

Graz University of Technology Institute for Applied Information Processing and Communications

Temporal Logic

Model Checking SS23 Bettina Könighofer bettina.koenighofer@iaik.tugraz.at

April 27 2023

27.04.2023

Translate sentences to formulas

• "If a sentence has a truth value, it is a declarative sentence."

• "A model is an assignment that makes a formula either true or false."

Translate sentences to formulas

"If a sentence has a truth value, it is a declarative sentence."

p... sentence has a truth value, q... sentence is a declarative sentence $p \rightarrow q$

 "A model is an assignment that makes a formula either true or that makes the formula false."

p... assignment that makes the formula true, *q...* assignment that makes the formula false $p \bigoplus q$

Temporal Logic

- Used to specify the dyamic behavior of systems
- MC Question:
 - Does the model of the system satisfy a temporal logic formula?
- System model:
 - Kripke structure (today)
 - I/O Automaton
 - Multiplayer Game
 - Markov Decision Process / Stochastic Multiplayer Game

27/04/2023

ΙΑΙΚ

Properties of Kripke Structures

Properties

- Always when the robot visits A, it visits C within the next two steps.
- The robot can visit C within the next two steps after visiting A

Write properties as formulas

Path quantifiers: A for all paths

E there exists a path

27.04.2023

LIAIK **Properties of Kripke Structures** 8

Path quantifiers A for all paths

X... next

G... globally

F... eventually

E there **exists** a path

Properties

- Always when the robot visits A, it visits **C** within the next two steps.
- The robot can visit C within the next two steps after visiting A

$$A G (a \rightarrow Xc \lor XXc)$$

$$E G (a \rightarrow Xc \lor XXc)$$

В

С

27.04.2023

LIAIK **Properties of Kripke Structures** 9

A for all paths

X... next

E there exists a path

Properties

- The robot *never* visits X
- It is possible that the robot *never* visits X

Write properties as formulas

$$A G \neg x$$

 $E G \neg x$

В

С

LIAIK **Properties of Kripke Structures** 10

X... next

G... globally

F... eventually

A for all paths

Path quantifiers

E there **exists** a path

Write properties as formulas

The robot can visit A and C *infinitely often*.

 $A (GF a \land GF c)$

The robot always visits A *infinitely often*, but **C** only *finitely often*.

 $E(GF a \wedge FG \neg c)$

Properties

Properties of Kripke Structures

A for **all** paths E there **exists** a path

X... next

G... globally

F... eventually

Path quantifiers

Temporal Operators

Write properties as formulas

 If the robot visits A *infinitely often*, it should visit C only *finitely often*. $A (GF a \to FG \neg c)$

Properties

Paths and Suffixes

- $\pi = s_0, s_1, \dots$ is an *infinite* path in *M* from a state s if • $s = s_0$ and
 - for all $i \ge 0$, $(s_i, s_{i+1}) \in R$

IIAIK

p**U**q holds if there is a state on π where q holds, and at every preceding state on π (if it exists), p holds

27.04.2023

pRq requires that q holds along π up to and including the first state where p holds. However, p is not required to hold eventually.

27.04.2023

Propositional Temporal Logic

Path quantifiers: A, E

- Are used in a particular state s.
- They specify that all of the paths or some of the paths starting from s have property φ
- A for all paths starting from s have property φ
- **E** there **exists** a path starting from **s** have property ϕ
- Use combination of A and E to describe branching structure in tree

ΙΔΙΚ

State Formulas and Path Formulas Semantics Informally

- Path Formulas:
 - $\pi_1 \vDash \text{Gb}$
 - $\pi_2 \not\models \text{Gb}$

- State Formulas:
 - $s_0 \models \text{EG b}$
 - $s_0 \not\models AG b$

State Formulas and Path Formulas Semantics Informally π_1 b,c c π_2 a,b c c c

Does s_0 satisfy the following formula? $s_0 \square EXX (a \land b)$

• $s_0 \square \text{EXAX} (a \land b)$

27.04.2023

 π_2

С

С

С

¹⁹ State Formulas and Path Formulas Semantics Informally

 π_1

a,b

b,c

- Does s_0 satisfy the following formula? $s_0 \models EXX (a \land b)$
 - $s_0 \not\models \text{EXAX} (a \land b)$

a,b

С

b,c

Syntax of CTL*

Two types of formulas in the inductive definition

- State formulas
- Path formulas

CTL* formulas are the set of all state formulas

ΙΙΑΙΚ

Syntax of CTL*: State Formulas

State formulas are true in a specific state

Inductive definition of state formulas:

- $p \in AP$ is a state formula
- $\neg f_1, f_1 \lor f_2, f_1 \land f_2$ where f_1, f_2 are state formulas

Syntax of CTL*: State Formulas

State formulas are true in a specific state

Inductive definition of state formulas:

- $p \in AP$ is a state formula
- $\neg f_1, f_1 \lor f_2, f_1 \land f_2$ where f_1, f_2 are state formulas
- *Eg*, *Ag* where *g* is a path formula

Syntax of CTL*: Path Formulas

Path formulas are true along a specific path

Inductive definition of path formulas:

- If *f* is a state formula, then *f* is also a path formula
- $\neg g_1, g_1 \lor g_2, g_1 \land g_2, Xg_1, Gg_1, Fg_1, g_1Ug_2, g_1Rg_2$ are path formulas where g_1, g_2 are path formulas
- CTL* is the set of all state formulas = CTL* formulas are Boolean variables, temporal properties with a leading path quantifier, and Boolean combinations thereof.

