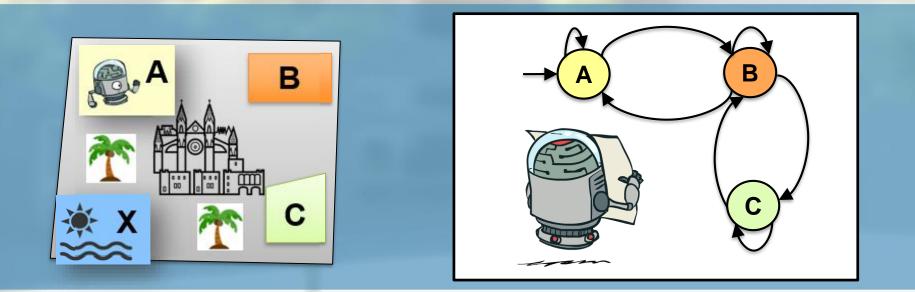


Graz University of Technology Institute for Applied Information Processing and Communications

Temporal Logic + CTL Model Checking



Model Checking SS23 Bettina Könighofer May 4th, 2023

Part 1 – Properties of CTL / LTL

Linear Temporal Logic LTL

LTL is the set of all state formulas, defined below:

State formulas:

Af where f is a path formula

Path formulas:

- $\neg f_1, f_1 \lor f_2, f_1 \land f_2, Xf_1, Gf_1, Ff_1, f_1 Uf_2, f_1 Rf_2$

where f_1 and f_2 are path formulas

Computation Tree Logic CTL

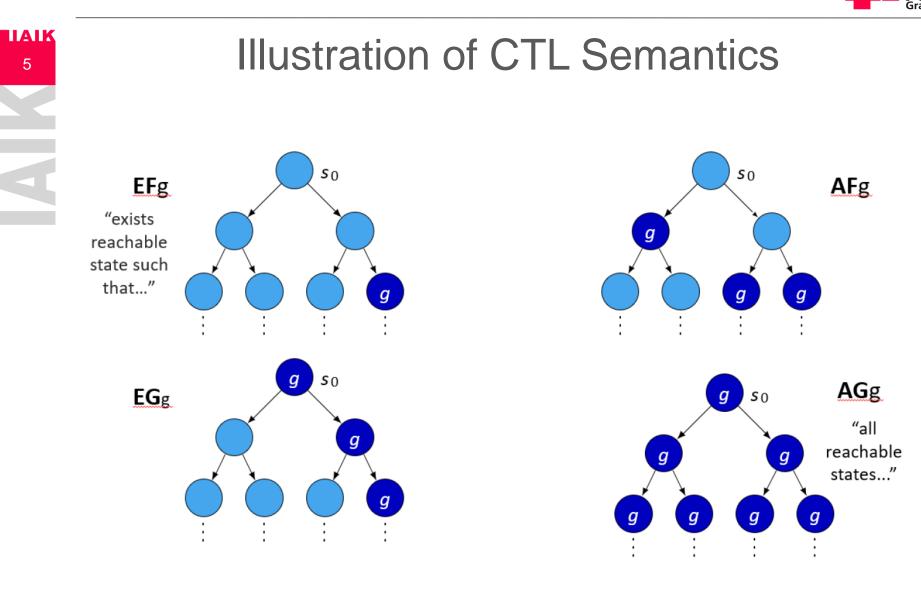
CTL is the set of all state formulas, defined below:

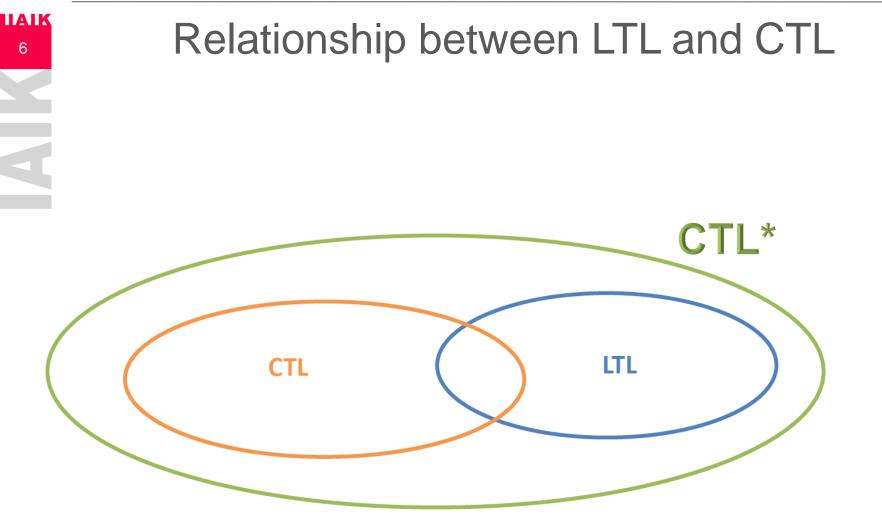
■ p ∈ AP

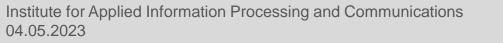
ΙΔΙΚ

- $\blacksquare \qquad \neg g_1, \ g_1 \lor g_2, \ g_1 \land g_2$
- AX g₁, AG g₁, AF g₁, A (g₁ U g₂), A (g₁ R g₂)
- EX g₁, EG g₁, EF g₁, E (g₁ U g₂), E (g₁ R g₂) where g₁ and g₂ are state formulas

Note, that all sub-formulas of a CTL formula are state formulas







• Exercise:

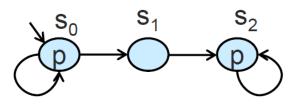
IAIK

- Does the LTL formula AFG p has an equivalent in CTL?
- **AFG** p = "for all paths, eventually p always holds"
- Solution: No
 - But what about: AFAGp?
 - AFAGp = "for all paths, there is a point from which all reachable states satisfy p"

• Exercise:

IAIK

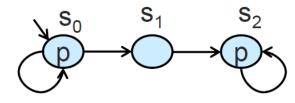
- Does the LTL formula AFG p has an equivalent in CTL?
- **AFG** p = "for all paths, eventually p always holds"
- Solution: No
 - But what about: AFAGp?
 - AFAGp = "for all paths, there is a point from which all reachable states satisfy p"
 - Consider the given model:
 - Does AFGp hold?
 - Does AFAGp hold?



• Exercise:

IAIK

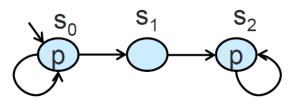
- Does the LTL formula AFG p has an equivalent in CTL?
- **AFG** p = "for all paths, eventually p always holds"
- Solution: No
 - But what about: AFAGp?
 - AFAGp = "for all paths, there is a point from which all reachable states satisfy p"
 - Consider the given model:
 - AFGp holds
 - All paths satisfy FGp
 - S_0, S_0, S_0, \dots
 - $S_0, S_0, \dots S_0, S_1, S_2, S_2, S_2, \dots$



• Exercise:

ΙΙΑΙΚ

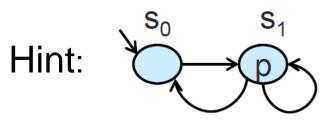
- Does the LTL formula AFG p has an equivalent in CTL?
- **AFG** p = "for all paths, eventually p always holds"
- Solution: No
 - But what about: AFAGp?
 - AFAGp = "for all paths, there is a point from which all reachable states satisfy p"
 - Consider the given model:
 - AFG holds
 - AFAGp does not hold
 - s₀, s₀, s₀, ... does not satisfy FAGp



- Exercise:
 - Does the LTL formula AFG p has an equivalent in CTL?
 - **AFG** p = "for all paths, eventually p always holds"

ΙΙΑΙΚ

- Solution: No
 - What about AFEG p?

