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So far...
... we have talked about:

Probabilistic Models: Markov Chains and Markov Decision Processes,

PCTL and how to compute probabilities;

Schedulers and

Modelling in PRISM.

Today we will round the topic off:
PCTL* for MCs ( + idea for MDPs )

Stochastic Games

Case Studies
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PCTL* syntax
Subdivision into state ( )- and path-formulae ( ):

where  and .

Φ φ

Φ ::=

∣

∣

∣

∣

 true

 a

  ∧Φ1 Φ2

 ¬Φ

  (φ)Pr
J

φ ::=

∣

∣

∣

∣

 Φ

  ∧φ1 φ2

 ¬φ

 Xφ

   U φ1 φ2

a ∈ AP J ⊆ [0,1]

8



PCTL* syntax
Subdivision into state ( )- and path-formulae ( ):

where  and .

We are now allowed to interchangly use state and path formulae as subformulae.
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∣
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PCTL* syntax
Subdivision into state ( )- and path-formulae ( ):

where  and .

We are now allowed to interchangly use state and path formulae as subformulae.

P=? [ GF "return_to_start" ];
P=? [ G(! (try = 1) | lost_count<4 U delivered=1 ) | delivered_count=MAX_COUNT ]
Pmax=? [ FG "hatch_closed" ]
...

Φ φ

Φ ::=

∣

∣

∣

∣

 true

 a

  ∧Φ1 Φ2

 ¬Φ

  (φ)Pr
J

φ ::=

∣

∣

∣

∣

 Φ

  ∧φ1 φ2

 ¬φ

 Xφ

   U φ1 φ2

a ∈ AP J ⊆ [0,1]
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Checking Linear Time Properties
Last building block to model check PCTL*
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Checking Linear Time Properties
Last building block to model check PCTL*

Let  be a Markov Chain and  be an LTL formula.

We are interested in:

M φ

Pr(M,s ⊨ φ) = P {π ∈ Paths(M) ∣ π ⊨ φ}rs
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Computing Probabilities for LT-Properties
Recall that LT-properties can be expressed using automata.
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Computing Probabilities for LT-Properties
Recall that LT-properties can be expressed using automata.

We employ an automata-based approach:
Convert  into a deterministic Rabin automata .

Compute the Product Markov Chain .

Compute the probability to satisfy  using the product (more on that later).

φ A

M ×A

φ

14



Deterministic Rabin Automata
A , with

 a set of states and initial state ,

 an alphabet,

 a transition function and

.

An automaton  accepts a run  iff there exists a pair 
s.t.:

deterministic Rabin automatonisatuple A = (Q,Σ,δ, ,Acc)q0

Q q0

Σ

δ : Q × Σ → Q

Acc ⊆ ×2Q 2Q

A π = …q0q1q2 (L,K) ∈ Acc

(∃n ≥ 0.∀m ≥ n. ∉ L) ∧ ( n ≥ 0. ∈ K)qm ∃inf qn
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Product Markov Chain
Let  be a Markov chain and  be a DFA. The product 

 is a Markov chain where:

 if ,

 is the initial state with  and

 if  and 0 otherwise.

M A
M×A = (S × Q, , i, {accept}, )P

′ L′

(⟨s,q⟩) = {accept}L′ q ∈ F

i = ⟨ , ⟩s0 q1 = δ( ,L(s))q1 q0

(⟨s,q⟩, ⟨ , ⟩) = P(s, )P
′ s′ q ′ s′ = δ(q,L( ))q ′ s′
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Product Markov Chain
Let  be a Markov chain and  be a DFA. The product 

 is a Markov chain where:

 if ,

 is the initial state with  and

 if  and 0 otherwise.

Post-Lecture-Note: This is the definition of a product with a DFA, the product with
a DRA can be done in a similar way.
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Product Markov Chain
Let  be a Markov chain and  be a DFA. The product 

 is a Markov chain where:

 if ,

 is the initial state with  and

 if  and 0 otherwise.

Post-Lecture-Note: This is the definition of a product with a DFA, the product with
a DRA can be done in a similar way.