- Kripke Structure $M = (S, S_0, R, AP, L)$
 - $\pi = s_0, s_1, \dots$ is an infinite path in M
- π^{i} the suffix of π , starting at s_i
- For state formulas:
 - $M, s \models f$... the state formula f holds in state s of M
- For path formulas:
 - $M, \pi \models g$... the **path** formula g holds along π in M

ΙΔΙΚ

• g is a path formula

State formulas:

ΙΔΙΚ

- $M, s \models p \quad \Leftrightarrow p \in L(s) \text{ for } p \in AP$
- $M, s \models \mathsf{E} g \Leftrightarrow$ there is a path π from s s.t. $M, \pi \models g$
- $M, s \models A g \Leftrightarrow$ for every path π from s s.t. $M, \pi \models g$
- Boolean combination (\land, \lor, \neg) the usual semantics

Semantics of path formulas - summary

If p,q are state formulas, then:

But in the general case p and q can be path formulas

Path formulas:

ΠΑΙΚ

27

• $M, s \models f$, where f is a state formula $\Leftrightarrow M, s_0 \models f$

Path formulas:

ΙΙΑΙΚ

28

• $M, \pi \models X g$, where g is a path formula $\Leftrightarrow M, \pi^1 \models g$

27.04.2023

Path formulas:

• $M, \pi \vDash \mathbf{G} \mathbf{g} \Leftrightarrow$ for every i $\ge 0, M, \pi^i \vDash \mathbf{g}$

• *M,*
$$\pi \vDash \mathsf{F} \boldsymbol{g} \Leftrightarrow$$

Path formulas:

• $M, \pi \vDash \mathbf{G}g \Leftrightarrow$ for every i $\ge 0, M, \pi^i \vDash \mathbf{g}$

• $M, \pi \vDash \mathsf{F} g \Leftrightarrow$ there exists $k \ge 0$, such that $M, \pi^k \vDash g$

Secure & Correct Systems

Semantics of CTL*

Path formulas:

ΙΙΑΙΚ

32

• $M, \pi \vDash F g \Leftrightarrow$ there exists k ≥ 0 , such that M, $\pi^{k} \vDash g$

Institute for Applied Information Processing and Communications 27.04.2023

Path formulas:

ΙΙΑΙΚ

33

• *M*, $\pi \vDash \mathbf{F} \mathbf{g} \Leftrightarrow$ there exists k ≥ 0 , such that M, $\pi^{k} \vDash \mathbf{g}$

• $M, \pi \vDash g_1 \cup g_2 \Leftrightarrow$ there exists $k \ge 0$, such that $M, \pi^k \vDash g_2$ and for every $0 \le j < k, M, \pi^j \vDash g_1$

R ("release")

Intuitively, once g₁ becomes true, it "releases" g_{2.}
 If g₁ never becomes true then g₂ stays true forever

ΙΙΑΙΚ

R ("release")

Intuitively, once g₁ becomes true, it "releases" g₂.
 If g₁ never becomes true then g₂ stays true forever

• $\mathbf{g}_1 \mathbf{R} \mathbf{g}_2 \equiv (\mathbf{g}_2 \mathbf{U} (\mathbf{g}_1 \wedge \mathbf{g}_2)) \vee \mathbf{G} \mathbf{g}_2$

ΙΑΙΚ

- $M \vDash f \Leftrightarrow$ for all initial states $s_0 \in S_{0:}$ $M, s_0 \vDash f$
 - Example: Does $M \models \mathsf{EX} p$ or $M \models \neg \mathsf{EX} p$?

IIAIK

Secure & Correct Systems

Semantics of CTL*

- $M \vDash f \Leftrightarrow$ for all initial states $s_0 \in S_{0:}$ $M, s_0 \vDash f$
 - Example: Does $M \models \mathsf{EX} p$ or $M \models \neg \mathsf{EX} p$?

IIAIK

- $M \vDash f \Leftrightarrow$ for all initial states $s_0 \in S_{0:}$ $M, s_0 \vDash f$
 - Example: Does $M \models \mathsf{EX} p$ or $M \models \neg \mathsf{EX} p$?

IIAIK

- $M \vDash f \Leftrightarrow$ for all initial states $s_0 \in S_{0:}$ $M, s_0 \vDash f$
- Example: Does $M \models \mathsf{EX} p$ or $M \models \neg \mathsf{EX} p$?

Neither

Holds in s_1 but not in s_0 . Note, such a situation never happens when *M* has a single initial state.

IAIK

Question:

 Given a, b ∈ AP How does a path satisfying F(a U b) look like?

Exercise 1

Question:

ΙΑΙΚ

41

 Given a, b ∈ AP How does a path satisfying F(a U b) look like?