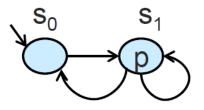


• Exercise:

IAIK

12

- Dies the LTL formula AFG p has an equivalent in CTL?
- Solution: No
 - What about AFEG p?
 - "in every path there is a point from which there is a path where p globally holds"



All paths satisfy FEGp

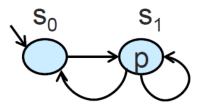
- since s₁ sat **EG**p

• Exercise:

ΙΙΑΙΚ

13

- Dies the LTL formula AFG p has an equivalent in CTL?
- Solution: No
 - What about AFEG p?
 - "in every path there is a point from which there is a path where p globally holds"



All paths satisfy **FEG**p

- since s₁ sat **EG**p

But $s_0, s_1, s_0, s_1, s_0, s_1, \dots$ does not satisfy **FG**p

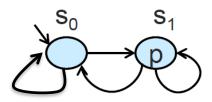
TOD

ΙΙΑΙΚ

14

- Exercise:
 - Does AG(EF p) has an LTL equivalent?
 - AG(EF p) = "From all reachable states, it is possible to reach a state that satisfies p"
- What about AGF p = "In all paths, p holds infinitely often"?
 - Does AG(EFp) hold?
 - Does AGFp hold?

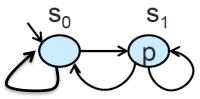
Hint:



TC

ΙΙΑΙΚ

- Exercise:
 - Does AG(EF p) has an LTL equivalent?
 - AG(EF p) = "From all reachable states, it is possible to reach a state that satisfies p"
- What about AGF p = "In all paths, p holds infinitely often"
 - AG(EFp) holds
 - All reachable states (s₀, s₁) satisfy EFp
 - AGFp does not hold
 - s₀, s₀, s₀ ... does not satisfy GFp



- The expressive powers of LTL and CTL are incomparable. That is,
 - There is an LTL formula that has no equivalent CTL formula
 - There is a CTL formula that has no equivalent LTL formula
- CTL* is more expressive than either of them

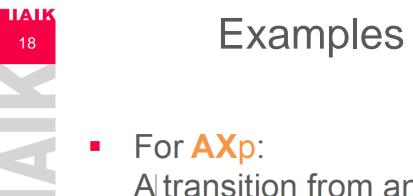
ΙΙΑΙΚ

Counterexamples

- Counterexample generation is a central feature of MC
- Given M and φ, such that M ⊭ φ, a counterexample is a behavior of M, demonstrating the violation of φ in M
- To be useful for debugging it should
 - have finite representation

ΙΙΑΙΚ

- be easy-to-understand by human
- Simplest form of a counterexample: trace that violates φ

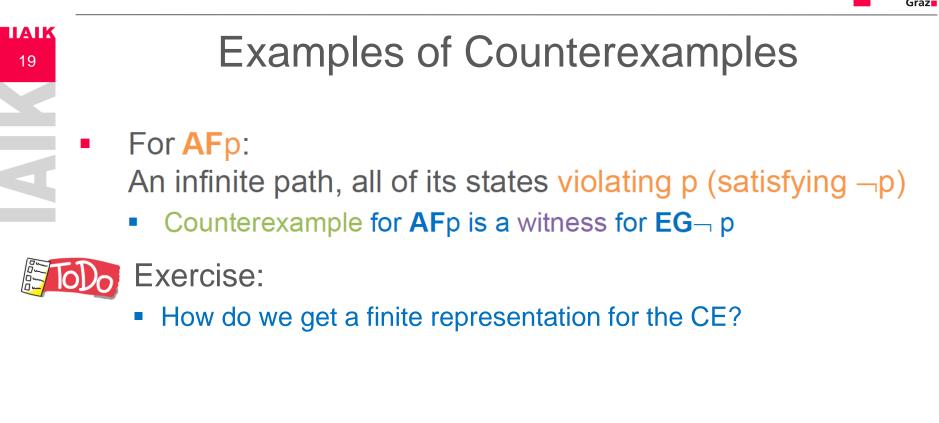


Examples of Counterexamples

- A transition from an initial state to a state violating p
- Counterexample for AXp is a witness for EX¬ p
- For AGp:

A finite path from an initial state to a state violating p

Counterexample for AGp is a witness for EF¬ p



-Examples of Counterexamples

• For AFp:

ΙΙΑΙΚ

20

An infinite path, all of its states violating p (satisfying ¬p)

- Counterexample for AFp is a witness for EG¬ p
- A finite representation for violation of AFp:
 - A lasso, which is a path of the form $\pi = \pi_0 (\pi_1)^{\omega}$
 - π_0 and π_1 are finite paths
 - ω indicates infinitely many repetitions of π₁

$$\mathbf{G}\neg p \longrightarrow \neg p \longrightarrow \neg p \longrightarrow \cdots \longrightarrow \neg p \longrightarrow \neg p \longrightarrow \neg p \longrightarrow \neg p$$

Safety and Liveness Properties

Informally,

- Safety properties guarantee that "something wrong will never happen"
 - Typical example: AGp
- Liveness properties guarantee that "something good will eventually happen"
 - Typical examples: AFp, A(pUq)

Safety Properties

Nothing "bad" will happen

ΙΙΑΙΚ

22

How does a counterexample for a safety property look like?

Safety Properties

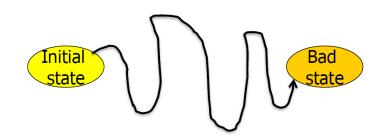
Nothing "bad" will happen

Exercise:

ΙΙΑΙΚ

23

 A counterexample for a safety property is a finite (loop-free) path



Institute for Applied Information Processing and Communications 04.05.2023

Liveness Properties

- Something 'good' will happen.
 - Example: F p

How does a CE for a Liveness property look like?

