Formal Methods for Trusted Al

Bettina Könighofer <u>bettina.koenighofer@iaik.tugraz.at</u>

May 25, 2023

Outline

What are Formal Methods?

Shielding

Formal Methods

- Formal methods = Mathematical techniques and tools to model, design and analyze systems
- Goal: To prove/guarantee correctness
- 3 Categories:
 - 1. Specification: WHAT the system must/must not do?

Specification ϕ

Always \neg (grant₁ \land grant₂) Always (request \rightarrow Next grant)

••••

Formal Methods

- Formal methods = Mathematical techniques and tools to model, design and analyze systems
- Goal: To prove/guarantee correctness
- 3 Categories:
 - **1. Specification**: **WHAT** the system must/must not do?
 - 2. Verification: DOES the system meet the specification? (and WHY?)

Formal Methods

- Formal methods = Mathematical techniques and tools to model, design and analyze systems
- Goal: To prove/guarantee correctness
- 3 Categories:
 - **1. Specification**: **WHAT** the system must/must not do?
 - 2. Verification: DOES the system meet the specification? (and WHY?)
 - **3.** Synthesis: HOW it meets the specification (correct-by-construction design/synthesis)

Challenges of Deep Learning for Formal Methods

How to guarantee Safety?

- System too complicated
- ... but we need to have absolute certainty

Shielding – Correct-by-Construction Runtime Assurance

Shielding – Scalability

Shielding – Properties

1. Shields guarantee correctness

2. Shields are minimal interfering

Shielding – Properties

1. Shields guarantee correctness

- Correct-by-construction
- Predictive

Shielding – Properties

1. Shields guarantee correctness

- Correct-by-Construction
- Predictive
- 2. Shields are minimal interfering
 - Only interfere when absolute necessary...
 - ... and as little as possible

Formal safety specification
Model of environment
J

Question: Winning Region for this example?

System Player wins,

is **never** visited

Winning Region: States from which the system can enforce that is **never** visited

inputs

Shielded Reinforcement Learning

(Post) Shielding of Reinforcement Learning

- Shielding during and after learning
- Question: How to update the policy of the agent?

(Post) Shielding of Reinforcement Learning

- Shielding during and after learning
- Policy update for action chosen by shield
- Policy update for unsafe actions:
 - 1. Update with negative reward **or**
 - 2. Update with gained reward

(Pre) Shielding of Reinforcement Learning

safe action

(Pre) Shielding of Reinforcement Learning

Question: How to update the policy of the agent?

- Action Masking
- Policy update for masked actions
 - with negative reward

Safe Reinforcement Learning via Shielding

Non-Shielded

Shielded

2 Player Game – adversarial environment

Probabilistic Shielding

2 Player Game – adversarial environment

Probabilistic models (Markov chains) for other agents

Property Specification

- Safety Probabilistic Temporal Logic Specification
 - Maximal probability to stay safe in the next k steps
 - For all state-actions pairs: Compute **Safety-Value**:
 - $P_{max}(s, a) = P_{max}(T(s, a), G^{\leq k}safe)$
- Absolute threshold $\gamma \in [0,1]$
 - If $P_{max}(s, a) < \gamma \rightarrow a$ is shielded in s
 - Not deadlock free!
- Relative threshold $\delta \in [0,1]$
 - If $P_{max}(s, a) < \delta \cdot P_{max}(s, a_{opt}) \rightarrow a$ is shielded in s

Property Specification

- Absolute threshold $\gamma \in [0,1]$
 - If $P_{max}(s, a) < \gamma \rightarrow a$ is shielded in s
 - Not deadlock free!
- Relative threshold $\delta \in [0,1]$
 - If $P_{max}(s, a) < \delta \cdot P_{max}(s, a_{opt}) \rightarrow a$ is shielded in s
- Large γ or $\delta \rightarrow$ strict shield;
- Small γ or $\delta \rightarrow$ permissive shield
- γ and δ can be changed on the fly

Safety specification is typically simple

- Invariant properties
 - Do not collide

•

- Never jump a red traffic signal
- Temporal properties:
 - A signal is only allowed to exceed some threshold for t seconds
 - If there is a request, there has to be a grant within the next t seconds

Huge model of the environment

- Compute safety values for all possible state-action pairs
- Expensive offline pre-computation and huge shielding data bases
- Limits application of shielding to small environments

- Huge model of the environment
- Environmental model is unknown

- Environmental model is unknown
- Idea: Combine shielding with automata learning

- Environmental model is unknown
- Idea: Combine shielding with automata learning

Formal Safety Specification

MDP over abstract states

Shielding under Delayed Observation

TEMPEST – Synthesis Tool for Reactive Systems and Shields in Probabilistic Environments

- Safety Shields → Guaranteed Safety
- Optimal Shields → Guaranteed Performance

https://tempest-synthesis.org/

Stefan

Shields are great for learned systems

If you have a correct model

Many possibilities for FM 4 AI

- Verification
- Testing
- Monitoring / Enforcement
- Explainability
- Reward Shaping / Specification Mining...

