} x_s^{(0)} &= 1, orall s \in B \ x_s^{(n)} &= 0, orall s \in S_{=0} \ x_s^{(0)} &= 0, \end{aligned} egin{aligned} &\forall s \in S \setminus S_{=0} \ &orall s \in S \setminus S_{=0} \end{aligned}$$

$$egin{aligned} &x_s^{(n+1)} = & \max\{\sum_{s'\in S} \mathbb{P}(s,a,s')\cdot x_{s'} | a\in Act(s)\}, \ orall s\in (S\cap S_{P1})\setminus S_{=0} \ &x_s^{(n+1)} = & \min\{\sum_{s'\in S} \mathbb{P}(s,a,s')\cdot x_{s'} | a\in Act(s)\}, \ orall s\in (S\cap S_{P2})\setminus S_{=0} \end{aligned}$$

Shields

Recap:

• We can compute schedulers that maximize the probability to stay safe in an uncertain environment.

Shields

Recap:

- We can compute schedulers that maximize the probability to stay safe in an uncertain environment.
- In planning/reinforcement learning there are often goals that are beyond the scope of safety.
 - $\circ \Rightarrow$ Need to ensure safety while hindering exploration as little as possible.

40

Recap:

- We can compute schedulers that maximize the probability to stay safe in an uncertain environment.
- In planning/reinforcement learning there are often goals that are beyond the scope of safety.
 - $\circ \Rightarrow$ Need to ensure safety while hindering exploration as little as possible.
- A shield ensures that the probability to stay safe never drops beyond a certain threshold

• We can use the computation results from probabilistic model checking to construct a shield:

• We can use the computation results from probabilistic model checking to construct a shield:

When using an absolute threshold:

- Action is s allowed if: $\sum_{s' \in S} \mathbb{P}(s, a, s') \cdot x_{s'} > \gamma$

• We can use the computation results from probabilistic model checking to construct a shield:

When using an absolute threshold:

- Action is s allowed if: $\sum_{s' \in S} \mathbb{P}(s, a, s') \cdot x_{s'} > \gamma$

When using a relative threshold:

- Action is s allowed if: $\sum_{s' \in S} \mathbb{P}(s, a, s') \cdot x_{s'} > \lambda \cdot x_s$

- We distinguish between:
 - Absolute thresholds for safety and
 - Relative thresholds for safety,
- and:
 - Post-Shielding and
 - Pre-Shielding.

Shields

- We distinguish between:
 - Absolute thresholds for safety and
 - Relative thresholds for safety,
- Let's look at some examples:

```
Pre-Safety-Shield with absolute comparison (gamma = 0.8):
state id [label]: 'allowed actions' [<value>: (<action id label)>]:
0 [move =0 & x1=0 & y1=0 & x2=4 & y2 =4]: 1.0:(0 {e}); 1:(1 {s})
3 [move =0 & x1=1 & y1=0 & x2=3 & y2 =4]: 0.9:(0 {e}); 1:(2 {w})
4 [move =0 & x1=1 & y1=0 & x2=4 & y2 =4]: 0.9:(1 {s}); 1:(3 {n})
Post-Safety-Shield with relative comparison (lambda = 0 95):
```

Post-Safety-Shield with relative **comparison** (lambda = 0.95): state id [label]: 'forwarded actions' [<action id> label: <forwarded action id> label]:

```
0 [move =0 & x1=0 & y1=0 & x2=4 & y2 =4]: 0{e}:0{e}; 1{s}:1{s}
3 [move =0 & x1=1 & y1=0 & x2=3 & y2 =4]: 0{e}:2{w}; 2{w}:2{w}
4 [move =0 & x1=1 & y1=0 & x2=4 & y2 =4]: 1{s}:3{n}; 3{n}:3{n}
```

- and:
 - Post-Shielding and
 - Pre-Shielding.

Summary Slide

Revisit: The Probabilistic Model Zoo

Timed automa

Revisit: The Probabilistic Model Zoo

Timed automa