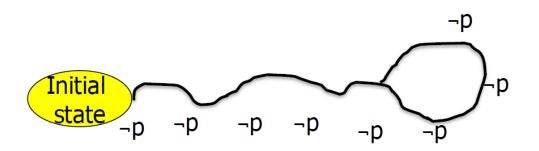
Liveness Properties

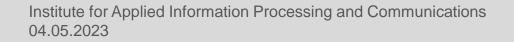
- Something 'good' will happen.
 - Example: F p

ΙΙΑΙΚ

25

 A counterexample is an infinite trace with lasso-shape, showing that this good thing NEVER happened





Part 2 – CTL Model Checking

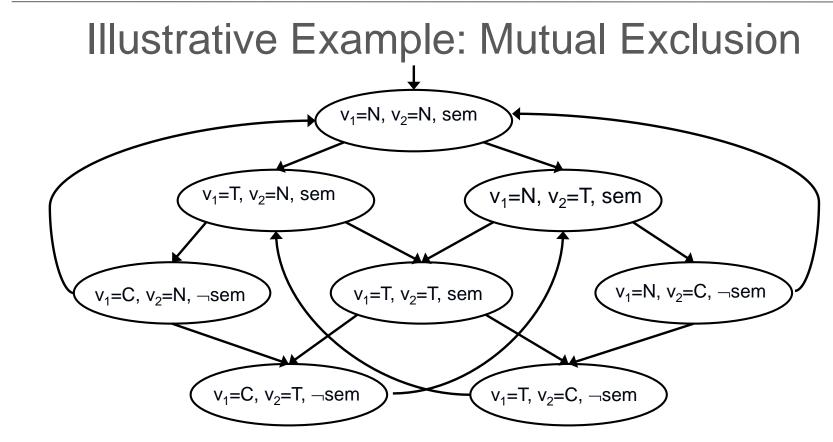
The Model Checking Problem

- Given a Kripke structure *M* and a CTL formula *f*
- Model Checking Problem:
 - $M \models f$, i.e., M is a model for f
- Alternative Definition
 - Compute $[[f]]_M = \{ s \in S \mid M, s \models f \}$, i.e., all states satisfying f
 - Check $S_0 \subseteq [[f]]_M$ to conclude that $M \models f$

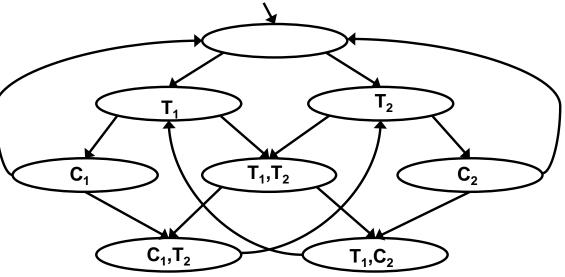
- Two processes with a joint semaphor signal sem
- Each process P_i has a variable v_i describing its state:
 - v_i = N Non-critical
 - $v_i = T$ Trying
 - v_i = C Critical

Each process runs the following program: P_i :: while (true) { Atomic if ($v_i == N$) $v_i = T$; else if ($v_i == T \&\& sem$) { $v_i = C$; sem = 0; } else if ($v_i == C$) { $v_i = N$; sem = 1; } }

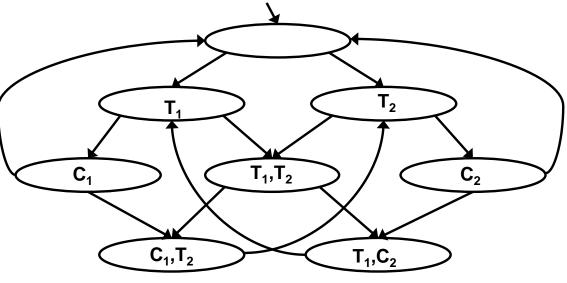
- The full program is: $P_1 || P_2$
- Initial state: (v₁=N, v₂=N, sem)
- The execution is interleaving



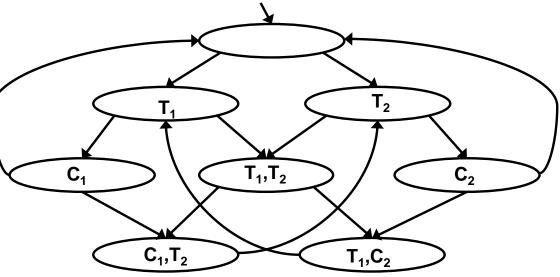
- We define atomic propositions: AP={C₁,C₂,T₁,T₂)
- A state is labeled with T_i if v_i=T
- A state is labeled with C_i if v_i=C



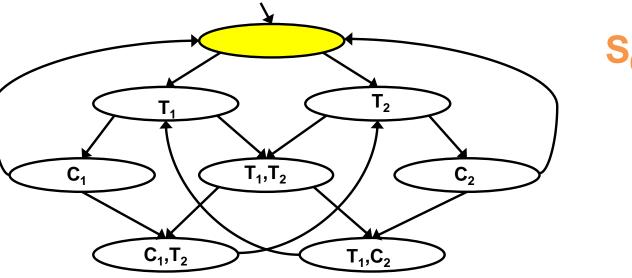
- We define atomic propositions: AP={C₁,C₂,T₁,T₂)
- A state is labeled with T_i if v_i=T
- A state is labeled with C_i if v_i=C



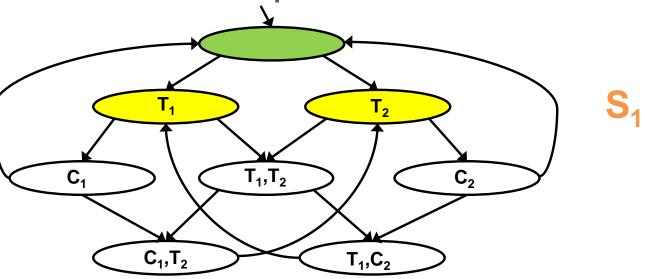
- Does it hold that $M \models f$?
 - Property 1: $f := AG \neg (C_1 \land C_2)$
 - Compute $\llbracket f \rrbracket_M = \{ s \in S \mid M, s \vDash f \}$ and check $S_0 \subseteq \llbracket f \rrbracket_M$



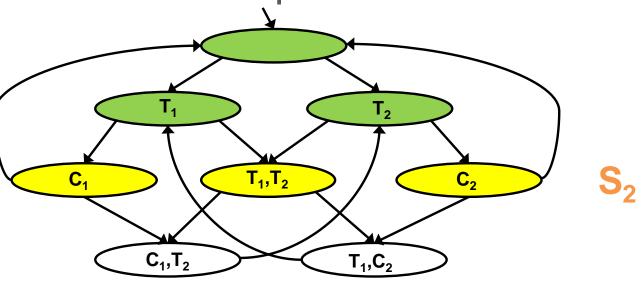
- Does it hold that $M \models f$?
 - Property 1: $f := AG \neg (C_1 \land C_2)$
- $S_i \equiv$ reachable states from an initial state after i steps



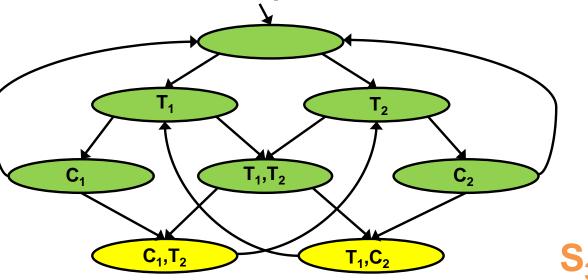
- Does it hold that $M \models f$?
 - Property 1: $f := AG \neg (C_1 \land C_2)$
- $S_i \equiv$ reachable states from an initial state after i steps



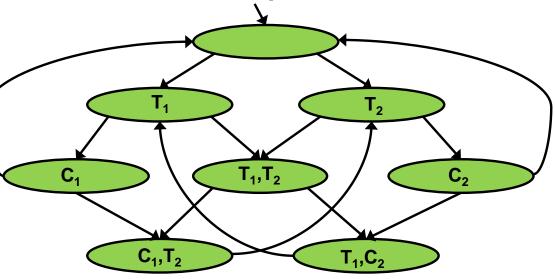
- Does it hold that $M \models f$?
 - Property 1: $f := AG \neg (C_1 \land C_2)$
- $S_i \equiv$ reachable states from an initial state after i steps



