Temporal Logic

Model Checking SS23
Bettina Könighofer
April 272023
bettina.koenighofer@iaik.tugraz.at

Warm Up

展行DDO Translate sentences to formulas

- "If a sentence has a truth value, it is a declarative sentence."
- "A model is an assignment that makes a formula either true or false."

Warm Up 4 1 lne

Translate sentences to formulas

- "If a sentence has a truth value, it is a declarative sentence."
$p \ldots$ sentence has a truth value, $\mathrm{q} . .$. sentence is a declarative sentence

$$
p \rightarrow q
$$

- "A model is an assignment that makes a formula either true or that makes the formula false."
$p . .$. assignment that makes the formula true,
q... assignment that makes the formula false
$p \oplus q$

Temporal Logic

- Used to specify the dyamic behavior of systems
- MC Question:
- Does the model of the system satisfy a temporal logic formula?
- System model:
- Kripke structure (today)
- I/O Automaton
- Multiplayer Game
- Markov Decision Process / Stochastic Multiplayer Game

Properties of Kripke Structures

Properties

Write properties as formulas

- Always when the robot visits A , it visits C within the next two steps.
- The robot can visit C within the next two steps after visiting A

Propositional Temporal Logic

AP - a set of atomic propositions, $p, q \in A P$
Temporal operators:

Path quantifiers: A for all paths
E there exists a path

${ }_{8}^{\text {ralk }}$ Properties of Kripke Structures

Temporal Operators
X... next
G... globally
F... eventually
\section*{Path quantifiers}
A for all paths
E there exists a path

Properties
廨TODO Write properties as formulas

- Always when the robot visits A , it visits C within the next two steps.

$$
A G(a \rightarrow X c \vee X X c)
$$

- The robot can visit C within the next two
$E G(a \rightarrow X c \vee X X c)$ steps after visiting A

"alk Properties of Kripke Structures

Properties

Temporal Operators X... next
 G... globally
 F... eventually
 Path quantifiers
 A for all paths
 E there exists a path

冨気TODO Write properties as formulas

$$
A G \neg x
$$

- It is possible that the robot never visits \mathbf{X}
$E G \neg x$

${ }_{10}$

Properties

Temporal Operators
X... next
G... globally
F... eventually
Path quantifiers
A for all paths
E there exists a path

HODO Write properties as formulas

- The robot can visit A and C infinitely often.
- The robot always visits A infinitely often, but C only finitely often.

"alk Properties of Kripke Structures

Properties

Temporal Operators
X... next
G... globally
F... eventually
Path quantifiers
A for all paths
E there exists a path

剈TODO Write properties as formulas

- If the robot visits A infinitely often,

$$
A(G F a \rightarrow F G \neg C)
$$

it should visit C only finitely often.

Computation Tree Logic - CTL*

- Defines properties of computation trees of Kripke structures

Paths and Suffixes

$\pi=\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots$ is an infinite path in M from a state s if

- $s=s_{0}$ and
- for all $i \geq 0, \quad\left(s_{i}, s_{i+1}\right) \in R$

Propositional Temporal Logic

Temporal operators:

- Describe properties that hold along an infinite path π

pUq holds if there is a state on π where q holds, and at every preceding state on π (if it exists), p holds

Propositional Temporal Logic

Temporal operators:

- Describe properties that hold along an infinite path π

$p \mathbf{R q}$ requires that q holds along π up to and including the first state where p holds. However, p is not required to hold eventually.

Propositional Temporal Logic

Path quantifiers: A, E

- Are used in a particular state s.
- They specify that all of the paths or some of the paths starting from s have property φ
- A for all paths starting from s have property φ
- E there exists a path starting from s have property φ
- Use combination of A and E to describe branching structure in tree

State Formulas and Path Formulas Semantics Informally

- Path Formulas:
- $\pi_{1} \vDash \mathrm{~Gb}$
- $\pi_{2} \neq \mathrm{Gb}$
- State Formulas:
- $s_{0} \vDash \mathrm{EG}$ b
- $s_{0} \neq \mathrm{AG}$ b

State Formulas and Path Formulas

 Semantics Informally

Fisiono Does s_{0} satisfy the following formula?

- $s_{0} \square$ EXX $(a \wedge b)$
- $s_{0} \square \operatorname{EXAX}(\mathrm{a} \wedge b)$

State Formulas and Path Formulas

 Semantics Informally

Does s_{0} satisfy the following formula?