SCOS Secure & Correct Systems

Question:

For $p \in AP$, what is the meaning of the following formulas?

- π ⊨ **GF** p
- π ⊨ **FG** p

Exercise 2

Question:

ΙΑΙΚ

43

For $p \in AP$, what is the meaning of the following formulas?

 $\pi \models \mathbf{GFp}$ Infinitely often p along π $\pi \models \mathbf{FGp}$ Finitely often $\neg \mathbf{p}$ along π

Question:

For $p \in AP$, what is the meaning of the following formulas?

- s ⊨ **EGF** p
- s ⊨ EG EF p
- $\pi \models \mathbf{GF} p$ Infinitely often p along π
- $\pi \models \mathbf{FG} p$ Finitely often $\neg p$ along π

Exercise 2

Question:

ΙΑΙΚ

45

For $p \in AP$, what are the meaning of the following formulas?

- $S \models EGF p$ There exists a path with satisfies infinitely often p
- S = EGEF p There exists a path in which we can reach p from all states
- $\pi \models \mathbf{GF} p$ Infinitely often p along π
- $\pi \models \mathbf{FG} p$ Finitely often $\neg p$ along π

Secure & Correct Systems

Question:

When does π satisfy the formula: (Formulate it without an Until operator)

■ π ⊨ (**G**a) **U** (**G**b)

Answer:

Institute for Applied Information Processing and Communications 27.04.2023

Exercise 3

Question:

IAIK

47

When does π satisfy the formula: (Formulate it without an Until operator)

■ π ⊨ (**G**a) **U** (**G**b)

Answer:

• (Ga) U (Gb) \equiv Gb \vee (Ga \wedge FGb)

Properties of CTL*

The operators \vee , \neg , X, U, E are sufficient to express any CTL* formula:

- $f \wedge g \equiv \neg(\neg f \vee \neg g)$
- $f \mathbf{R} g \equiv \neg(\neg f \mathbf{U} \neg g)$
- $\mathbf{F} \mathbf{f} \equiv \text{true } \mathbf{U} \mathbf{f}$

ΙΙΑΙΚ

- **G** f $\equiv \neg \mathbf{F} \neg \mathbf{f}$
- $\mathbf{A}(\mathbf{f}) \equiv \neg \mathbf{E}(\neg \mathbf{f})$

Negation Normal Form (NNF)

- Formulas in Negation Normal Form (NNF) are formulas in which negations are applied only to atomic propositions
- Every CTL* formula is equivalent to a CTL* formula in NNF
- Negations can be "pushed" inwards.

```
\neg \mathbf{E} \mathbf{f} \equiv \mathbf{A} \neg \mathbf{f}
\neg \mathbf{G} \mathbf{f} \equiv \mathbf{F} \neg \mathbf{f}
\neg \mathbf{X} \mathbf{f} \equiv \mathbf{X} \neg \mathbf{f}
\neg (\mathbf{f} \mathbf{U} \mathbf{g}) \equiv (\neg \mathbf{f} \mathbf{R} \neg \mathbf{g})
```


Transforming a formula into NNF:

Negation Normal Form (NNF)

Negations can be "pushed" inwards.

 Example: Transforming a formula into NNF:

 ¬((a U b) ∨ F c) ≡ (¬(a U b) ∧ ¬F c) ≡ (((¬a) R (¬b)) ∧ (G ¬c)

Useful sublogics of CTL*

CTL are Computation tree logic

ΙΔΙΚ

- Can describe the branching of the computation tree by applying nested path quantifications
- LTL is a linear-time temporal logic
 - Describes the paths in the computation tree, using only one, outermost universal quantification
- CTL and LTL are most widely used

LTL/CTL/CTL*

LTL consists of state formulas of the form A f

ΠΑΙΚ

53

- f is a path formula, containing no path quantifiers
- LTL is interpreted over infinite computation paths

CTL consists of state formulas, where path quantifiers and temporal operators appear in **pairs**:

- AG, AU, AX, AF, AR, EG, EU, EX, EF, ER
- CTL is interpreted over infinite computation trees

CTL* allows any combination of temporal operators and path quantifiers. It includes both LTL and CTL

State formulas:

Af where f is a path formula

Path formulas:

- $p \in AP$
- $\neg f_1, f_1 \lor f_2, f_1 \land f_2, Xf_1, Gf_1, Ff_1, f_1 Uf_2, f_1 Rf_2$ where f_1 and f_2 are path formulas

LTL

LTL is the set of all state formulas

CTL is the set of all state formulas, defined below (by means of state formulas only):

ΙΙΑΙΚ

55

- $\blacksquare \qquad \neg g_1, \quad g_1 \lor g_2, \quad g_1 \land g_2$
- AX g₁, AG g₁, AF g₁, A (g₁ U g₂), A (g₁ R g₂)
- **EX** g_1 , **EG** g_1 , **EF** g_1 , **E** $(g_1 U g_2)$, **E** $(g_1 R g_2)$

where g_1 and g_2 are state formulas

Institute for Applied Information Processing and Communications 27.04.2023