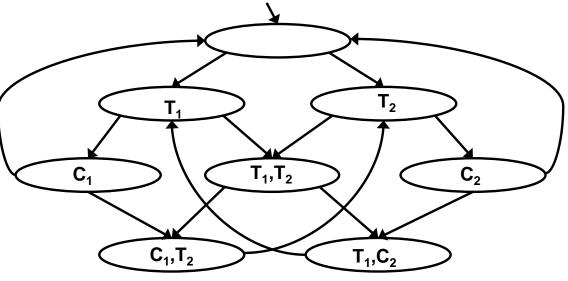
- Does it hold that $M \models f$?
 - Property 1: $f := AG \neg (C_1 \land C_2)$
- $S_i \equiv$ reachable states from an initial state after i steps



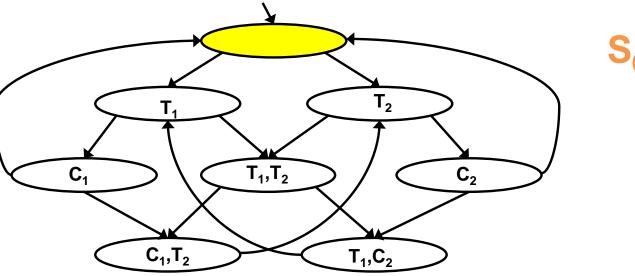
- Does it hold that $M \models f$?
 - Property 1: $f := AG \neg (C_1 \land C_2)$
- $S_i \equiv$ reachable states from an initial state after i steps



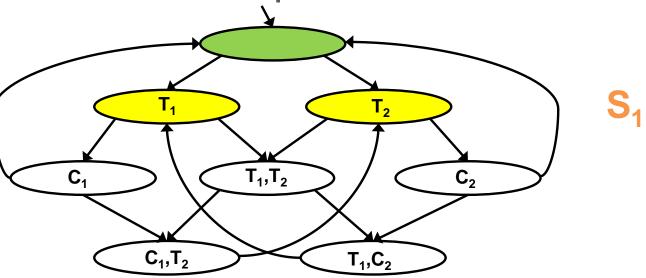
- Does it hold that $M \models f$?
 - Property 1: f := $AG \neg (C_1 \land C_2) \checkmark M \models AG \neg (C_1 \land C_2)$



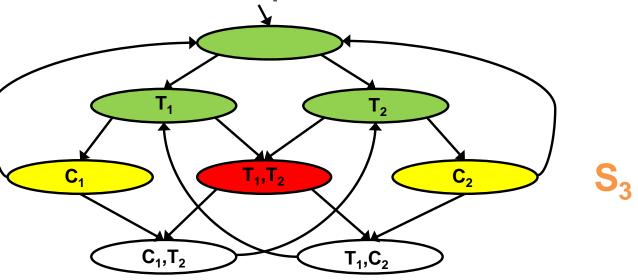
- Does it hold that $M \models f$?
 - Property 2: $f := \mathbf{AG} \neg (T_1 \land T_2)$



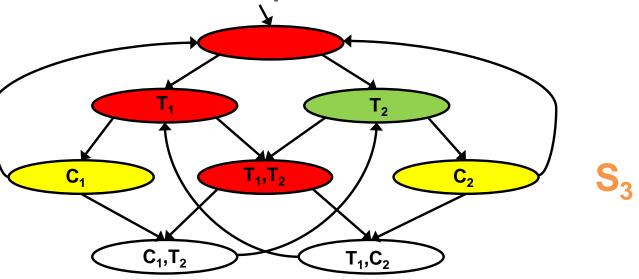
- Does it hold that $M \models f$?
 - Property 2: $f := \mathbf{AG} \neg (T_1 \land T_2)$
- $S_i \equiv$ reachable states from an initial state after i steps



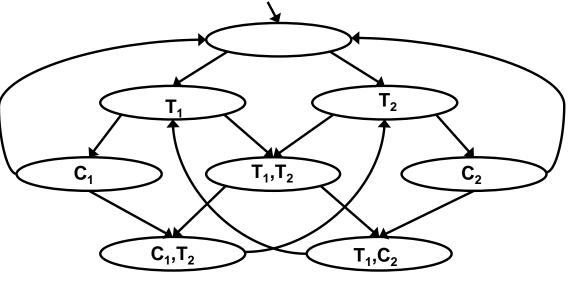
- Does it hold that $M \models f$?
 - Property 2: $f := \mathbf{AG} \neg (T_1 \land T_2)$
- $S_i \equiv$ reachable states from an initial state after i steps



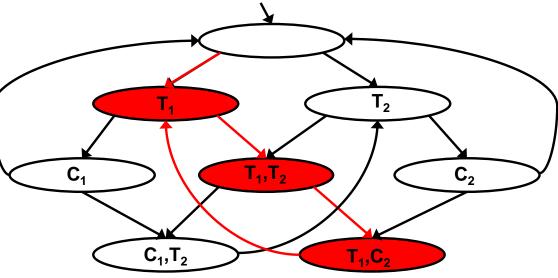
- Does it hold that $M \models f$?
 - Property 2: $f := AG \neg (T_1 \land T_2) \land M \not\models AG \neg (T_1 \land T_2)$



- Does it hold that $M \models f$?
 - Property 2: $f := AG \neg (T_1 \land T_2) \land M \not\models AG \neg (T_1 \land T_2)$
- Model checker returns a counterexample

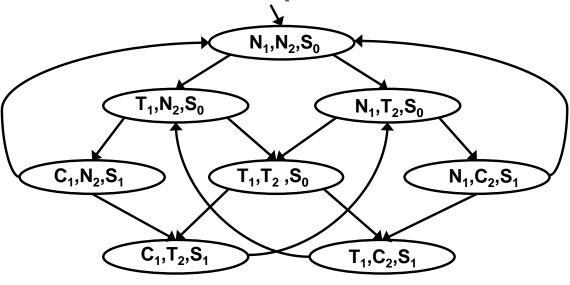


- Does it hold that $M \models f$?
 - Property 3: $f := AG ((T_1 \rightarrow F C_1) \land (T_2 \rightarrow F C_2))$
- In case $M \neq f$, compute a counterexample

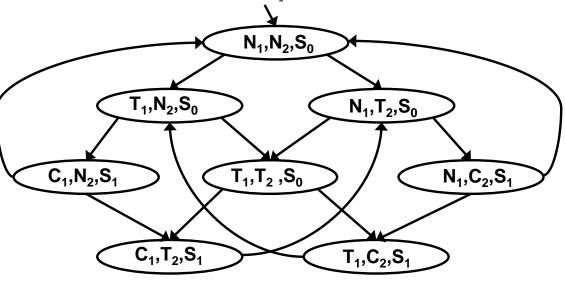


- Does it hold that $M \models f$?
 - Property 3: $f := AG ((T_1 \rightarrow F C_1) \land (T_2 \rightarrow F C_2))$
- In case M \nvDash f, compute a counterexample M \nvDash AG ((T₁ → F C₁) ∧ (T₂ → F C₂))