Since  is deterministic it can be interpreted as a witness for its current state on the
product trace:

M A
M×A = (S × Q, , i, {accept}, )P

′ L′

(⟨s, q⟩) = {accept}L′ q ∈ F

i = ⟨ , ⟩s0 q1 = δ( , L(s))q1 q0

(⟨s, q⟩, ⟨ , ⟩) = P(s, )P
′ s′ q′ s′ = δ(q, L( ))q′ s′

A

= ⟨ , ⟩, ⟨ , ⟩, ⟨ , ⟩, …π+ s0 q1 s1 q2 s2 q3
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Computing the Probability to Satisfy 
We want to use the product  and know

's acceptance condition:

for a pair .

φ
M×A

A

(∃n ≥ 0.∀m ≥ n. ∉ ) ∧ ( n ≥ 0. ∈ )qm Li ∃inf qn Ki

, ∈ AccLi Ki
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Computing the Probability to Satisfy 
We want to use the product  and know

's acceptance condition:

for a pair .

 we need to compute the probability to see infinitely many labels from  and
only finitely many labels from  for some .

φ
M×A

A

(∃n ≥ 0.∀m ≥ n. ∉ ) ∧ ( n ≥ 0. ∈ )qm Li ∃inf qn Ki

, ∈ AccLi Ki

⇒ Ki
Li i
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Bottom Strongly Connected Components
Consider the underlying directed graph  for a given Markov chain 

 and a component .

 is strongly connected if :
s is reachable from t and

t is reachable from s.

G = (V ,E)
M C ∈ V

C ∀s, t ∈ C
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Bottom Strongly Connected Components
Consider the underlying directed graph  for a given Markov chain 

 and a component .

 is strongly connected if :
s is reachable from t and

t is reachable from s.

 is bottom strongly connected if no state outside of  is reachable from .

For Markov chains we have that a bottom strongly connected component
cannot be left and

all states will be visited infinitely often with a probability of one.

G = (V ,E)
M C ∈ V

C ∀s, t ∈ C

C C C
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Computing the Probability to Satisfy 
According to the acceptance condition  of :

Identify BSCCs  such that:
For some :

Let 

φ
Acc = {( , ),…( , )}L0 K0 Lm Km A

Cj

i ∈ [0,m]

∩ (S × ) = ∅ and  ∩ (S × ) ≠ ∅Cj Li Cj Ki

U = ⋃j,   acceptingCj
Cj
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Computing the Probability to Satisfy 
According to the acceptance condition  of :

Identify BSCCs  such that:
For some :

Let 

We then have the following:

φ
Acc = {( , ),…( , )}L0 K0 Lm Km A

Cj

i ∈ [0,m]

∩ (S × ) = ∅ and  ∩ (S × ) ≠ ∅Cj Li Cj Ki

U = ⋃j,   acceptingCj
Cj

Pr(M,s ⊨ φ) = Pr(M×A, ⟨s, ⟩ ⊨ FU)qi
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LT-Properties over MDP 
Some Remarks:

The concept of BSCCs needs to be enriched to account for nondeterminism.

 Concept of Maximum End Components

M

⇒
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Examples29



Probabilistic Model Zoo

Figure from Sebastian Junges
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Stochastic Games
Generalization of MDPs

Multiple players decide on action in their respective states

They do this either turn-based or concurrently:

Stochastic Multiplayer Games/Turn-based Stochastic Games

Concurrent Stochastic Games
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Stochastic Games
Generalization of MDPs

Multiple players decide on action in their respective states

They do this either turn-based or concurrently:

Stochastic Multiplayer Games/Turn-based Stochastic Games

Concurrent Stochastic Games

Different properties:
Zero-sum: A single value that is maximized by player 1, minimized by player
2.

Nonzero-sum: Players cooperate to achieve their individual goals.
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Stochastic Multiplayer Game - De�nition

 a set of states and initial state ,

 a set of players,

 a set of actions,

, s.t.

 set of atomic states and  a labelling function.