- $s_{0} \vDash \operatorname{EXX}(\mathrm{a} \wedge b)$
- $s_{0} \not \neq \operatorname{EXAX}(\mathrm{a} \wedge b)$

Syntax of CTL*

Two types of formulas in the inductive definition

- State formulas
- Path formulas

CTL* formulas are the set of all state formulas

Syntax of CTL*: State Formulas

State formulas are true in a specific state

Inductive definition of state formulas:

- $p \in A P$ is a state formula
- $\neg f_{1}, f_{1} \vee f_{2}, f_{1} \wedge f_{2}$ where f_{1}, f_{2} are state formulas

Syntax of CTL*: State Formulas

State formulas are true in a specific state

Inductive definition of state formulas:

- $p \in A P$ is a state formula
- $\neg f_{1}, f_{1} \vee f_{2}, f_{1} \wedge f_{2}$ where f_{1}, f_{2} are state formulas
- $\boldsymbol{E} g, \boldsymbol{A} g$ where g is a path formula

Syntax of CTL*: Path Formulas

Path formulas are true along a specific path

Inductive definition of path formulas:

- If f is a state formula, then f is also a path formula
- $\neg g_{1}, g_{1} \vee g_{2}, g_{1}, g_{2}, \boldsymbol{X} g_{1}, \boldsymbol{G} g_{1}, \boldsymbol{F} g_{1}, g_{1} \boldsymbol{U} g_{2}, g_{1} \boldsymbol{R} g_{2}$ are path formulas where g_{1}, g_{2} are path formulas
- CTL* is the set of all state formulas = CTL* formulas are Boolean variables, temporal properties with a leading path quantifier, and Boolean combinations thereof.

Semantics of CTL*

- Kripke Structure $M=\left(S, S_{0}, R, A P, L\right)$
- $\pi=\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots$ is an infinite path in M
- π^{i} - the suffix of π, starting at s_{i}
- For state formulas:
- $\boldsymbol{M}, \boldsymbol{s} \vDash \boldsymbol{f}$... the state formula f holds in state s of M
- For path formulas:
- $\boldsymbol{M}, \boldsymbol{\pi} \vDash \boldsymbol{g} \ldots$ the path formula g holds along π in M

Semantics of CTL*

- g is a path formula

State formulas:

- $\boldsymbol{M}, \boldsymbol{s} \vDash \boldsymbol{p} \quad \Leftrightarrow \boldsymbol{p} \in L(s)$ for $p \in A P$
- $M, s \vDash \mathrm{E} g \Leftrightarrow$ there is a path π from s s.t. $M, \pi \vDash g$
- $\boldsymbol{M}, \boldsymbol{s} \vDash \mathbf{A} \boldsymbol{g} \Leftrightarrow$ for every path $\boldsymbol{\pi}$ from \boldsymbol{s} s.t. $\boldsymbol{M}, \boldsymbol{\pi} \vDash \boldsymbol{g}$
- Boolean combination (\wedge, \vee, \neg) - the usual semantics

Semantics of path formulas - summary

If p, q are state formulas, then:

But in the general case p and q can be path formulas

Semantics of CTL*

Path formulas:

- $\boldsymbol{M}, \boldsymbol{s} \vDash \mathrm{f}$, where f is a state formula $\Leftrightarrow \boldsymbol{M}, s_{0} \vDash \mathrm{f}$

Semantics of CTL*

Path formulas:

- $M, \pi \vDash \mathbf{X} g$, where g is a path formula $\Leftrightarrow M, \pi^{1} \vDash g$

Semantics of CTL*

Path formulas:

- $\quad M, \pi \vDash \mathrm{G} g \Leftrightarrow$ for every $\mathrm{i} \geq 0, M, \pi^{i} \vDash g$

Semantics of CTL*

Path formulas:

- $M, \pi \vDash \mathrm{G} g \Leftrightarrow$ for every $\mathrm{i} \geq 0, M, \pi^{i} \vDash g$

- $M, \pi \vDash \mathrm{Fg} \Leftrightarrow \square$

Semantics of CTL*

Path formulas:

- $\quad M, \pi \vDash \mathrm{G} g \Leftrightarrow$ for every $\mathrm{i} \geq 0, M, \pi^{i} \vDash g$

- $M, \pi \vDash \mathrm{Fg} \Leftrightarrow$ there exists $\mathrm{k} \geq 0$, such that $M, \pi^{\mathrm{k}} \vDash \boldsymbol{g}$

Semantics of CTL*

Path formulas:

- $\quad M, \pi \vDash \mathrm{~F} g \Leftrightarrow$ there exists $\mathrm{k} \geq 0$, such that $\mathrm{M}, \pi^{\mathrm{k}} \vDash \boldsymbol{g}$

- $\quad M, \pi \vDash g_{1} \cup g_{2} \Leftrightarrow$

Institute for Applied Information Processing and Communications

Semantics of CTL*

Path formulas:

- $\quad M, \pi \vDash \mathrm{~F} g \Leftrightarrow$ there exists $\mathrm{k} \geq 0$, such that $\mathrm{M}, \pi^{\mathrm{k}} \vDash \boldsymbol{g}$