Secure & Correct Systems

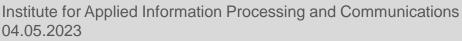


- Does it hold that $M \models f$?
 - Property 4: $f := AG EF (N_1 \land N_2 \land S_0)$
- How would you express property 4 in natural language?
- In case $M \neq f$, compute a counterexample



- Does it hold that $M \models f? \checkmark$
 - Property 4: $f := AG EF (N_1 \land N_2 \land S_0)$
- No matter where you are there is always a way to get to the initial state (restart)

Secure & Correct Systems



CTL Model Checking

Receives:

ΙΙΔΙΚ

- A Kripke structure M, modeling a system
- A CTL formula f, describing a property
- Determines whether $M \models f$
- Alternatively definition, MC returns [[f]] = { s ∈ S | M,s ⊨ f }
 - M is omitted from [[f]]_M when clear from the context

CTL Model Checking $M \models f$

Iterative algorithm: Compute $[[g]]_M$ for every subformula g of f

- Work iteratively on subformulas of f
 - from simpler to complex subformulas
- For checking AG(request $\rightarrow AF$ grant)
 - Check grant, request
 - Then check AF grant
 - Next check request → AF grant
 - Finally check AG(request → AF grant)

CTL Model Checking M ⊨ f

- For each s, computes label(s), which is the set of subformulas of f that are true in s
- We check subformula g of f only after all subformulas of g have already been checked
- For subformula g, the algorithm adds g to label(s) for every state s that satisfies g
- When we finish checking g, the following holds:
 g ∈ label(s) ⇔ M,s ⊨ g

CTL Model Checking M ⊨ f

- For each s, computes label(s), which is the set of subformulas of f that are true in s
- $M \models f$ if and only if $f \in label(s)$ for all initial states s of M
 - $M \models f$ if and only if $S_0 \subseteq \llbracket f \rrbracket_M$

Minimal set of operators for CTL

- All CTL formulas can be transformed to use only the operators:
 - ¬, ∨, **EX**, **EU**, **EG**
- MC algorithm needs to handle AP (atomic propositions) and ¬, ∨, EX, EU, EG

Model Checking Atomic Propositions

• Procedure for labeling the states satisfying $p \in AP$:

 $p \in label(s) \iff p \in L(s)$ _____ Defined by M

Model Checking ¬, ∨- Formulas

- Let f_1 and f_2 be subformulas that have already been checked
 - added to label(s), when needed

Give the procedures for labeling the states satisfying $\neg f_1$ and $f_1 \lor f_2$

Model Checking ¬, ∨- Formulas

- Let f₁ and f₂ be subformulas that have already been checked
 - added to label(s), when needed

- Give the procedures for labeling the states satisfying $\neg f_1$ and $f_1 \lor f_2$
 - $\neg f_1$ add to label(s) if and only if $f_1 \notin label(s)$
 - $f_1 \lor f_2$ add to label(s) if and only if $f_1 \in labels(s)$ or $f_2 \in label(s)$

Model Checking $g = EX f_1$

Give the procedures for labeling states satisfying EXf_1

ΙΙΑΙΚ

Model Checking $g = EX f_1$

- Give the procedures for labeling states satisfying EXf_1
 - Add g to label(s) if and only if s has a successor t such that f₁ ∈ label(t)

IAIK

Model Checking $g = EX f_1$

Give the procedures for labeling states satisfying EXf_1

 Add g to label(s) if and only if s has a successor t such that f₁ ∈ label(t)

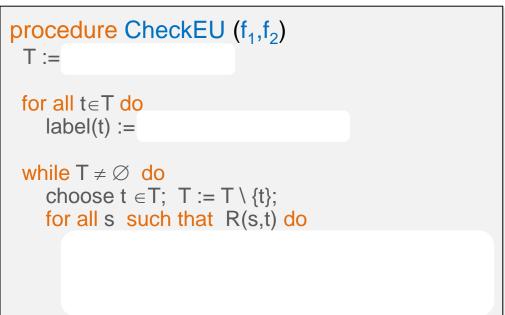
ΙΔΙΚ

Model Checking $g = E(f_1 U f_2)$

Procedures for labeling states satisfying $E(f_1 U f_2)$ Think how you can rewrite the procedure CheckEX

```
\begin{array}{l} \mbox{procedure CheckEX (f_1)}\\ T := \{ t \mid f_1 \in label(t) \} \end{array} \qquad \label(t) \} \qquad \qquad T := \\ \mbox{for all } t \in T \ do \\ label(t) := \\ \mbox{while } T \neq \emptyset \ do \\ \mbox{choose } t \in T; \ T := T \setminus \{t\}; \\ \mbox{for all } s \ such \ that \ R(s,t) \ do \\ \mbox{if } EX \ f_1 \notin label(s) \ then \\ \ label(s) := label(s) \cup \{ EX \ f_1 \}; \end{array}
```

ΠΔΙΚ

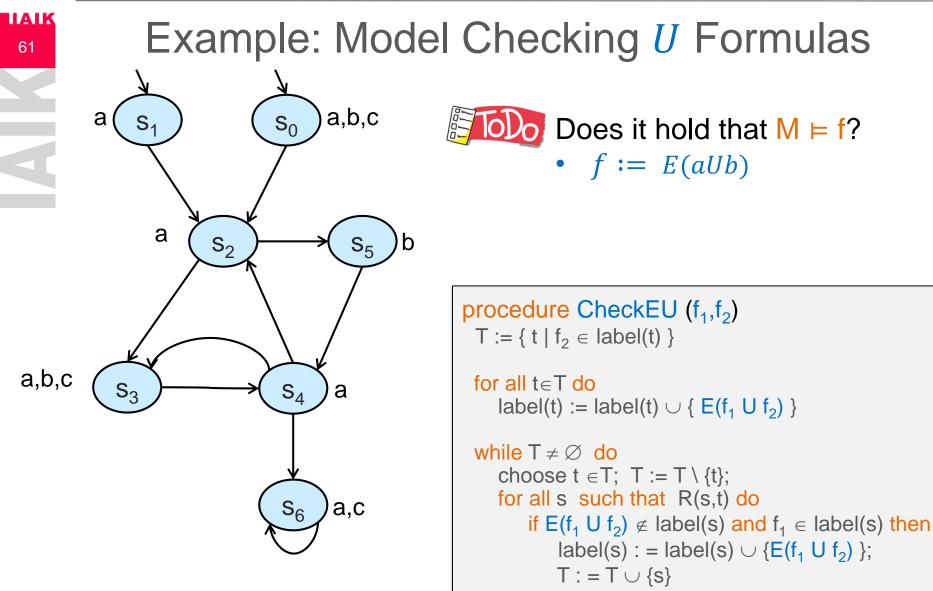


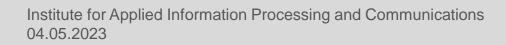
Model Checking $g = E(f_1 U f_2)$

- Procedures for labeling states satisfying $E(f_1 U f_2)$
- Rewriting the procedure CheckEX