Stochastic Multiplayer Game G = (S,Π,Act,P, ,AP ,L)s0

S s0

Π

Act

P : S × Act × S → [0,1]

P(s,a, ) = 1 ∀(s,a) ∈ S × Act∑
∈Ss′

s′

AP L : S → 2AP
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Solving Zero-Sum Reachability in Turn-based
Stochastic Games

Which players minimize and which players should maximize?
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Solving Zero-Sum Reachability in Turn-based
Stochastic Games

Which players minimize and which players should maximize?

 this will become part of the property, by using

a different logic : Probabilistic Alternating-time Temporal Logic (PATL)

⇒
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Solving Zero-Sum Reachability in Turn-based
Stochastic Games

Which players minimize and which players should maximize?

 this will become part of the property, by using

a different logic : Probabilistic Alternating-time Temporal Logic (PATL)

For the purposes of this course:
player robot1
robotModule
endplayer
...
<<robot1>> Pmax=? [ G !"crash"]

The player "robot1" controls all actions defined in 'robotModule' *

⇒
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Solution Method
Adapt the Value Iteration approach from the MDP problem:

Let  and  be the sets of states of the maximizer and and minimizer resp.SP1 SP2

x
(0)
s

x
(n)
s

x
(0)
s

x
(n+1)
s

x
(n+1)
s

=  1,∀s ∈ B

=  0,∀s ∈ S=0

=  0,

=  max{ P(s,a, ) ⋅ |a ∈ Act(s)},∑
∈Ss′

s′ xs′

=  min{ P(s,a, ) ⋅ |a ∈ Act(s)},∑
∈Ss′

s′ xs′

 ∀s ∈ S ∖ S=0

 ∀s ∈ (S ∩ ) ∖SP1 S=0

 ∀s ∈ (S ∩ ) ∖SP2 S=0
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Shields
Recap:

We can compute schedulers that maximize the probability to stay safe in an
uncertain environment.

38



Shields
Recap:

We can compute schedulers that maximize the probability to stay safe in an
uncertain environment.

In planning/reinforcement learning there are often goals that are beyond the
scope of safety.

 Need to ensure safety while hindering exploration as little as possible.⇒
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Shields
Recap:

We can compute schedulers that maximize the probability to stay safe in an
uncertain environment.

In planning/reinforcement learning there are often goals that are beyond the
scope of safety.

 Need to ensure safety while hindering exploration as little as possible.

A shield ensures that the probability to stay safe never drops beyond a certain
threshold

⇒

40



Shields
We can use the computation results from probabilistic model checking to
construct a shield:
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Shields
We can use the computation results from probabilistic model checking to
construct a shield:

When using an absolute threshold:

Action is  allowed if: s P(s,a, ) ⋅ > γ∑ ∈Ss′ s′ xs′
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Shields
We can use the computation results from probabilistic model checking to
construct a shield:

When using an absolute threshold:

Action is  allowed if: 

When using a relative threshold:

Action is  allowed if: 

s P(s,a, ) ⋅ > γ∑ ∈Ss′ s′ xs′

s P(s,a, ) ⋅ > λ ⋅∑ ∈Ss′ s′ xs′ xs
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Shields
We distinguish between:

Absolute thresholds for safety and

Relative thresholds for safety,

and:
Post-Shielding and

Pre-Shielding.
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Shields
We distinguish between:

Absolute thresholds for safety and

Relative thresholds for safety,

and:
Post-Shielding and

Pre-Shielding.

Let's look at some examples:

 Pre-Safety-Shield with absolute comparison (gamma = 0.8):
 state id [label]: ’allowed actions’ [<value>: (<action id label)>]:

 0 [move =0 & x1=0 & y1=0 & x2=4 & y2 =4]: 1.0:(0 {e}); 1:(1 {s})
 3 [move =0 & x1=1 & y1=0 & x2=3 & y2 =4]: 0.9:(0 {e}); 1:(2 {w})
 4 [move =0 & x1=1 & y1=0 & x2=4 & y2 =4]: 0.9:(1 {s}); 1:(3 {n})

 Post-Safety-Shield with relative comparison (lambda = 0.95):
 state id [label]: ’forwarded actions’ [<action id> label: <forwarded action id> label]:

 0 [move =0 & x1=0 & y1=0 & x2=4 & y2 =4]: 0{e}:0{e}; 1{s}:1{s}
 3 [move =0 & x1=1 & y1=0 & x2=3 & y2 =4]: 0{e}:2{w}; 2{w}:2{w}
 4 [move =0 & x1=1 & y1=0 & x2=4 & y2 =4]: 1{s}:3{n}; 3{n}:3{n}
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Revisit: The Probabilistic Model Zoo
Two more
primitives:

Partial
Observability

Continuous-
Time
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Homework49