- $\quad M, \pi \vDash g_{1} \cup g_{2} \Leftrightarrow$ there exists $\mathrm{k} \geq 0$, such that $\mathrm{M}, \pi^{\mathrm{k}} \vDash g_{2}$ and for every $0 \leq \mathrm{j}<\mathrm{k}, \mathrm{M}, \pi^{\mathrm{j}} \vDash \boldsymbol{g}_{1}$

Institute for Applied Information Processing and Communications

R („release")

- Intuitively, once g_{1} becomes true, it "releases" g_{2}. If g_{1} never becomes true then g_{2} stays true forever

ODO Rewrite it using U, F, G, or X

\square

R (yrelease

- Intuitively, once g_{1} becomes true, it "releases" g_{2} If g_{1} never becomes true then g_{2} stays true forever
- $\quad g_{1} \mathbf{R} g_{2} \equiv\left(g_{2} \mathbf{U}\left(g_{1} \wedge g_{2}\right)\right) \vee \mathbf{G} g_{2}$

Semantics of CTL*

- $M \vDash f \Leftrightarrow$ for all initial states $\mathrm{s}_{0} \in \mathrm{~S}_{0}: \quad M, s_{0} \vDash f$ BTODO
- Example: Does $M \vDash E X p$ or $M \vDash \neg E X p$?

Semantics of CTL*

- $M \vDash f \Leftrightarrow$ for all initial states $\mathrm{s}_{0} \in \mathrm{~S}_{0}: \quad M, s_{0} \vDash f$ BIODO
- Example: Does $M \vDash E X p$ or $M \vDash \neg E X p$?

Solution
$M \models E X p$

Semantics of CTL*

- $M \vDash f \Leftrightarrow$ for all initial states $\mathrm{s}_{0} \in \mathrm{~S}_{0:} \quad M, s_{0} \vDash f$ BIODO
- Example: Does $M \vDash E X p$ or $M \vDash \neg E X p$?

Semantics of CTL*

- $M \vDash f \Leftrightarrow$ for all initial states $\mathrm{s}_{0} \in \mathrm{~S}_{0}: \quad M, s_{0} \vDash f$
- Example: Does $M \vDash \operatorname{EX} p$ or $M \vDash \neg \operatorname{EX} p$?

Neither

Holds in s_{1} but not in s_{0}. Note, such a situation never happens when M has a single initial state.

䬨10DO Exercise 1

Question:

- Given $a, b \in A P$

How does a path satisfying $\mathbf{F}(\mathrm{a} \mathbf{U} \mathrm{b})$ look like?

Exercise 1

Question:

- Given $a, b \in A P$ How does a path satisfying $\mathbf{F}(\mathrm{a} \mathbf{U} \mathrm{b})$ look like?

$$
\mathrm{F}(\mathrm{a} \mathrm{U} \mathrm{b)} \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \circ
$$

㫤10DO Exercise 2

Question:
For $p \in A P$, what is the meaning of the following formulas?

- $\quad \pi \vDash$ GF p
- $\quad \pi \vDash$ FG p

Exercise 2

Question:

For $p \in A P$, what is the meaning of the following formulas?

- $\quad \pi \vDash$ GF p Infinitely often p along π
- $\pi \vDash$ FG p Finitely often $\neg \mathrm{p}$ along π

冨有TODO Exercise 2

Question：
For $p \in A P$ ，what is the meaning of the following formulas？
－$s \vDash E G F p$
－s にEG EF p
－$\pi \vDash$ GF p Infinitely often p along π
－$\pi \vDash$ FG p Finitely often $\neg p$ along π

Exercise 2

Question:

For $p \in A P$, what are the meaning of the following formulas?

- $s \vDash E G F p \quad$ There exists a path with satisfies infinitely often p
- $s \vDash E G E F p$ There exists a path in which we can reach p from all states
- $\pi \vDash$ GF $\mathrm{p} \quad$ Infinitely often p along π
- $\quad \pi \vDash$ FG p \quad Finitely often $\neg p$ along π

麘IDDO Exercise 3

Question:
When does π satisfy the formula: (Formulate it without an Until operator)

- $\quad \pi \vDash(\mathbf{G a}) \mathbf{U}(\mathbf{G b})$

Answer:

Institute for Applied Information Processing and Communications
27.04.2023

Exercise 3

Question:
When does π satisfy the formula: (Formulate it without an Until operator)

- $\quad \pi \vDash(\mathbf{G a}) \mathbf{U}(\mathbf{G b})$

Answer:

- (Ga) $\mathbf{U}(\mathbf{G b}) \equiv \mathbf{G b} \vee(\mathbf{G a} \wedge \mathbf{F G b})$

Properties of CTL*

The operators $\vee, \neg, \mathbf{X}, \mathbf{U}, \mathbf{E}$ are sufficient to express any CTL* formula:

- $\mathrm{f} \wedge \mathrm{g} \equiv \neg(\neg \mathrm{f} \vee \neg \mathrm{g})$
- $\mathbf{f} \mathbf{R g} \equiv \neg(\neg \mathbf{f} \mathbf{U} \neg \mathrm{g})$
- Ff \equiv true Uf
- $\mathbf{G f} \equiv \neg \mathbf{F} \neg f$
- $\quad \mathbf{A}(\mathrm{f}) \equiv \neg \mathbf{E}(\neg \mathrm{f})$

Negation Normal Form (NNF)

- Formulas in Negation Normal Form (NNF) are formulas in which negations are applied only to atomic propositions
- Every CTL* formula is equivalent to a CTL* formula in NNF
- Negations can be "pushed" inwards.
$\neg \mathbf{E f} \equiv \mathrm{A} \neg \mathrm{f}$
$\neg \mathbf{G f} \equiv \mathbf{F} \neg f$
$\neg \mathbf{X f} \equiv \mathbf{X} \neg$
$\neg(f \mathbf{U}) \equiv(\neg f R \neg g)$

Negation Normal Form (NNF)

- Negations can be "pushed" inwards.
$\neg \mathbf{E f} \equiv \mathbf{A} \neg f$
$\neg \mathbf{G f} \equiv \mathbf{F} \neg \mathrm{f}$
$\neg \mathbf{X f} \equiv \mathbf{X} \neg f$
$\neg(f \mathbf{U}) \equiv(\neg f R \neg g)$
- Example:

Transforming a formula into NNF:

- $\quad \neg((\mathrm{a} \mathrm{U} \mathrm{b}) \vee \mathrm{F}) \equiv$

Negation Normal Form (NNF)

- Negations can be "pushed" inwards.
$\neg \mathbf{E f} \equiv \mathbf{A} \neg f$
$\neg \mathbf{G f} \equiv \mathrm{F} \neg \mathrm{f}$
$\neg \mathbf{X f} \equiv \mathbf{X} \neg f$
$\neg(f \mathbf{U}) \equiv(\neg f R \neg g)$
- Example:

Transforming a formula into NNF:

- $\neg((\mathrm{a} \mathbf{U} \mathrm{b}) \vee \mathrm{F} \mathrm{c}) \equiv(\neg(\mathrm{a} \mathbf{U} \mathrm{b}) \wedge \neg \mathrm{F} \mathrm{c}) \equiv$ $(((\neg a) \mathbf{R}(\neg b)) \wedge(\mathbf{G} \neg c)$

Useful sublogics of CTL*

- CTL are Computation tree logic
- Can describe the branching of the computation tree by applying nested path quantifications
- LTL is a linear-time temporal logic
- Describes the paths in the computation tree, using only one, outermost universal quantification
- CTL and LTL are most widely used

LTL/CTL/CTL*

LTL consists of state formulas of the form A f

- $\quad \mathrm{f}$ is a path formula, containing no path quantifiers
- LTL is interpreted over infinite computation paths

CTL consists of state formulas, where path quantifiers and temporal operators appear in pairs:

- AG, AU, AX, AF, AR, EG, EU, EX, EF, ER
- CTL is interpreted over infinite computation trees

CTL* allows any combination of temporal operators and path quantifiers. It includes both LTL and CTL

LTL

State formulas:

- Af where f is a path formula

Path formulas:

- $p \in A P$
- $\quad \boldsymbol{f}_{1}, \mathrm{f}_{1} \vee \mathrm{f}_{2}, \mathrm{f}_{1} \wedge \mathrm{f}_{2}, \mathbf{X} f_{1}, \mathbf{G f}_{1}, \mathbf{F f}_{1}, \mathrm{f}_{1} \mathbf{U} f_{2}, \mathrm{f}_{1} \mathbf{R} \mathrm{f}_{2}$
where f_{1} and f_{2} are path formulas

LTL is the set of all state formulas

CTL

CTL is the set of all state formulas, defined below (by means of state formulas only):

- $p \in A P$
- $\quad \neg g_{1}, g_{1} \vee g_{2}, g_{1} \wedge g_{2}$
- $\quad \mathbf{A X} \mathrm{g}_{1}, \mathbf{A G} \mathrm{~g}_{1}, \mathbf{A F} \mathrm{~g}_{1}, \mathbf{A}\left(\mathrm{~g}_{1} \cup \mathrm{~g}_{2}\right), \mathbf{A}\left(\mathrm{g}_{1} \mathbf{R} \mathrm{~g}_{2}\right)$
- $\quad E X g_{1}, E G g_{1}, E F g_{1}, E\left(g_{1} \cup g_{2}\right), E\left(g_{1} R g_{2}\right)$
where g_{1} and g_{2} are state formulas