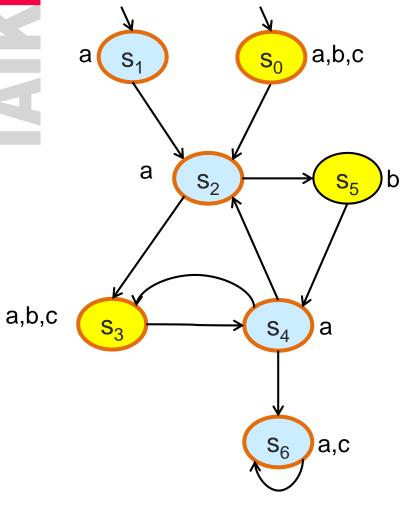
ΙΙΑΙΚ

```
\begin{array}{l} \mbox{procedure CheckEU (f_1,f_2)} \\ T := \{ t \mid f_2 \in label(t) \} \\ \mbox{for all } t \in T \ do \\ label(t) := label(t) \cup \{ E(f_1 \cup f_2) \} \\ \mbox{while } T \neq \varnothing \ do \\ \mbox{choose } t \in T; \ T := T \setminus \{t\}; \\ \mbox{for all } s \ \mbox{such that } R(s,t) \ do \\ \ \ if \ E(f_1 \cup f_2) \not\in label(s) \ \ and \ f_1 \in label(s) \ \ then \\ \ \ label(s) := label(s) \cup \{ E(f_1 \cup f_2) \}; \\ \ \ T := T \cup \{s\} \end{array}
```

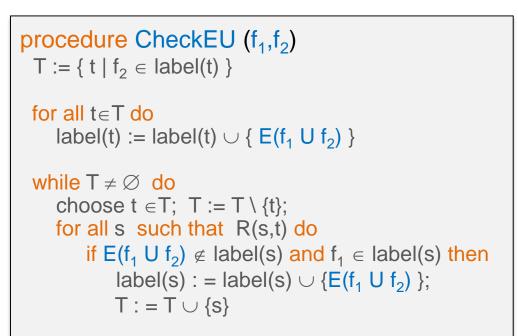





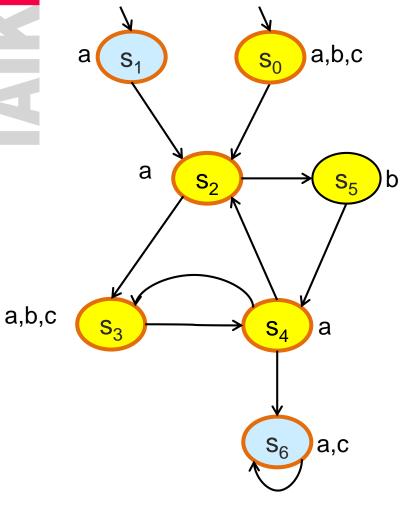
Example: Model Checking U Formulas



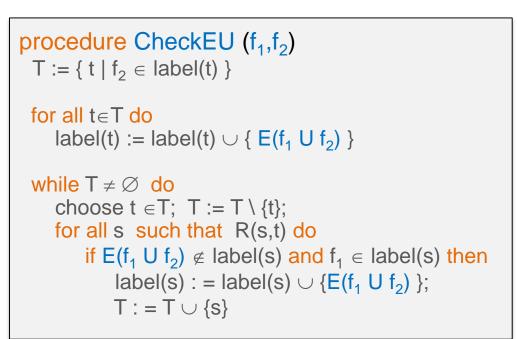
Does it hold that $M \models f$? • f := E(aUb)



Example: Model Checking U Formulas

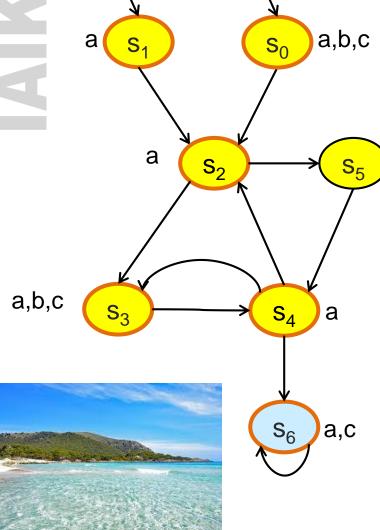


Does it hold that $M \models f$? • f := E(aUb)



Example: Model Checking *U* Formulas

b



Does it hold that $M \models f$? • f := E(aUb)• $M \models E(aUb)$ [[E(aUb)]] = {0,3,5,4}

procedure CheckEU (f_1, f_2) T := { t | $f_2 \in label(t)$ }

```
for all t \in T do
label(t) := label(t) \cup \{ E(f_1 \cup f_2) \}
```

SCOS Secure & Correct Systems

Institute for Applied Information Processing and Communications 04.05.2023

Model Checking $g = EGf_1$

Observation:

s **⊨ EG** f₁ iff

There is a path π , starting at s, such that $\pi \models \mathbf{G} \mathsf{f}_1$ iff

There is a path from s to a strongly connected component, where all states satisfy f_1

Model Checking $g = EGf_1$

- A Strongly Connected Component (SCC) in a graph is a subgraph C such that every node in C is reachable from any other node in C via nodes in C
- An SCC C is maximal (MSCC) if it is not contained in any other SCC in the graph
 - Possible to find all MSCC in linear time O(|S|+|R|) (Tarjan)
- C is nontrivial if it contains at least one edge.
 Otherwise, it is trivial

67

Model Checking $g = EGf_1$

- Reduced structure for M and f₁:
 - Remove from M all states such that $f_1 \notin label(s)$
- Resulting model: M' = (S', R', L')
 - S' = { s | M, s ⊨ f₁ }
 - R′ = (S′ x S′) ∩ R
 - L'(s') = L(s') for every s' ∈ S'
- Theorem: $M, s \models EG f_1$ iff
 - 1. $s \in S'$ and
 - 2. There is a path in M' from s to some state t in a nontrivial MSCC of M'

Model Checking $g = EGf_1$

procedure CheckEG (f₁)

 $\begin{array}{l} S' \mathrel{\mathop:}= \{s \mid f_1 \in label(s) \} \\ MSCC \mathrel{\mathop:}= \{ \ C \mid C \ is \ a \ nontrivial \ MSCC \ of \ M' \ \} \\ T \mathrel{\mathop:}= \cup_{C \ \in MSCC} \{ \ s \mid s \ \in \ C \} \end{array}$

```
for all t \in T do
label(t) := label(t) \cup \{ EG f_1 \}
```


Steps per Subformula

ΙΙΑΙΚ

- MC Atomic Propositions
- MC ¬, ∨ formulas
- MC g = EX f_1
- $\mathbf{MC} \ g = E(f_1 U \ f_2)$
- MC $g = EGf_1$

Steps per Subformula

- MC Atomic Propositions
 - O(|S|) steps

ΙΙΑΙΚ

- MC \neg , \lor formulas
 - O(|S|) steps
- MC g = EX f_1
 - Add g to label(s) iff s has a successor t such that $f_1 \in label(t)$
 - O(|S| + |R|)
- MC $g = E(f_1 U f_2)$
 - O(|S| + |R|)
- MC $g = EGf_1$

Steps per Subformula

• MC $g = EGf_1$

ΙΙΑΙΚ

71

- Computing M' : O (|S| + |R|)
- Computing MSCCs using Tarjan's algorithm:
 O (|S'| + |R'|)
- Labeling all states in MSCCs: O (|S'|)
- Backward traversal: O (|S'| + |R'|)

=> Overall: O (|S| + |R|)

Steps per Subformula

- MC Atomic Propositions
 - O(|S|) steps

ΙΙΑΙΚ

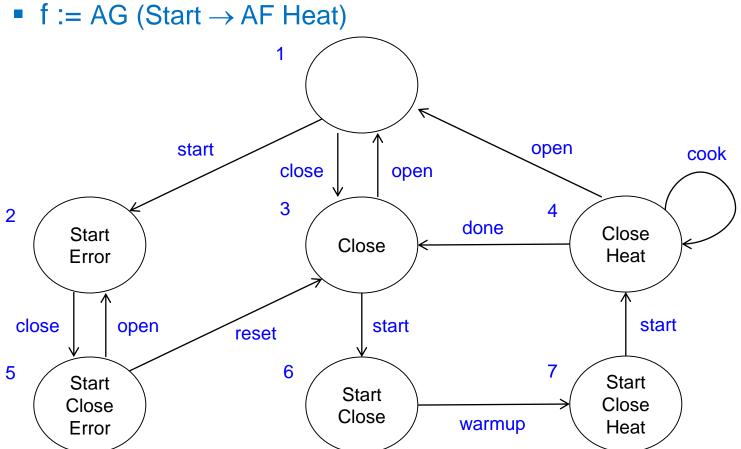
- MC \neg , \lor formulas
 - O(|S|) steps
- MC $g = EX f_1$
 - Add g to label(s) iff s has a successor t such that $f_1 \in label(t)$
 - O(|S| + |R|)
- MC $g = E(f_1 U f_2)$
 - O(|S| + |R|)
- MC $g = EGf_1$
 - O(|S| + |R|)

- Each subformula
 - O(|S|+|R|) = O(|M|)
- Number of subformulas in f:
 - O(|f|)
- Total
 - O(|M| × |f|)

- For comparison
 - Complexity of MC for LTL and CTL* is O($|\mathsf{M}|\times 2^{|\mathsf{f}|}$)

Microwave Example

Use the proposed algorithm to compute if $M \models f$?



Microwave Example

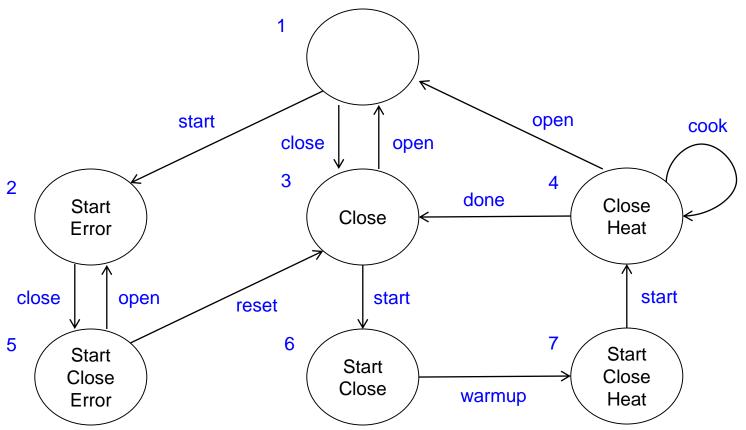
75

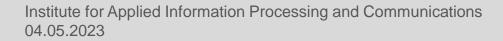
- Step 1: Rewrite the formula
 - AG (Start \rightarrow AF Heat) =
 - $\neg \mathsf{EF} (\mathsf{Start} \land \mathsf{EG} \neg \mathsf{Heat}) \equiv$
 - $\neg E$ (true U (Start $\land EG \neg Heat$))

Microwave Example

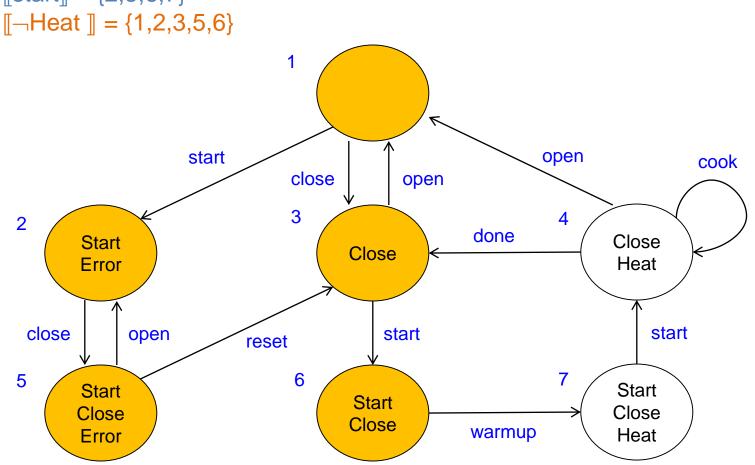
- Use the proposed algorithm to compute if $M \models f$?
 - f := ¬E (true U (Start ∧ EG ¬Heat))

LIAIK

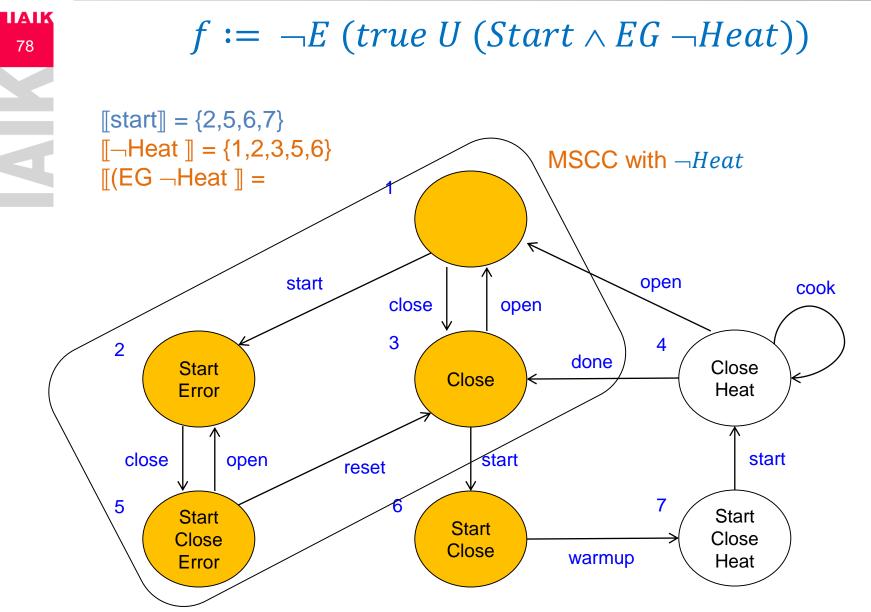




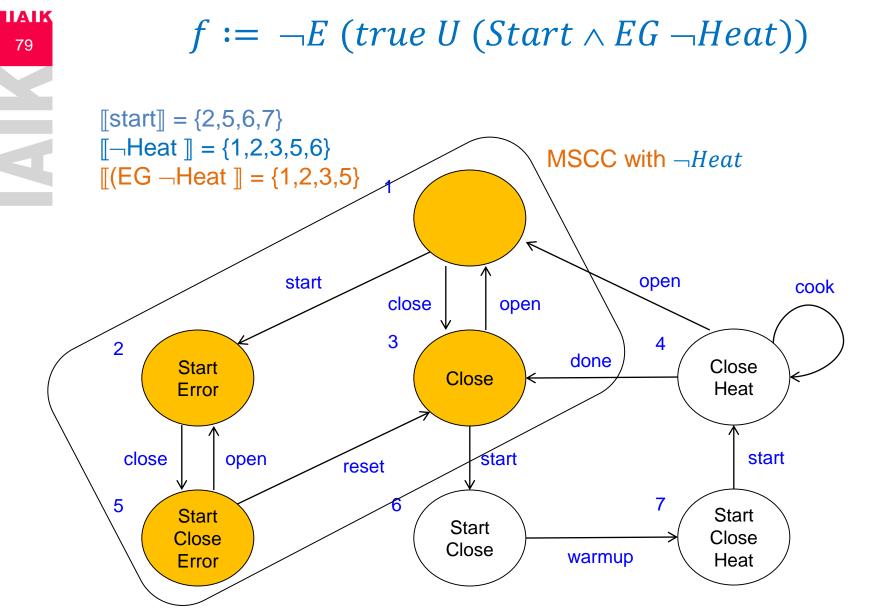
$f := \neg E (true \ U (Start \land EG \neg Heat))$

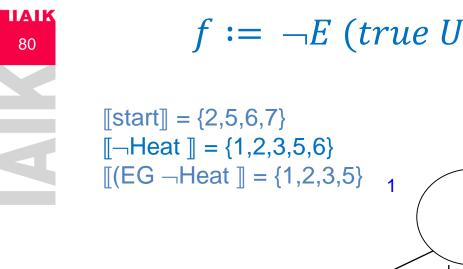


Institute for Applied Information Processing and Communications 04.05.2023

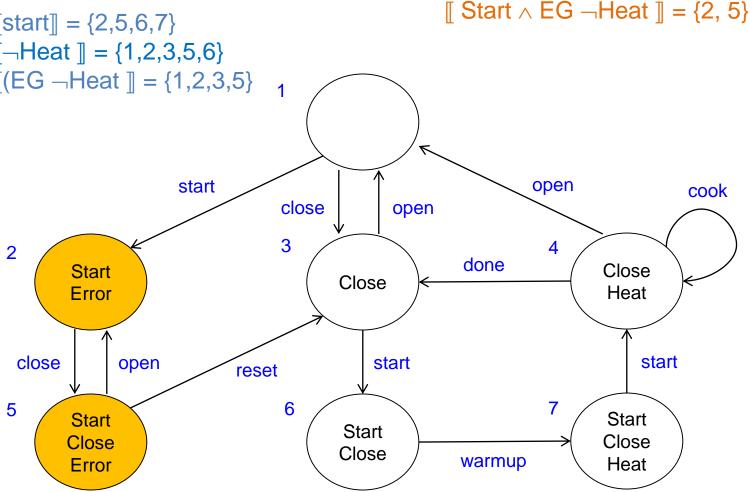


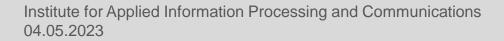
Institute for Applied Information Processing and Communications 04.05.2023

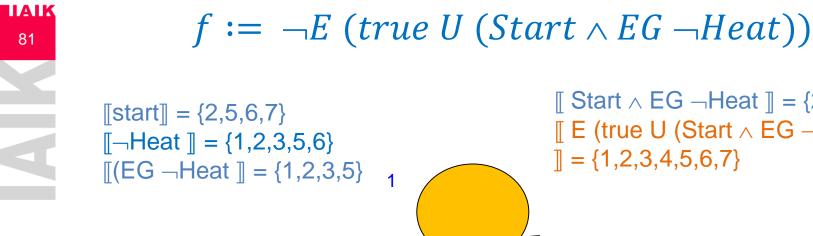


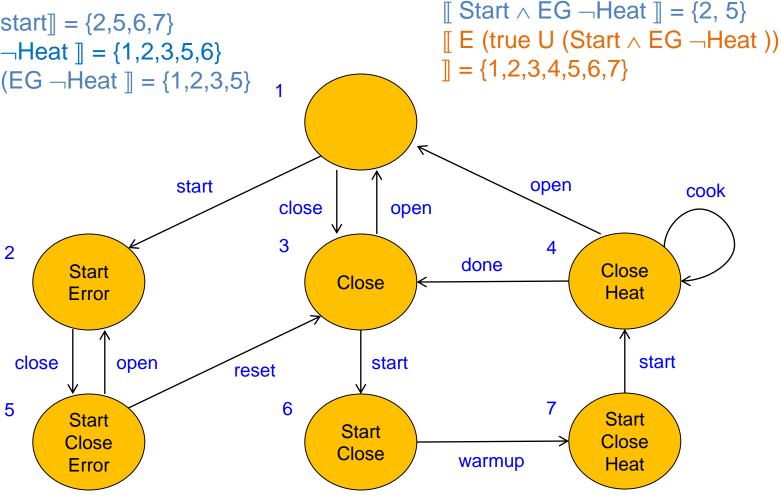


 $f := \neg E (true \ U (Start \land EG \neg Heat))$

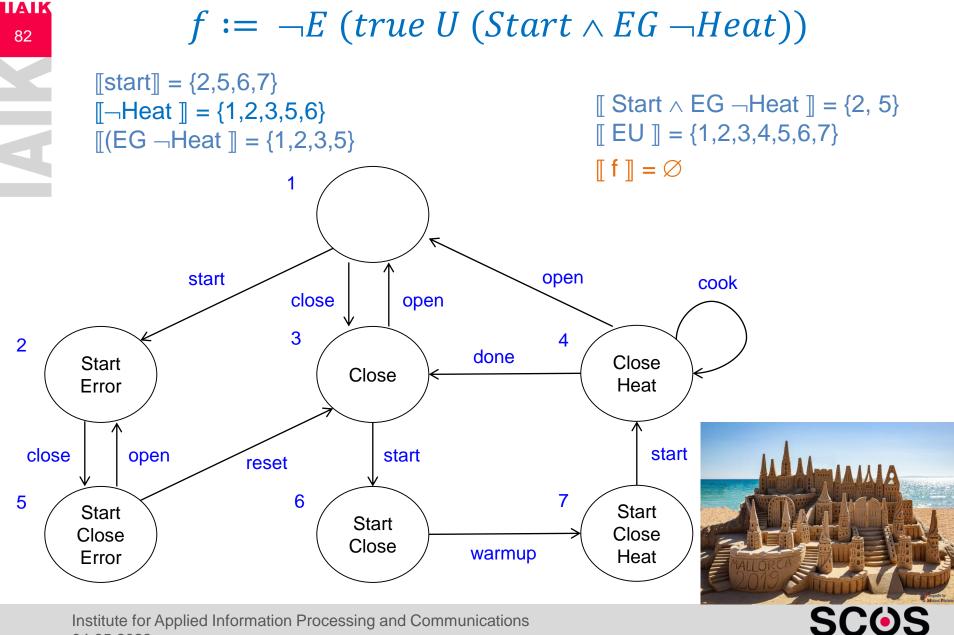








Institute for Applied Information Processing and Communications 04.05.2023



04.05.2023

Secure & Correct Systems

Institute for Applied Information Processing and Communications 04.05.2023

